CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In addition to the widely used SpCas9 system, alternative platforms including modified amino acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial species have been developed to apply this technology in various genetic contexts. In addition, base editors and prime editors for precise gene editing, the Cas13 system targeting RNA, and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using various delivery methods, such as electroporation, adeno-associated viruses, and lipid nanoparticles. To amplify therapeutic efficiency, continued developments in targeted delivery technologies are required, with increased safety and stability of therapeutic biomolecules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many diseases, including rare congenital diseases, by making permanent corrections at the genomic DNA level. In this review, we present various CRISPR-based tools, their delivery systems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative prospects for gene therapy.
Strains Mo2-6T, S9, KG4-3T, and 50Mo3-2, identified as coagulase-negative, Gram-stain-positive, halotolerant, non-motile coccoid bacteria, were isolated from traditional Korean soybean foods. Strains Mo2-6T and S9 were both catalase- and oxidase-negative, whereas KG4-3T and 50Mo3-2 were catalase-positive but oxidase-negative. The optimal growth conditions for Mo2-6T and S9 were 30°C, 2% NaCl, and pH 7.0, while KG4-3T and 50Mo3-2 grew best at 35°C, 2% NaCl, and pH 7.0. All strains contained menaquinone-7 as the predominant isoprenoid quinone, with anteiso-C15:0 and iso-C15:0 as the major cellular fatty acids (> 10%). Additionally, anteiso-C13:0 was a major fatty acid in strain KG4-3T. The DNA G + C contents of strains Mo2-6T, S9, KG4-3T, and 50Mo3-2 were 33.4%, 33.3%, 32.5%, and 32.7%, respectively. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, formed distinct lineages within the genus Staphylococcus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, belonged to the same species. Meanwhile, dDDH and ANI values between strains Mo2-6T and KG4-3T, as well as comparisons with other Staphylococcus type strains, were below the species delineation thresholds, indicating they represent novel species. Based on phenotypic, chemotaxonomic, and molecular data, we propose strain Mo2-6T as the type strain of Staphylococcus parequorum sp. nov. (=KACC 23685T =JCM 37038T) and strain KG4-3T as the type strain of Staphylococcus halotolerans sp. nov. (=KACC 23684T =JCM 37037T).
Two Gram-stain-negative, obligately aerobic, non-motile, short rod-shaped bacteria, designated IMCC43871T and IMCC45206T, were isolated from coastal surface seawater collected from the Yellow Sea and the South Sea of Korea, respectively. The two strains shared 99.2% 16S rRNA gene sequence similarity with each other and exhibited ≤ 98.4% similarity to three described Rubrivirga species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between IMCC43871T and IMCC45206T were 88.5% and 36.3%, respectively, confirming that they represent two distinct species. Their ANI (≤ 77.7%) and dDDH (≤ 21.4%) values relative to the type strains of the genus Rubrivirga further supported the recognition of strains IMCC43871T and IMCC45206T as two novel species within the genus. The complete genomes of IMCC43871T (4.17 Mb, 71.8% G + C content) and IMCC45206T (4.17 Mb, 72.8% G + C content) fall within the known genomic range of the genus. Cellular fatty acid, quinone, and polar lipid profiles were consistent with the chemotaxonomic features of the genus Rubrivirga, supporting their affiliation with the genus. Based on phylogenetic, genomic, and phenotypic evidence, strains IMCC43871T and IMCC45206T are proposed as two novel species, Rubrivirga aquatilis sp. nov. and Rubrivirga halophila sp. nov., respectively. The type strains are IMCC43871T (= KCTC 102072T = NBRC 116463T) and IMCC45206T (= KCTC 92925T = NBRC 116172T = CCTCC AB 2023136T).
Human papillomaviruses (HPVs) cause abnormal cellular proliferation, leading to malignant or benign lesions, such as cervical cancer and warts. The genome of HPV16, the most prevalent high-risk oncogenic genotype within the Alphapapillomavirus genus, encodes two oncoproteins. One of these proteins, E7, interacts with multiple host proteins and modulates their functions through distinct pathways. The CR2 domain of HPV16 E7 was recently reported to interact with the μ2 subunit of clathrin-adaptor protein 2 (AP2-μ2), an adaptor complex involved in cargo internalization during clathrin-mediated endocytosis. In this study, to provide molecular insights into their intermolecular interactions, we determined the crystal structures of AP2-μ2 in complex with the HPV16 E7-derived peptides. Subsequent biochemical analyses revealed that this interaction is primarily maintained by the Y-x-x-Φ motif and further supported by acidic cluster residues of HPV16 E7. Finally, sequence alignment of the E7 CR2 domains from various HPV genotypes showed that the AP2-μ2-binding motif is largely conserved in Alpha-, Beta-, and Mupapillomaviruses, but not in Nu- and Gammapapillomaviruses.
Akkermansia muciniphila (AKK, A. muciniphila) fortifies the intestinal barrier, inhibits the colonization of pathogenic bacteria, and protects the host’s health. Nevertheless, the existing literature offers inadequate evidence to ascertain whether A. muciniphila can effectively treat Candida albicans (C. albicans) infections in vitro, and the underlying mechanisms remain ambiguous. This study, animal models were established through gavage with clinical isolates of C. albicans to induce gastrointestinal tract colonization and subsequent translocation infection. The models were subsequently administered A. muciniphila. We examined the analysis of 16S rRNA gene sequencing, metabolomics of colonic contents, and transcriptomics of colonic tissue. The intestinal barrier, inflammatory responses, and immune cell infiltration are analyzed. This study revealed that A. muciniphila markedly mitigated C. albicans translocation infection and modified the intestinal microbial community structure and metabolic attributes in model mice. After administering A. muciniphila to the translocation infection group, there was a notable increase in the prevalence of bacteria that produce short-chain fatty acids, including Eubacterium_F. Moreover, there was a significant increase in the levels of specific pathogens, including Faecalibaculum, Turicibacter, and Turicimonas. The study demonstrated that A. muciniphila treatment can improve the composition of intestinal microbiota and metabolites, augment the tight junctions of colonic tissue and diminish systemic inflammatory response. This presents an innovative therapeutic approach for the potential treatment of intestinal C. albicans infection using A. muciniphila.
The 2015 Zika virus (ZIKV) outbreak in Brazil and its global spread underscored the urgent need for effective and broadly protective vaccines. While C57BL/6 and BALB/c mice are widely used in preclinical vaccine research, direct comparisons of their ability to elicit ZIKV-specific neutralizing antibodies (nAbs) remain limited. This study aimed to systematically evaluate and compare the immunogenic potential of these two common mouse strains across diverse vaccine platforms, focusing on their capacity to generate functional neutralizing antibody responses. We assessed nAb and IgG responses following four vaccination strategies: (1) DNA vaccine encoding prMEΔTM followed by E protein domain III boost, (2) recombinant EΔTM protein expressed using baculovirus system, (3) formalin-inactivated ZIKV, and (4) live ZIKV. Although both strains generated detectable ZIKV- and E protein-specific IgG, the magnitude and quality of responses varied by vaccine platform and strain. Notably, C57BL/6 mice consistently mounted significantly higher nAb titers than BALB/c mice across all immunization groups, including subunit- and whole-virus-based vaccines. In contrast, BALB/c mice showed lower or undetectable nAb responses, despite comparable or higher total IgG levels in some cases. These findings show that host genetic background is a critical determinant of vaccine-induced neutralization and underscore the importance of selecting appropriate animal models in ZIKV vaccine development. C57BL/6 mice, due to their robust nAb responses, represent a reliable model for evaluating vaccine immunogenicity. Conversely, the limited nAb responses in BALB/c mice position them as a potential low-responder model, offering a stringent system to test the potency and breadth of protective immunity under suboptimal conditions.