Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Most viewed

Page Path
HOME > Browse Articles > Most viewed
103 Most viewed
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles

The most viewed articles in the last three months among those published since 2025.

Review
CRISPR-Cas technologies: Emerging tools from research to clinical application
Hana Hyeon, Soonhye Hwang, Yongyang Luo, Eunkyoung Shin, Ji-Hyun Yeom, Hong-Man Kim, Minkyung Ryu, Kangseok Lee
J. Microbiol. 2025;63(8):e2504012.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2504012
  • 12,341 View
  • 176 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In addition to the widely used SpCas9 system, alternative platforms including modified amino acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial species have been developed to apply this technology in various genetic contexts. In addition, base editors and prime editors for precise gene editing, the Cas13 system targeting RNA, and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using various delivery methods, such as electroporation, adeno-associated viruses, and lipid nanoparticles. To amplify therapeutic efficiency, continued developments in targeted delivery technologies are required, with increased safety and stability of therapeutic biomolecules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many diseases, including rare congenital diseases, by making permanent corrections at the genomic DNA level. In this review, we present various CRISPR-based tools, their delivery systems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative prospects for gene therapy.

Citations

Citations to this article as recorded by  
  • CRISPR: a precise genome editing strategy for the treatment of hepatocellular carcinoma
    Subhrojyoti Mukherjee, Manish Kumar
    Expert Review of Anticancer Therapy.2025; : 1.     CrossRef
Editorial
Advancing microbial engineering through synthetic biology
Ki Jun Jeong
J. Microbiol. 2025;63(3):e2503100.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2503100
  • 7,504 View
  • 183 Download
PDF
Reviews
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 8,747 View
  • 334 Download
  • 2 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Biorefinery-based production of biodegradable bioplastics: advances and challenges in circular bioeconomy
    Ariane Fátima Murawski de Mello, Clara Matte Borges Machado, Lucia Carolina Ramos Neyra, Diego Yamir Ocán-Torres, Rafael Novaes Barros, Mariana Camargo Medeiros, Carlos Ricardo Soccol, Luciana Porto de Souza Vandenberghe
    npj Materials Sustainability.2025;[Epub]     CrossRef
Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates
Kai Yan, Lingjing Mao, Jiaming Lan, Zhongdang Xiao
J. Microbiol. 2025;63(2):e2410018.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410018
  • 14,691 View
  • 464 Download
  • 8 Web of Science
  • 11 Crossref
AbstractAbstract PDF

Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and attention to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsening dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.

Citations

Citations to this article as recorded by  
  • E protein inhibitors and host-directed therapies in dengue virus infection: perspectives on combination and complementary antiviral strategies
    Ricardo Jiménez-Camacho, Carlos Noe Farfan-Morales, José De Jesús Bravo-Silva, Magda Lizbeth Benítez-Vega, Marcos Pérez-García, Jonathan Hernández-Castillo, Carlos Daniel Cordero-Rivera, Rosa María Del Ángel
    Expert Opinion on Drug Discovery.2026; 21(1): 101.     CrossRef
  • Dengue Fever Vaccines: Progress and Challenges
    Alan L. Rothman, Heather Friberg
    Annual Review of Pharmacology and Toxicology .2026; 66(1): 129.     CrossRef
  • A Capabilities, Opportunities, and Motivations behavioral analysis of healthcare professionals concerning dengue vaccination in selected countries from Latin America and Asia Pacific
    Andrew Green, Alberta Di Pasquale, Eduardo Lopez-Medina
    Human Vaccines & Immunotherapeutics.2026;[Epub]     CrossRef
  • A Multivalent Dengue Fusion Protein ΔcNS1–cEDIII–ΔnNS3 Confers Cross‐Serotype Protection and Durable Immunity in Mice
    Mu‐Fan Pi, Wei‐Chiao Liao, Xin‐Yan Li, Miao‐Huei Cheng, Chu‐En Tsai, Yen‐Chung Lai, Hsing‐Han Lin, Yung‐Chun Chuang, Chin‐Kai Tseng, Yee‐Shin Lin, Chih‐Peng Chang, Tzong‐Shiann Ho, Guan‐Da Syu, Trai‐Ming Yeh, Jen‑Ren Wang, Justin Jang Hann Chu, Chia‐Yi Yu
    Journal of Medical Virology.2026;[Epub]     CrossRef
  • Role of c-ABL in DENV-2 Infection and Actin Remodeling in Vero Cells
    Grace Paola Carreño-Flórez, Alexandra Milena Cuartas-López, Ryan L. Boudreau, Miguel Vicente-Manzanares, Juan Carlos Gallego-Gómez
    International Journal of Molecular Sciences.2025; 26(9): 4206.     CrossRef
  • Crystallographic Fragment Screening of the Dengue Virus Polymerase Reveals Multiple Binding Sites for the Development of Non-nucleoside Antiflavivirals
    Manisha Saini, Jasmin C. Aschenbrenner, Francesc Xavier Ruiz, Ashima Chopra, Anu V. Chandran, Peter G. Marples, Blake H. Balcomb, Daren Fearon, Frank von Delft, Eddy Arnold
    Journal of Medicinal Chemistry.2025; 68(17): 18356.     CrossRef
  • Understanding the Diversity of Dengue Serotypes: Impacts on Public Health and Disease Control
    Gopinath Ramalingam, Madhumitha Patchaiyappan, M. Arundadhi, Krishnapriya Subramani, A. Dhanasezhian, Sucila Thangam Ganesan
    The Journal of Medical Research.2025; 11(4): 69.     CrossRef
  • Dengue Fever Resurgence in Iran: An Integrative Review of Causative Factors and Control Strategies
    Seyed Hassan Nikookar, Saeedeh Hoseini, Omid Dehghan, Mahmoud Fazelidinan, Ahmadali Enayati
    Tropical Medicine and Infectious Disease.2025; 10(11): 309.     CrossRef
  • Enhancement of viral infection by antibodies and consequences
    Corentin Morvan, Magloire Pandoua Nekoua, Cyril Debuysschere, Enagnon Kazali Alidjinou, Didier Hober, Sebla Bulent Kutluay
    Microbiology and Molecular Biology Reviews.2025;[Epub]     CrossRef
  • Microbial Volatiles from Human Skin and Floral Nectar: Insufficiently Understood Adult Feeding Cues To Improve Odor-Based Traps for Aedes Vector Control
    Simon Malassigné, Claire Valiente Moro, Patricia Luis
    Journal of Chemical Ecology.2025;[Epub]     CrossRef
  • An interpretable machine learning model for dengue detection with clinical hematological data
    Izaz Ahmmed Tuhin, A.K.M.Fazlul Kobir Siam, Md Mahfuzur Rahman Shanto, Md Rajib Mia, Imran Mahmud, Apurba Ghosh
    Healthcare Analytics.2025; 8: 100430.     CrossRef
Minireview
A review on computational models for predicting protein solubility
Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na
J. Microbiol. 2025;63(1):e.2408001.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2408001
  • 10,443 View
  • 435 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Protein solubility is a critical factor in the production of recombinant proteins, which are widely used in various industries, including pharmaceuticals, diagnostics, and biotechnology. Predicting protein solubility remains a challenging task due to the complexity of protein structures and the multitude of factors influencing solubility. Recent advances in computational methods, particularly those based on machine learning, have provided powerful tools for predicting protein solubility, thereby reducing the need for extensive experimental trials. This review provides an overview of current computational approaches to predict protein solubility. We discuss the datasets, features, and algorithms employed in these models. The review aims to bridge the gap between computational predictions and experimental validations, fostering the development of more accurate and reliable solubility prediction models that can significantly enhance recombinant protein production.

Citations

Citations to this article as recorded by  
  • MPRL: Multi-perspective representation learning for accurate and generalizable protein solubility prediction
    Xiongyan Yang, Shouyong Jiang, Yong Wang, Jinsong Gong
    Expert Systems with Applications.2026; 308: 131142.     CrossRef
Review
Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation
Jun Ren, So Hee Oh, Dokyun Na
J. Microbiol. 2025;63(3):e2501033.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501033
  • 7,406 View
  • 176 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Recombinase-Mediated Cassette Exchange-Based CRISPR Activation Screening Identifies Hyperosmotic Stress-Resistant Genes in Chinese Hamster Ovary Cells
    Minhye Baek, Seokchan Kweon, Yujin Kim, Nathan E. Lewis, Jae Seong Lee, Gyun Min Lee
    ACS Synthetic Biology.2025; 14(8): 3116.     CrossRef
Protocol
A guide to genome mining and genetic manipulation of biosynthetic gene clusters in Streptomyces
Heonjun Jeong, YeonU Choe, Jiyoon Nam, Yeon Hee Ban
J. Microbiol. 2025;63(4):e2409026.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2409026
  • 10,131 View
  • 332 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.

Citations

Citations to this article as recorded by  
  • A review of geomicrobial bioprospecting strategies for novel therapeutic discovery from Earth’s extreme environments
    Trideep Saikia, Sandipan Das
    Discover Geoscience.2025;[Epub]     CrossRef
  • Biodiversity-Driven Natural Products and Bioactive Metabolites
    Giancarlo Angeles Flores, Gaia Cusumano, Roberto Venanzoni, Paola Angelini
    Plants.2025; 15(1): 104.     CrossRef
Review
Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria
Yubin Yang, Hana Hyeon, Minju Joo, Kangseok Lee, Eunkyoung Shin
J. Microbiol. 2025;63(4):e2501027.   Published online April 2, 2025
DOI: https://doi.org/10.71150/jm.2501027
  • 6,794 View
  • 245 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF

The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.

Citations

Citations to this article as recorded by  
  • Current insights into the application of bacterial small RNAs in combating multidrug-resistant pathogens
    Zeleke Ayenew, Tadesse Eguale, Abebaw Bitew, Eshetu Gadisa, Aklilu Feleke Haile
    Scientific African.2026; 31: e03212.     CrossRef
  • Biofilm, resistance, and quorum sensing: The triple threat in bacterial pathogenesis
    Mohammad Nazrul Islam Bhuiyan
    The Microbe.2025; 9: 100578.     CrossRef
  • Biofilm maturation in carbapenem-resistant Pseudomonas aeruginosa is regulated by the sRNA PA213 and its corresponding encoded small protein
    Yongli Song, Jie Li, Yating Zhang, Lingge Su, Shuang Qin, Chunyan Wu, Guibo Song
    International Journal of Antimicrobial Agents.2025; 66(6): 107625.     CrossRef
Minireview
Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data
Sungwon Jung
J. Microbiol. 2025;63(1):e.2411006.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2411006
  • 5,401 View
  • 210 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract PDF

This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.

Citations

Citations to this article as recorded by  
  • Microbiota, chronic inflammation, and health: The promise of inflammatome and inflammatomics for precision medicine and health care
    Huan Zhang, Bing Jun Yang Lee, Tong Wang, Xuesong Xiang, Yafang Tan, Yanping Han, Yujing Bi, Fachao Zhi, Xin Wang, Fang He, Seppo J. Salminen, Baoli Zhu, Ruifu Yang
    hLife.2025; 3(7): 307.     CrossRef
  • Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions
    Jingjing Du, Shengqian Guo, Xiaohang Li, Zhonghu Geng, Zhiliang Yuan, Xiqiang Song
    Diversity.2025; 17(9): 605.     CrossRef
  • Bioengineered Skin Microbiome: The Next Frontier in Personalized Cosmetics
    Cherelle Atallah, Ayline El Abiad, Marita El Abiad, Mantoura Nakad, Jean Claude Assaf
    Cosmetics.2025; 12(5): 205.     CrossRef
  • Computational Metagenomics: State of the Art
    Marco Antonio Pita-Galeana, Martin Ruhle, Lucía López-Vázquez, Guillermo de Anda-Jáuregui, Enrique Hernández-Lemus
    International Journal of Molecular Sciences.2025; 26(18): 9206.     CrossRef
  • Rotation of Corydalis yanhusuo with different crops enhances its quality and soil nutrients: a multi-dimensional analysis of rhizosphere microecology
    Jia Liu, Qiang Yuan, Kejie Zhang, Xiaoxiao Sheng, Zixuan Zhu, Ning Sui, Hui Wang
    BMC Plant Biology.2025;[Epub]     CrossRef
  • Next‐Generation Eco‐Omics: Integrating Microbial Function Into Predictive Ecosystem Models
    Kulmani Mehar, Kamakshi Priya K, Amit Prakash Sen, Ravi Kumar Paliwal, Bhavan Kumar M., Aravindan Munusamy Kalidhas, Tapas Kumar Mohapatra, Aseel Samrat, Ravikumar Jayabal
    Biotechnology and Applied Biochemistry.2025;[Epub]     CrossRef
Full articles
Characterization of novel bacteriophages for effective phage therapy against Vibrio infections in aquaculture
Kira Moon, Sangdon Ryu, Seung Hui Song, Se Won Chun, Nakyeong Lee, Aslan Hwanhwi Lee
J. Microbiol. 2025;63(5):e2502009.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2502009
  • 5,999 View
  • 200 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary Material

The widespread use of antibiotics in aquaculture has led to the emergence of multidrug-resistant pathogens and environmental concerns, highlighting the need for sustainable, eco-friendly alternatives. In this study, we isolated and characterized three novel bacteriophages from aquaculture effluents in Korean shrimp farms that target the key Vibrio pathogens, Vibrio harveyi, and Vibrio parahaemolyticus. Bacteriophages were isolated through environmental enrichment and serial purification using double-layer agar assays. Transmission electron microscopy revealed that the phages infecting V. harveyi, designated as vB_VhaS-MS01 and vB_VhaS-MS03, exhibited typical Siphoviridae morphology with long contractile tails and icosahedral heads, whereas the phage isolated from V. parahaemolyticus (vB_VpaP-MS02) displayed Podoviridae characteristics with an icosahedral head and short tail.

Whole-genome sequencing produced complete, circularized genomes of 81,710 bp for vB_VhaS-MS01, 81,874 bp for vB_VhaS-MS03, and 76,865 bp for vB_VpaP-MS02, each showing a modular genome organization typical of Caudoviricetes. Genomic and phylogenetic analyses based on the terminase large subunit gene revealed that although vB_VhaS-MS01 and vB_VhaS-MS03 were closely related, vB_VpaP-MS02 exhibited a distinct genomic architecture that reflects its unique morphology and host specificity. Collectively, these comparative analyses demonstrated that all three phages possess genetic sequences markedly different from those of previously reported bacteriophages, thereby establishing their novelty. One-step growth and multiplicity of infection (MOI) experiments demonstrated significant differences in replication kinetics, such as burst size and lytic efficiency, among the phages, with vB_VhaS-MS03 maintaining the most effective bacterial control, even at an MOI of 0.01. Additionally, host range assays showed that vB_VhaS-MS03 possessed a broader spectrum of activity, supporting its potential use as a stand-alone agent or key component of phage cocktails. These findings highlight the potential of region-specific phage therapy as a targeted and sustainable alternative to antibiotics for controlling Vibrio infections in aquaculture.

Citations

Citations to this article as recorded by  
  • Revolutionizing seafood safety with bacteriophages: emerging technologies and applications
    Nigar Sultana Meghla, Soo-Jin Jung, Md Furkanur Rahaman Mizan, Syeda Roufun Nesa, IkSoon Kang, Sang-Do Ha
    Food Microbiology.2026; 137: 105021.     CrossRef
  • Genomic characterization of APEC phages and evaluation of the efficacy in reducing the loads of APEC O78 infections in chickens
    Qin Lu, Xinxin Jin, Zui Wang, Rongrong Zhang, Yunqing Guo, Qiao Hu, Wenting Zhang, Tengfei Zhang, Qingping Luo
    Frontiers in Microbiology.2026;[Epub]     CrossRef
  • Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
    Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe, Reuben Okocha
    Fishes.2025; 10(9): 471.     CrossRef
FunVIP: Fungal Validation and Identification Pipeline based on phylogenetic analysis
Chang Wan Seo, Shinnam Yoo, Yoonhee Cho, Ji Seon Kim, Martin Steinegger, Young Woon Lim
J. Microbiol. 2025;63(4):e2411017.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411017
  • 5,276 View
  • 174 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFSupplementary Material

The increase of sequence data in public nucleotide databases has made DNA sequence-based identification an indispensable tool for fungal identification. However, the large proportion of mislabeled sequence data in public databases leads to frequent misidentifications. Inaccurate identification is causing severe problems, especially for industrial and clinical fungi, and edible mushrooms. Existing species identification pipelines require separate validation of a dataset obtained from public databases containing mislabeled taxonomic identifications. To address this issue, we developed FunVIP, a fully automated phylogeny-based fungal validation and identification pipeline (https://github.com/Changwanseo/FunVIP). FunVIP employs phylogeny-based identification with validation, where the result is achievable only with a query, database, and a single command. FunVIP command comprises nine steps within a workflow: input management, sequence-set organization, alignment, trimming, concatenation, model selection, tree inference, tree interpretation, and report generation. Users may acquire identification results, phylogenetic tree evidence, and reports of conflicts and issues detected in multiple checkpoints during the analysis. The conflicting sample validation performance of FunVIP was demonstrated by re-iterating the manual revision of a fungal genus with a database with mislabeled sequences, Fuscoporia. We also compared the identification performance of FunVIP with BLAST and q2-feature-classifier with two mass double-revised fungal datasets, Sanghuangporus and Aspergillus section Terrei. Therefore, with its automatic validation ability and high identification performance, FunVIP proves to be a highly promising tool for achieving easy and accurate fungal identification.

Citations

Citations to this article as recorded by  
  • Hidden diversity of crust-like Sebacinaceae (Sebacinales, Agaricomycetes) in Asia
    Hannah Suh, Chang Wan Seo, Ki Hyeong Park, Shinnam Yoo, Dohye Kim, Yoonhee Cho, Young Woon Lim
    IMA Fungus.2026;[Epub]     CrossRef
  • Exploring Macrofungal Biodiversity and Distribution on Kyodong Island, Republic of Korea
    Hannah Suh, Abel Severin Lupala, Hae Jin Cho, Sumin Jo, Jiyun Choi, Young Woon Lim
    Mycobiology.2025; 53(4): 466.     CrossRef
  • Expanding the Inventory of Seven Unrecorded Marine Penicillium with Morphological Descriptions and Phenotypic Variability
    Wonjun Lee, Ji Seon Kim, Sumin Jo, Young Woon Lim
    Mycobiology.2025; 53(5): 648.     CrossRef
  • Exploring Fungal Diversity in Marine Plastic (PET) Wastes and Seafoam in Udo Island, South Korea, with Reports of Two New Species ( Leptospora conidiifera and Neodevriesia oceanoplastica )
    Wonjun Lee, Sumin Jo, Soo Hyun Maeng, Ji Seon Kim, Myung Kyum Kim, Young Woon Lim
    Mycobiology.2025; 53(6): 770.     CrossRef
  • Potential of Trichoderma asperellum against root-rot caused by Fusarium equiseti in tomato plants
    Louis Antoniel Joseph, Manoucheca Jean, Frantzdy Luc, Kerley-Vivaldi Jean, Bento Gil Uane, Marisa Aida Diogo Matsinhe, Meque Samuel Tivane, Inocêncio Oliveira Mulaveia
    Research, Society and Development.2025; 14(12): e62141250223.     CrossRef
Review
Extracellular vesicles of Gram-negative and Gram-positive probiotics
Yangyunqi Wang, Chongxu Duan, Xiaomin Yu
J. Microbiol. 2025;63(7):e2506005.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2506005
  • 5,069 View
  • 171 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDF

Extracellular vesicles derived from probiotics have received considerable attention for their pivotal role in bacterial‒host communication. These nanosized, bilayer-encapsulated vesicles carry diverse bioactive molecules, such as proteins, lipids, nucleic acids, and metabolites. Currently, ample evidence has emerged that probiotic extracellular vesicles may modulate several processes of host physiological hemostasis and offer therapeutic benefits. This review examines the biogenesis, composition, and immunomodulatory functions of probiotic-derived extracellular vesicles in probiotic–host interactions, highlighting the therapeutic potential of probiotic extracellular vesicles in the diagnosis and treatment of conditions such as cancer and inflammatory bowel disease. We further summarize the techniques for the separation and purification of extracellular vesicles, providing a methodological foundation for future research and applications. Although the field of probiotic extracellular vesicle research is still in its infancy, the prospects for their application in the biomedical field are broad, potentially emerging as a novel therapeutic approach.

Citations

Citations to this article as recorded by  
  • Decoding bacterial extracellular vesicles: A review on isolation and characterization techniques
    Malatesh S. Devati, Apoorva Jnana, Stephen P. Kidd, Slade O. Jensen, T. G. Satheesh Babu, Dinesh Upadhya, Thokur S. Murali
    Archives of Microbiology.2026;[Epub]     CrossRef
  • The supernatant of Lactiplantibacillus plantarum 25 is more effective than extracellular vesicles in alleviating ulcerative colitis and improving intestinal barrier function
    Shuang Gong, Xin Li, Qiong Zhang, Rui Wang, Ruixia Zeng, Yibo Zhang
    Frontiers in Microbiology.2026;[Epub]     CrossRef
  • Standardizing Bacterial Extracellular Vesicle Purification: A Call for Consensus
    Dongsic Choi, Eun-Young Lee
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Advances in Biological Functions and Applications of Feeding Microorganism-derived Extracellular Vesicles
    Yuanyuan Zhu, Xiaofang Zhang, Xin Feng, Yanyan Huang, Langhong Wang, Huihua Zhang, Xinan Zeng, Zhonglin Tang, Qien Qi
    Probiotics and Antimicrobial Proteins.2025;[Epub]     CrossRef
Full articles
Phycobium rhodophyticola gen. nov., sp. nov. and Aliiphycobium algicola gen. nov., sp. nov., isolated from the phycosphere of marine red algae
Jeong Min Kim, Woonhee Baek, Byeong Jun Choi, Hülya Bayburt, Jae Kyeong Lee, Sung Chul Lee, Che Ok Jeon
J. Microbiol. 2025;63(6):e2503014.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2503014
  • 3,509 View
  • 81 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract PDFSupplementary Material

Two Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacteria, designated D3-12ᵀ and G2-2ᵀ, were isolated from the phycosphere of marine red algae. Both strains exhibited catalase- and oxidase-positive activities. Strain D3-12ᵀ grew optimally at 30°C, pH 7.0, and 2.0–3.0% (w/v) NaCl, while strain G2-2ᵀ showed optimal growth at 30°C, pH 7.0, and 2.0% NaCl. Ubiquinone-10 was the sole respiratory quinone in both strains. The major fatty acids (> 5%) in strain D3-12ᵀ were feature 8 (C18:1 ω7c and/or C18:1 ω6c), 11-methyl-C18:1 ω7c, and C16:0, while strain G2-2ᵀ contained summed feature 8 and C16:0. The predominant polar lipids in strain D3-12ᵀ were phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine, whereas strain G2-2ᵀ contained phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G + C content was 59.9% for strain D3-12ᵀ and 60.2% for strain G2-2ᵀ. Phylogenetic analyses based on 16S rRNA and whole-genome sequences placed both strains into distinct lineages within the family Roseobacteraceae, separate from previously described genera. Genome-based relatedness metrics, including average nucleotide identity, digital DNA-DNA hybridization, average amino acid identity, and percentage of conserved proteins, further confirmed that these strains represent novel genera. Based on phenotypic, chemotaxonomic, and molecular characteristics, strains D3-12ᵀ and G2-2ᵀ are proposed as novel genera: Phycobium rhodophyticola gen. nov., sp. nov. (D3-12ᵀ = KACC 22712ᵀ = JCM 35528ᵀ) and Aliiphycobium algicola gen. nov., sp. nov. (G2-2ᵀ = KACC 22602ᵀ = JCM 35752ᵀ). Additionally, metabolic features relevant to interactions with marine algae, including genes associated with carbohydrate-active enzymes, vitamin biosynthesis, phenylacetic acid production, and bacterioferritin synthesis, were bioinformatically investigated.

Citations

Citations to this article as recorded by  
  • Ningiella algicola sp. nov. and Marinicella algicola sp. nov., proposal of Paralteromonas gen. Nov. and Neoalteromonas gen. Nov. with reclassification of Alteromonas species, and reclassification of Methylophaga aminisulfidivorans as a later heterotypic s
    Hülya Bayburt, Jeong Min Kim, Byeong Jun Choi, Jae Kyeong Lee, Che Ok Jeon
    Systematic and Applied Microbiology.2026; 49(1): 126685.     CrossRef
  • Mucilaginibacter aureus sp. nov. and Mucilaginibacter sediminis sp. nov., isolated from wetland soil
    Chae Yeong Moon, Jae Kyeong Lee, Dong Min Han, Dae Seung Lee, Byeong Jun Choi, Ju Hye Baek, Che Ok Jeon
    International Journal of Systematic and Evolutionary Microbiology .2026;[Epub]     CrossRef
  • Aquimarina rhodophyticola sp. nov. and Aquimarina besae sp. nov., Isolated from Marine Red Algae
    Jeong Min Kim, Byeong Jun Choi, Hülya Bayburt, Dong Min Han, Che Ok Jeon
    Current Microbiology.2025;[Epub]     CrossRef
  • Carotenoid-Producing Qipengyuania algicola sp. nov. and Qipengyuania rhodophyticola sp. nov., Isolated from Marine Algae, and Emended Description of the Genus Qipengyuania Xu et al. 2020
    Jae Kyeong Lee, Min Woo Lee, Chae Yeong Moon, Jeong Min Kim, Hülya Bayburt, Byeong Jun Choi, Che Ok Jeon
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Flagellimonas ulvae sp. nov. and Flagellimonas rhodophyticola sp. nov., isolated from marine algae
    Hui Seong Won, Dong Min Han, Jeong Min Kim, Hülya Bayburt, Byeong Jun Choi, Zhe-Xue Quan, Che Ok Jeon
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Validation List no. 226: valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
Synergistic anti-obesity effects of Bifidobacterium breve BR3 and Lactiplantibacillus plantarum LP3 via coordinated regulation of lipid metabolism and gut microbiota
Misun Yun, Dooheon Son, Namhee Kim, Se Hee Lee, Eunbee Cho, Sanghyun Lim
J. Microbiol. 2025;63(12):e2511001.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511001
  • 1,264 View
  • 43 Download
AbstractAbstract PDFSupplementary Material

The global rise in obesity and its associated metabolic complications underscores the urgent need for safe and effective interventions. This study investigated the anti-obesity efficacy of a probiotic mixture containing Bifidobacterium breve BR3 and Lactiplantibacillus plantarum LP3 in C57BL/6 mice with high-fat diet (HFD)-induced obesity. After obesity was established by feeding a 60% kcal HFD, the probiotic mixture was administered orally for 4 weeks. Compared with the control group, mice receiving the L. plantarum LP3 and B. breve BR3 mixture exhibited significant reductions in body weight and total fat mass, as assessed by Dual-energy X-ray Absorptiometry (DXA) and Echo Magnetic Resonance Imaging (EchoMRI). The probiotic treatment also lowered serum Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), and glucose levels, and attenuated lipid accumulation in both hepatic and epididymal adipose tissues. Transcriptomic profiling revealed upregulation of lipolytic genes (Sirt1, Pparα) and downregulation of lipogenic genes (Srebp1c, Fas), suggesting that the probiotic mixture promotes lipid catabolism while suppressing lipid synthesis. Additionally, serum adipokine levels were favorably modulated, indicating improved metabolic homeostasis. Gut microbiota analysis demonstrated an increased relative abundance of beneficial genera, including Akkermansia and Bacteroides, highlighting a microbiome-mediated contribution to the observed metabolic benefits. Overall, our findings indicate that the combined administration of Lactiplantibacillus plantarum LP3 and Bifidobacterium breve BR3 exerts multi-faceted anti-obesity effects by enhancing lipolysis, regulating lipid metabolism, and restoring a healthy gut microbial balance. This probiotic mixture represents a promising therapeutic approach for managing obesity and related metabolic disorders.

Review
Targeting innate immune sensors for therapeutic strategies in infectious diseases
Seyun Shin, Young Ki Choi, SangJoon Lee
J. Microbiol. 2025;63(6):e2503009.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2503009
  • 3,836 View
  • 102 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF

The innate immune system relies on innate immune sensors, such as pattern recognition receptors (PRRs), to detect pathogens and initiate immune responses, crucial for controlling infections but also implicated in inflammatory diseases. These innate immune sensors, including Toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like receptors (RLRs), absent in melanoma 2 (AIM2), and Z-DNA binding protein 1 (ZBP1) trigger signaling pathways that produce cytokines, modulating inflammation and cell death. Traditional therapies focus on directly targeting pathogens; however, host-targeting therapeutic strategies have emerged as innovative approaches to modulate innate immune sensor activity. These strategies aim to fine-tune the immune response, either enhancing antiviral defenses or mitigating hyperinflammation to prevent tissue damage. This review explores innate immune sensor-based therapeutic approaches, including inhibitors, agonists, and antagonists, that enhance antiviral defense or suppress harmful inflammation, highlighting innate immune sensors as promising targets in infectious and inflammatory disease treatment.

Citations

Citations to this article as recorded by  
  • A new fucosylated glucuronoxylomannan from the fruit bodies of Tremella aurantia: structural characterization and immunoenhancing activity on seasonal influenza mRNA vaccine
    Jing Chen, Yuan Ma, Zhi-Min Rao, Song-Lin Jiang, Ying-Jun Lou, Karim Malik, Arman Chowdhury, Hua-Zhong Ying, Chen-Huan Yu
    Carbohydrate Polymers.2026; 373: 124660.     CrossRef
  • Z-DNA interaction proteins - insights from ChIP-seq data
    Michaela Dobrovolná, Václav Brázda
    Biochemical and Biophysical Research Communications.2025; 790: 152910.     CrossRef
  • AIM2 drives inflammatory cell death and monkeypox pathogenesis
    Jueun Oh, Yun-Ho Hwang, Jihye Lee, Cheong Seok, SuHyeon Oh, Hye Yoon Kim, Nabukenya Mariam, Jaeyoung Ahn, GyeongJu Yu, Jaewoo Park, Hayeon Kim, Suhyun Kim, Seyun Shin, Min-Chul Jung, Jinwoo Gil, Joo Sang Lee, Young Ki Choi, Dokeun Kim, Daesik Kim, You-Jin
    Cellular & Molecular Immunology.2025; 22(12): 1615.     CrossRef
Full articles
Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov., isolated from human feces, and the reclassification of Bacteroides koreensis Shin et al. 2017 and Bacteroides kribbi Shin et al. 2017 as later heterotypic synonyms of Bacteroides ovatus Eggerth and Gagnon 1933 (Approved Lists 1980)
Ah-In Yang, Bora Kim, Woorim Kang, Hae-In Joe, Na-Ri Shin
J. Microbiol. 2025;63(6):e2502006.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2502006
Correction in: J. Microbiol 2025;63(7):e2507100
  • 2,773 View
  • 84 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

Two novel, Gram-stain-negative, anaerobic, and non-motile bacterial strains, designated KFT8T and CG01T, were isolated from the feces of healthy individuals without diagnosed diseases and characterized using a polyphasic approach. Phylogenetic analysis revealed that both strains belong to the genus Bacteroides, with < 99.0% similarity in their 16S rRNA gene sequences to B. facilis NSJ-77T and B. nordii JCM 12987T. Within the genus Bacteroides, strain KFT8T exhibited the highest Orthologous Average Nucleotide Identity value of 94.7% and a digital DNA-DNA hybridization value of 63.7% with B. ovatus ATCC 8483T, whereas strain CG01T showed the highest values of 95.3% and 63.3%, respectively, with B. nordii JCM 12987T. The values between the two novel strains were 74.8% and 21.4%, respectively, which are below the species delineation thresholds, supporting their classification as novel species. The major fatty acid of strain KFT8T was C18:1 ω9c, whereas strain CG01T predominantly contained summed feature 11 (comprising iso-C17:0 3OH and/or C18:2 DMA). The only respiratory quinone was MK-11, the major polar lipid was phosphatidylethanolamine. Both strains produced succinic acid and acetic acid as common metabolic end-products of fermentation, while lactic acid and formic acid were detected individually in each strain. Based on polyphasic characterization, strains KFT8T (= KCTC 15614T = JCM 36011T) and CG01T (= KCTC 15613T = JCM 36010T) represent two novel species within the genus Bacteroides, for which the names Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov. are proposed, respectively. Additionally, genome-based analyses and phenotypic comparisons revealed that B. koreensis and B. kribbi represent the same strain, showing genomic relatedness to B. ovatus that exceeds the threshold for species delineation. Consequently, we propose the reclassification of B. koreensis Shin et al. 2017 and B. kribbi Shin et al. 2017 as later heterotypic synonyms of B. ovatus Eggerth and Gagnon 1933 (Approved Lists 1980).

Citations

Citations to this article as recorded by  
  • Notification of changes in taxonomic opinion previously published outside the IJSEM: List of Changes in Taxonomic Opinion no. 43
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2026;[Epub]     CrossRef
Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens
Shahana Ahmed, Tridip Das, Chandan Nath, Tahia Ahmed, Keya Ghosh, Pangkaj Kumar Dhar, Ana Herrero-Fresno, Himel Barua, Paritosh Kumar Biswas, Md Zohorul Islam, John Elmerdahl Olsen
J. Microbiol. 2025;63(4):e2412009.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2412009
  • 3,484 View
  • 121 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.

Citations

Citations to this article as recorded by  
  • ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination
    Xin Lei, Mengjie Che, Yuxin Zhou, Shulei Pan, Xue Yang, Siyu Liu, Iram Laghari, Mingyue Wu, Ruilin Han, Xiaoqi Li, Lei Zhou, Guangneng Peng, Haifeng Liu, Ziyao Zhou, Kun Zhang, Zhijun Zhong
    Veterinary Sciences.2025; 12(11): 1085.     CrossRef
Genome-based classification of Paraniabella aurantiaca gen. nov., sp. nov., isolated from soil and taxonomic reclassification of five species within the genus Niabella
Yong-Seok Kim, Yerang Yang, Miryung Kim, Do-Hoon Lee, Chang-Jun Cha
J. Microbiol. 2025;63(10):e2505005.   Published online October 31, 2025
DOI: https://doi.org/10.71150/jm.2505005
  • 2,115 View
  • 58 Download
AbstractAbstract PDFSupplementary Material

A Gram-stain-negative, aerobic, non-motile, rod-shaped, and orange-pigmented bacterium, designated CJ426T, was isolated from ginseng soil in Anseong, Korea. Strain CJ426T grew optimally on Reasoner’s 2A agar at 30°C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ426T belonged to the family Chitinophagaceae and had the highest sequence similarity with Niabella hibiscisoli KACC 18857T (98.7%). The 16S rRNA gene sequence similarities with other members of the genus Niabella ranged from 92.3% to 98.1%. Phylogenomic analyses and overall genomic relatedness indices, including average nucleotide identity, average amino acid identity, and the percentage of conserved proteins values, supported the classification of strain CJ426T as a representative of a novel genus within the family Chitinophagaceae. Furthermore, genome-based analyses suggested that five members of the genus Niabella, including N. aquatica, N. defluvii, N. ginsengisoli, N. hibiscisoli, and, N. yanshanensis, should be separated from other Niabella species and be assigned as a novel genus. The major isoprenoid quinone of strain CJ426T was menaquinone-7 (MK-7). The predominant polar lipids were phosphatidylethanolamine and six unidentified aminolipids. The major fatty acids were iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The genome of strain CJ426T was 6.3 Mbp in size, consisting of three contigs, with a G + C content of 41.9%. Based on a polyphasic taxonomic approach, strain CJ426T represents a novel genus and species within the family Chitinophagaceae, for which the name Paraniabella aurantiaca gen. nov., sp. nov. is proposed. The type strain is CJ426T (= KACC 23908T = JCM 37728T).

Development of an RT-LAMP−CRISPR/Cas12a assay for rapid and specific detection of Bandavirus dabieense
Bo Seung Song, Yun Hee Baek, Eun-Ha Kim, Hyeok-Il Kwon, Ah-Hyeon Kim, Si-Hyun Lee, Yu-Bin Son, Soo-Hyeon Kim, Min-Suk Song, Young Ki Choi, Su-Jin Park
J. Microbiol. 2025;63(11):e2506013.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2506013
  • 1,536 View
  • 103 Download
AbstractAbstract PDF

Bandavirus dabieense, a single-stranded RNA virus, is the causative agent of severe fever with thrombocytopenia syndrome (SFTS), a disease associated with high fatality rates. Early and accurate diagnosis is essential for improving clinical outcomes, particularly given the limited therapeutic options and high mortality rates associated with SFTS. However, while highly sensitive, conventional diagnostic methods such as PCR and qRT-PCR require specialized laboratory facilities and trained personnel, making them impractical for rapid detection in resource-limited settings. To address these challenges, we developed a rapid and highly sensitive assay for Bandavirus dabieense detection by integrating reverse transcription loop-mediated isothermal amplification (RT-LAMP) with CRISPR/Cas12a technology. LAMP primers and guide RNA sequences were designed to target the L gene, ensuring broad detection across viral genotypes. The optimized assay demonstrated a detection limit of 5 RNA copies per reaction, showing more sensitivity than qRT-PCR, and exhibited 100% concordance with qRT-PCR results in clinical samples. Given its speed, accuracy, and field applicability, this LAMP-CRISPR/Cas12a-based assay represents a promising diagnostic tool for early SFTSV detection, particularly in resource-constrained environments where conventional molecular diagnostics are not readily available.

Research Article
Efficiency of reverse genetics methods for rescuing severe acute respiratory syndrome coronavirus 2
Chang-Joo Park, Taehun Kim, Seung-Min Yoo, Myung-Shin Lee, Nam-Hyuk Cho, Changhoon Park
J. Microbiol. 2025;63(2):e2411023.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411023
  • 4,290 View
  • 110 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Bacteria-free reverse genetics techniques are crucial for the efficient generation of recombinant viruses, bypassing the need for labor-intensive bacterial cloning. These methods are particularly relevant for studying the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. This study compared the efficiency of three bacteria-free approaches—circular polymerase extension reaction (CPER) with and without nick sealing and infectious sub-genomic amplicons (ISA)—to bacterial artificial chromosome (BAC)-based technology for rescuing SARS-CoV-2. Significant differences in viral titers following transfection were observed between methods. CPER with nick sealing generated virus titers comparable to those of the BAC-based method and 10 times higher than those of the standard CPER. In contrast, ISA demonstrated extremely low efficiency, as cytopathic effects were detected only after two passages. All rescued viruses exhibited replication kinetics consistent with those of the original strain, with no significant deviation in replication capacity. Furthermore, the utility of CPER and ISA in genetically modifying SARS-CoV-2 was demonstrated by successfully inserting the gene encoding green fluorescent protein into the genome. Overall, this study underscores the potential of bacteria-free methods, such as CPER and ISA, in advancing SARS-CoV-2 research while highlighting their significant differences in efficiency.

Citations

Citations to this article as recorded by  
  • Research Progress of Coronavirus Reverse Genetics Technology
    Ziqi Han, Jiaxu Han, Yan Zhao, Chao Xu, Xue Leng, Boyin Jia, Naichao Diao, Fei Liu, Chunmei Cui, Jian Liang, Yuhang Jiang, Rui Du
    Journal of Medical Virology.2026;[Epub]     CrossRef
Full article
Proteolytic enzymes from Bacillus subtilis AB2 as antibiofilm adjuvants: Bioprocess optimization, mechanistic insights, and synergy with antibiotics
Afra M. Baghdadi
J. Microbiol. 2025;63(12):e2509019.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509019
  • 945 View
  • 27 Download
AbstractAbstract PDFSupplementary Material

Collagenase and keratinase are two important proteolytic enzymes with recognized applications in biotechnology and medicine, particularly in the enzymatic removal of necrotic tissue and the control of infection. In the present work, a soil isolate of Bacillus subtilis strain AB2 (PX453297.1) was optimized for enzyme production under different nutritional and physicochemical conditions. The enzymes were recovered by ammonium sulphate precipitation and dialysis, examined by SDS-PAGE and zymography, and further assessed for pH and temperature optima, stability, the influence of metal ions, and kinetic parameters. Maximum collagenase activity (4.41 ± 0.22 U/ml) was observed at 37°C and pH 7.5 in a glucose–peptone medium, whereas keratinase production was enhanced between 37 and 40°C at pH 7.5 in lactose–peptone medium. Protein bands of approximately 55 and 33 kDa were detected, representing 6.2- and 5.5-fold purification. Collagenase showed an alkaline optimum (pH 10.0, 37–45°C) with Km 0.31% and Vmax 1.92 U/ml, while keratinase exhibited dual optima (pH 3.0 and ~7.0) with Km 0.27% and Vmax 0.84 U/ml. Biofilm assays revealed that collagenase reduced pre-formed biomass by 62–68% and viable counts by 1.1–1.7 log10, clearly outperforming keratinase (41–57%, 0.7–1.2 log10). When combined with conventional antibiotics, both enzymes potentiated activity, with notable synergy between collagenase and oxacillin against Staphylococcus aureus (FICI 0.31–0.37), ciprofloxacin against Pseudomonas aeruginosa (FICI 0.37–0.50), and meropenem against Klebsiella pneumoniae (FICI 0.28–0.44). These results indicate that B. subtilis AB2 produces collagenase and keratinase with distinct biochemical characteristics and strong antibiofilm properties, underscoring their promise as adjuncts in chronic wound care as well as in industrial applications.

Review
Integrative perspectives on glycosylation networks in fungi and oomycetes
Heeji Moon, Hokyoung Son
J. Microbiol. 2025;63(12):e2510003.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2510003
  • 925 View
  • 41 Download
AbstractAbstract PDF

Pathogenic fungi pose major threats to both global food security and human health, yet the molecular basis of their virulence remains only partially understood. Beyond genetic and transcriptional control, emerging evidence highlights protein glycosylation as a key post-translational modification that governs fungal development, stress adaptation, and host interactions. Glycosylation regulates protein folding, stability, trafficking, and immune evasion, thereby shaping infection processes across diverse pathogens. While extensively studied in model organisms, our understanding of glycosylation in pathogenic fungi remains fragmented and lacks a coherent framework linking glycosylation dynamics to fungal development and pathogenicity. This review synthesizes recent advances from proteomic, transcriptomic, and glycomic studies in pathogenic fungi, focusing on interspecific variation in glycogenes and enzymes, hierarchical regulatory networks, and glycoprotein-mediated mechanisms of virulence. Finally, we outline current challenges and highlight glycosylation-targeted strategies as promising avenues for antifungal intervention.

Full articles
Microbiome therapeutic PMC72 through reverse translational research in gout
Mohammed Solayman Hossain, Hoonhee Seo, Kyung-Ann Lee, Asad ul-Haq, Sukyung Kim, Sujin Jo, Md Abdur Rahim, Hanieh Tajdozian, Fatemeh Ghorbanian, Youjin Yoon, Indrajeet Barman, Md Sarower Hossen Shuvo, Hyun-Sook Kim, Ho-Yeon Song
J. Microbiol. 2025;63(5):e2501002.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2501002
  • 3,071 View
  • 94 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary Material

Gout is an inflammatory arthritis resulting from the deposition of monosodium urate crystals. Urate-lowering therapies for gout have limitations, including side effects and limited efficacy, highlighting the need for novel therapeutic approaches to improve patient outcomes. In this context, our research team conducted a microbiome analysis of fecal samples from healthy individuals and gout patients, identifying Bifidobacterium as a key biomarker. Subsequently, we isolated and identified this strain, B. longum PMC72, and demonstrated its efficacy in a gout mouse model. In potassium oxonate (PO)-induced hyperuricemia mice, PMC72 significantly alleviated nausea, gait disturbances, ankle inflammation, and improved renal health. These effects were associated with marked reductions in oxidative stress markers, including serum uric acid, blood urea nitrogen, hepatic xanthine oxidase, and malondialdehyde (MDA) levels in serum, liver, and joint samples, as well as the downregulation of inflammation and uric acid transport-related gene expression in kidney samples. These benefits were comparable to those treated with Febuxostat, a standard urate-lowering therapy for gout. Furthermore, gut microbiome analysis revealed that PMC72 restored dysbiosis induced by hyperuricemia, contrasting with the reduced microbial diversity observed with febuxostat alone, and showed a complete recovery to eubiosis when combined with Febuxostat. These findings position PMC72 as a promising microbial therapeutic candidate for gout management, demonstrating significant development potential and serving as a benchmark for reverse translational microbiome-based therapeutic research.

Citations

Citations to this article as recorded by  
  • Characterization of Gut Microbiota of Honey Bees in Korea
    Md Sarower Hossen Shuvo, Sukyung Kim, Sujin Jo, Md Abdur Rahim, Indrajeet Barman, Mohammed Solayman Hossain, Yoonkyoung Jeong, Hwasik Jeong, Sangrim Kim, Hoonhee Seo, Ho-Yeon Song
    Polish Journal of Microbiology.2025; 74(4): 428.     CrossRef
  • Quantitative assessment of microbial dynamics in livestock manure and municipal wastewater treatment plants
    Geon Choi, Hokyung Song, Tatsuya Unno
    Applied Biological Chemistry.2025;[Epub]     CrossRef
  • Flavonifractor plautii as a Next-Generation Probiotic Enhancing the NGP F/P Index in a Simulated Human Gut Microbiome Ecosystem
    Md Sarower Hossen Shuvo, Sukyung Kim, Sujin Jo, Md Abdur Rahim, Indrajeet Barman, Mohammed Solayman Hossain, Youjin Yoon, Hanieh Tajdozian, Izaz Ahmed, Ali Atashi, GangWon Jeong, Ho-Seong Suh, JiMin You, Chaemin Sung, Mijung Kim, Hoonhee Seo, Ho-Yeon Song
    Pharmaceutics.2025; 17(12): 1603.     CrossRef
Sphingomonas degradans sp. nov. and Sphingomonas paludis sp. nov., isolated from the Han River and a wetland in South Korea
Seung-Tae Kim, Miryung Kim, Chang-Jun Cha
J. Microbiol. 2026;64(1):e2510010.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2510010
  • 890 View
  • 16 Download
AbstractAbstract PDFSupplementary Material

Two novel bacterial strains, designated CJ20T and CJ99T, belonging to the genus Sphingomonas, were isolated from the Han River in South Korea and a wetland in South Korea, respectively. Cells of both strains were Gram-stain-negative, aerobic, non-motile and yellow-pigmented. Strains were shown to grow optimally at 30˚C and pH 7 in the absence of NaCl on tryptic soy medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ20T and CJ99T belonged to the genus Sphingomonas and were most closely related to S. asaccharolytica Y-345T and Sphingomonas koreensis JSS26T with 97.87% and 97.58% 16S rRNA gene sequence similarities, respectively. Average nucleotide identity and digital DNA-DNA hybridization values of strain CJ20T with S. asaccharolytica Y-345T were 74.1% and 15.9%, respectively and those values of strain CJ99T with S. koreensis JSS26T were 73.9% and 15.6%, respectively. Both strains contained ubiquinone (Q-10) as the predominant respiratory quinone. The major polar lipids of strains CJ20T and CJ99T comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and sphingoglycolipid. The predominant fatty acids of both strains were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0. Based on polyphasic taxonomic analyses, strains CJ20T and CJ99T represent novel species of the genus Sphingomonas, for which names Sphingomonas degradans sp. nov. and Sphingomonas paludis are proposed, respectively. The type strains are CJ20T (= KACC 23909 = JCM 37720) and CJ99T (= KACC 24077 = JCM 37956).

Cinchonidine induces muscle weakness by inhibiting insulin-mediated IRS-1-AKT signaling pathway
Mi Ran Byun, Sang Hoon Joo, Young-Suk Jung, Joon-Seok Choi
J. Microbiol. 2025;63(12):e2511017.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511017
  • 859 View
  • 19 Download
AbstractAbstract PDF

Sarcopenia is an age-related condition marked by a reduction in muscle mass and strength, and it is associated with impaired muscle regeneration and differentiation. While diseases like cardiovascular and chronic liver disease can induce sarcopenia, there is limited evidence regarding the specific diseases and mechanisms responsible for its development. In skeletal muscle, the loss of muscle mass is accompanied by a decrease in myofilament proteins and the inhibition of muscle differentiation in satellite cells. Bioactive compounds obtained from natural products have been traditionally used as therapeutics for diverse conditions. In this report, we investigated the effect of cinchonidine (CD) extracted from Cinchona tree on muscle differentiation of mouse satellite cells, and myoblast cell lines. CD significantly inhibited muscle differentiation by suppressing myotube formation and gene expression of myogenesis markers. In addition, CD reduced muscle differentiation by blocking phosphorylation of insulin receptor substrate 1 (IRS-1) during insulin-induced signal transduction. Therefore, the results show that CD, an antimalarial agent, inhibited muscle differentiation through the suppression of IRS-1 phosphorylation, suggesting that sarcopenia can be induced by CD.

Review
Harnessing organelle engineering to facilitate biofuels and biochemicals production in yeast
Phuong Hoang Nguyen Tran, Taek Soon Lee
J. Microbiol. 2025;63(3):e2501006.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501006
  • 2,624 View
  • 129 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract PDF

Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.

Citations

Citations to this article as recorded by  
  • Peroxisome engineering in yeast: Advances, challenges, and prospects
    Cuifang Ye, Xiaoqian Li, Tao Liu, Shiyu Li, Mengyu Zhang, Yao Zhao, Jintao Cheng, Guiling Yang, Peiwu Li
    Biotechnology Advances.2026; 86: 108747.     CrossRef
  • Building an expanded bio-based economy through synthetic biology
    Andrea M. Garza Elizondo, Ilenne del Valle Kessra, Erica Teixeira Prates, Evan Komp, Elise K. Phillips, Nandhini Ashok, Daniel A. Jacobson, Erin G. Webb, Yannick J. Bomble, William G. Alexander, Joanna Tannous, Chung-Jui Tsai, Wayne A. Parrott, Xiaohan Ya
    Biotechnology Advances.2026; 87: 108775.     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Metabolic engineering strategies for constructing methylotrophic cell factories
    Pei Zhou, Yang Sun, Yinbiao Xu, Yupeng Liu, Hua Li
    Systems Microbiology and Biomanufacturing.2025; 5(4): 1371.     CrossRef
Full articles
The impact of acid mine drainage on nitrogen-fixing microorganisms in rice root zone soil
Shengni Tian, Penghui Zhang, Qin Zhang, Yupeng Chen, Caijuan Sun, Dan Huang, Wenye Zhang, Mingzhu Zhang
J. Microbiol. 2026;64(1):e2505004.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2505004
  • 820 View
  • 10 Download
AbstractAbstract PDFSupplementary Material

Acid mine drainage (AMD) poses a serious threat to rice paddy ecosystems, yet its impact on the composition and dynamics of soil nitrogen-fixing microorganisms remains poorly understood. In this study, a pot experiment was conducted using paddy soil collected from a mining area under three pollution treatments, to analyze changes in the structure of the nitrogen-fixing microbial community across different growth stages and treatments. The results showed that AMD irrigation led to soil acidification, sulfate accumulation, and a significant reduction in the diversity of nitrogen-fixing microorganisms in the root zone. Compared to the control, the Shannon index decreased by 11.65–24.79% in contaminated soil. LEfSe analysis indicated that AMD enriched metal-tolerant and sulfate-resistant microbial taxa. Irrigation with clean water was insufficient to fully restore the soil environment. The assembly process of the AMD soil community was governed solely by stochastic processes, indicating structural instability of the community. This study suggests that remediation strategies should prioritize neutralizing acidity and restoring nutrient balance to support the stability and recovery of nitrogen-fixing microorganisms. These findings provide new insight into how AMD disrupts diazotrophic community assembly, with direct implications for paddy soil restoration.

Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
Sojung Bae, Jinjong Myoung
J. Microbiol. 2025;63(7):e2504015.   Published online July 21, 2025
DOI: https://doi.org/10.71150/jm.2504015
  • 3,810 View
  • 406 Download
  • 1 Crossref
AbstractAbstract PDF

The global spread of COVID-19 has underscored the urgent need for advanced tools to study emerging coronaviruses. Reverse genetics systems have become indispensable for dissecting viral gene functions, developing live-attenuated vaccine candidates, and identifying antiviral targets. In this study, we describe a robust and efficient reverse genetics platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The system is based on the assembly of a full-length infectious cDNA clone from seven overlapping fragments, each flanked by homologous sequences to facilitate seamless assembly using the Gibson assembly method. Individual cloning of each fragment into plasmids enables modular manipulation of the viral genome, allowing rapid site-directed mutagenesis by fragment exchange. Infectious recombinant virus was successfully recovered from the assembled cDNA, exhibiting uniform plaque morphology and genetic homogeneity compared to clinical isolates. Additionally, fluorescent reporter viruses were generated to enable real-time visualization of infection, and the effects of different mammalian promoters on viral rescue were evaluated. This reverse genetics platform enables efficient generation and manipulation of recombinant SARS-CoV-2, providing a valuable resource for virological research and the development of preventive and therapeutic antiviral measures.

Citations

Citations to this article as recorded by  
  • Research Progress of Coronavirus Reverse Genetics Technology
    Ziqi Han, Jiaxu Han, Yan Zhao, Chao Xu, Xue Leng, Boyin Jia, Naichao Diao, Fei Liu, Chunmei Cui, Jian Liang, Yuhang Jiang, Rui Du
    Journal of Medical Virology.2026;[Epub]     CrossRef
Effects of sequencing platforms on the profiling of root mycorrhizal communities in Pinus densiflora
Ki Hyeong Park, Seung-Yoon Oh, Shinnam Yoo, Yoonhee Cho, Ji Seon Kim, Chang Wan Seo, Chang Sun Kim, Young Woon Lim
J. Microbiol. 2026;64(1):e2509008.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2509008
  • 799 View
  • 10 Download
AbstractAbstract PDFSupplementary Material

Next-generation sequencing (NGS) has become a powerful and efficient tool for surveying mycorrhizal mycobiome diversity, surpassing classical methods in accuracy and throughput. Long-read NGS techniques are increasingly applied under the assumption that they provide better taxonomic resolution, yet their use often lacks a balanced evaluation against the established strengths and limitations of widely used short-read NGS technologies. This study compares Illumina MiSeq and PacBio Sequel platforms in analyzing the mycorrhizal mycobiome of Pinus densiflora roots, focusing on how sequencing platforms and database choice influence taxonomic resolution and diversity patterns. Both platforms detected mycorrhizal taxa with similar taxonomic resolution, recovering nearly all taxa previously reported from pine roots. Most mycorrhizal taxa were shared between datasets, although several taxa were detected exclusively by one platform. In terms of diversity, the short-read dataset showed higher diversity due to greater sequencing depth, whereas the long-read dataset offered improved identification of rare or closely related taxa owing to longer sequence information. Moreover, supplementing reference databases with locally derived sequences enhanced taxonomic resolution and the detection of native taxa in both approaches, with a stronger effect for the long-read dataset. Overall, our results emphasize that short- and long-read sequencing each have distinct advantages for mycorrhizal community analysis, and that the use of curated local reference databases is essential to maximize taxonomic resolution and improve the detection of regionally unique taxa.

Review
Metabolic engineering of Saccharomyces cerevisiae for efficient utilization of pectin-rich biomass
Dahye Lee, Fransheska Semidey, Luping Xu, Eun Joong Oh
J. Microbiol. 2025;63(7):e2503001.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2503001
  • 3,744 View
  • 109 Download
AbstractAbstract PDF

Pectin-rich biomass, derived from fruit and citrus processing waste, presents a promising yet underutilized resource for sustainable biofuel and biochemical production. Its low lignin content and high concentrations of fermentable sugars, including D-galacturonic acid, L-arabinose, and D-xylose, make it an attractive feedstock. Unlike lignocellulosic biomass, pectin-rich hydrolysates require milder pretreatment, improving sugar recovery efficiency. However, industrial strains such as Saccharomyces cerevisiae exhibit strong glucose preference, limiting the efficient co-fermentation of mixed sugars. While prior reviews have broadly addressed lignocellulosic biomass utilization, this mini-review uniquely centers on the specific metabolic challenges and opportunities associated with pectin-rich feedstocks. In addition to incorporating established strategies for the co-utilization of cellobiose and xylose, we highlight recent advances that allow S. cerevisiae to metabolize carbon sources specifically from pectin-rich biomass, such as L-arabinose and D-galacturonic acid—monomers not prevalent in traditional lignocellulosic biomass. By integrating discussions on sugar transport engineering, redox balancing, and pathway optimization, this review offers a comprehensive framework to overcome glucose repression and support efficient co-fermentation of carbon sources from conventional and pectin-rich biomass. Drawing on these advances, we outline practical strategies to enhance fermentation performance and expand the valorization of food processing residues in biomanufacturing.

Full articles
Mucilaginibacter florum sp. nov., isolated from the flower of Coreopsis grandiflora and Mucilaginibacter oryzagri sp. nov., isolated from rice paddy soil in Korea
Parthiban Subramanian, Jun Heo, Daseul Lee, Seunghwan Kim, Hyorim Choi, Yunhee Choi, Yiseul Kim
J. Microbiol. 2025;63(12):e2509014.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509014
  • 778 View
  • 27 Download
AbstractAbstract PDFSupplementary Material

Two aerobic, Gram-stain-negative, non-motile and rod-shaped bacterial strains designated GGG-R5T and M4-18T were isolated from flowers of golden wave (Coreopsis grandiflora) and rice paddy soil, respectively in the Republic of Korea. Both strains were pigmented and produced flexirubin-type pigments. Based on phylogenetic analysis using 16S rRNA gene sequence, both strains were placed within the genus Mucilaginibacter with M. agri R11T and M. jinjuensis YC7004T both being the closest relatives to GGG-R5T (97.7%) and in case of M4-18T, M. ginsenosidivorax KHI28T (98.5%) was the nearest neighbor. Characteristic to genus Mucilaginibacter, the major cellular fatty acids in both strains were iso-C15:0, iso-C17:0 3-OH, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c); menaquinone-7 was the major menaquinone and phosphatidylethanolamine was the major polar lipid observed. Comparison of genome sequences with the other members of Mucilaginibacter indicated orthologous average nucleotide identity (orthoANI) at 73.3–73.5% for GGG-R5T and 78.9–88.5% for M4-18T. Digital DNA-DNA hybridization (dDDH) values ranged at 19.1–19.7% between GGG-R5T and its neighbor species. In case of M4-18T, the observed range was at 21.9–36.6%. Considering the 16S rRNA similarity, orthoANI and dDDH values as well as comparison of phenotypic and chemotaxonomic characteristics indicated that both strains belonged to genus Mucilaginibacter but were distinctly distinguishable from previously described species. The strains GGG-R5T and M4-18T, therefore represent distinct novel species for which names Mucilaginibacter florum GGG-R5T and Mucilaginibacter oryzagri M4-18T are proposed. The type strains are GGG-R5T (= KACC 22063T = JCM 36590T) and M4-18T (= KACC 22773T = JCM 35894T).

Fungal diversity from Fildes Peninsula (Antarctica) and their antibiosis bioactivity against two plant pathogens
Ji Seon Kim, Enzo Romero, Yoonhee Cho, Ramón Ahumada-Rudolph, Christian Núñez, Jonhatan Gómez-Espinoza, Ernesto Moya-Elizondo, Sigisfredo Garnica, Young Woon Lim, Jaime R. Cabrera-Pardo
J. Microbiol. 2025;63(5):e2411029.   Published online April 14, 2025
DOI: https://doi.org/10.71150/jm.2411029
  • 3,524 View
  • 144 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary Material

Antarctic fungi can effectively adapt to extreme environments, which leads to the production of unique bioactive compounds. Studies on the discovery of fungi in the diverse environments of Antarctica and their potential applications are increasing, yet remain limited. In this study, fungi were isolated from various substrates on the Fildes Peninsula in Antarctica and screened for their antibiosis activity against two significant plant pathogenic fungi, Botrytis cinerea and Fusarium culmorum. Phylogenetic analysis using multiple genetic markers revealed that the isolated Antarctic fungal strains are diverse, some of which are novel, emphasizing the underexplored biodiversity of Antarctic fungi. These findings suggest that these fungi have potential for the development of new antifungal agents that can be applied in agriculture to manage fungal plant pathogens. Furthermore, the antibiosis activities of the isolated Antarctic fungi were evaluated using a dual-culture assay. The results indicated that several strains from the genera Cyathicula, Penicillium, and Pseudeurotium significantly inhibited pathogen growth, with Penicillium pancosmium showing the highest inhibitory activity against Botrytis cinerea. Similarly, Aspergillus and Tolypocladium strains exhibited strong antagonistic effects against Fusarium culmorum. This study enhances our understanding of Antarctic fungal diversity and highlights its potential for biotechnological applications.

Citations

Citations to this article as recorded by  
  • A Drought-Activated Bacterial Symbiont Enhances Legume Resilience Through Coordinated Amino Acid Metabolism
    Susmita Das Nishu, Jee Hyun No, Gui Nam Wee, Tae Kwon Lee
    Microorganisms.2026; 14(1): 114.     CrossRef
  • Agaricales from Antarctica: Diversity of basidiomata, research challenges, and future perspectives in polar environments
    Fernando Augusto Bertazzo-Silva, Jair Putzke
    Fungal Biology Reviews.2025; 54: 100458.     CrossRef
  • Diversity, geographical distribution and environmental adaptations of snow molds
    Tamotsu Hoshino
    Mycoscience.2025; 66(6): 334.     CrossRef
Research Article
Characteristics of skin microbiome associated with disease severity in systemic sclerosis
Kyung-Ann Lee, Asad Ul-Haq, Hoonhee Seo, Sujin Jo, Sukyung Kim, Ho-Yeon Song, Hyun-Sook Kim
J. Microbiol. 2025;63(1):e.2409018.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2409018
  • 2,901 View
  • 118 Download
  • 2 Web of Science
  • 4 Crossref
AbstractAbstract PDFSupplementary Material

Systemic sclerosis (SSc) is a chronic autoimmune disorder characterised by skin fibrosis and internal organ involvement. Disruptions in the microbial communities on the skin may contribute to the onset of autoimmune diseases that affect the skin. However, current research on the skin microbiome in SSc is lacking. This study aimed to investigate skin microbiome associated with disease severity in SSc. Skin swabs were collected from the upper limbs of 46 healthy controls (HCs) and 36 patients with SSc. Metagenomic analysis based on the 16S rRNA gene was conducted and stratified by cutaneous subtype and modified Rodnan skin score (mRSS) severity. Significant differences in skin bacterial communities were observed between the HCs and patients with SSc, with further significant variations based on subtype and mRSS severity. The identified biomarkers were Bacteroides and Faecalibacterium for patients with diffuse cutaneous SSc with high mRSS (≥ 10) and Mycobacterium and Parabacteroides for those with low mRSS (< 10). Gardnerella, Abies, Lactobacillus, and Roseburia were the biomarkers in patients with limited cutaneous SSc (lcSS) and high mRSS, whereas Coprococcus predominated in patients with lcSS and low mRSS. Cutaneous subtype analysis identified Pediococcus as a biomarker in the HCs, whereas mRSS analysis revealed the presence of Pseudomonas in conjunction with Pediococcus. In conclusion, patients with SSc exhibit distinct skin microbiota compared with healthy controls. Bacterial composition varies by systemic sclerosis cutaneous subtype and skin thickness.

Citations

Citations to this article as recorded by  
  • Microbiome therapeutic PMC72 through reverse translational research in gout
    Mohammed Solayman Hossain, Hoonhee Seo, Kyung-Ann Lee, Asad ul-Haq, Sukyung Kim, Sujin Jo, Md Abdur Rahim, Hanieh Tajdozian, Fatemeh Ghorbanian, Youjin Yoon, Indrajeet Barman, Md Sarower Hossen Shuvo, Hyun-Sook Kim, Ho-Yeon Song
    Journal of Microbiology.2025; 63(5): e2501002.     CrossRef
  • Alterations of the skin microbiome in multiple system atrophy: a pilot study
    Daji Chen, Lang Sun, Linlin Wan, Zhao Chen, LinLiu Peng, Jinzi Peng, Riwei Ouyang, Xiafei Long, Kefang Du, Xiao Dong, Xiaokang Wu, Xinying Xiao, Ruqing He, Rong Qiu, Beisha Tang, Hong Jiang
    npj Parkinson's Disease.2025;[Epub]     CrossRef
  • Analysis of skin mycobiota associated with alopecia in captive cynomolgus macaques (Macaca fascicularis) based on Oxford Nanopore Technologies
    Natthanit Phokkhasub, Suthida Visedthorn, Pavit Klomkliew, Prangwalai Chanchaem, Kittima Phutthawong, Taratorn Kemthong, Vorthon Sawaswong, Ariya Khamwut, Suchinda Malaivijitnond, Sunchai Payungporn
    F1000Research.2025; 14: 1228.     CrossRef
  • Alterations in the Gut Microbiome in Ankylosing Spondylitis and Their Correlation with Disease Activity
    Hyemin Jeong, Hoonhee Seo, Sukyung Kim, Md Abdur Rahim, Indrajeet Barman, Md Sarower Hossen Shuvo, Sujin Jo, Mohammed Solayman Hossain, Jeong-Ju Yoo, Young Ho Kim, Sung-Soo Jung, Ho-Yeon Song, Chan Hong Jeon
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
Full article
Comparative genome analysis of enterohemorrhagic Escherichia coli ATCC 43894 and its pO157-cured strain 277
Se Kye Kim, Yong-Joon Cho, Carolyn J. Hovde, Sunwoo Hwang, Jonghyun Kim, Jang Won Yoon
J. Microbiol. 2025;63(12):e2511015.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511015
  • 763 View
  • 19 Download
AbstractAbstract PDFSupplementary Material

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 ATCC 43894 (also known as EDL932) has been widely used as a reference strain for studying the pathophysiology of EHEC. To elucidate the role of a large virulence plasmid pO157 and its relationship with acid resistance, for example, both EHEC ATCC 43894 and its pO157-cured derivative strain 277 were well studied. However, it is unclear whether or not these two strains are isogenic and share the same genetic background. To address this question, we analyzed the whole genome sequences of ATCC 43894 and 277. As expected, three and two closed contigs were identified from ATCC 43894 and 277, respectively; two contigs shared in both strains were a chromosome and a small un-identified plasmid, and one contig found only in ATCC 43894 was pO157. Surprisingly, our pan-genome analyses of the two sequences revealed several genetic variations including frameshift, substitution, and deletion mutations. In particular, the deletion mutation of hdeD and gadE in ATCC 43894 was identified, and further PCR analysis also confirmed their deletion of a 2.5-kb fragment harboring hdeD, gadE, and mdtE in ATCC 43894. Taken together, our findings demonstrate that EHEC ATCC 43894 harbors genetic mutations affecting glutamate-dependent acid resistance system and imply that the pO157-cured EHEC 277 may not be isogenic to ATCC 43894. This is the first report that such genetic differences between both reference strains of EHEC should be considered in future studies on pathogenic E. coli.

Reviews
Obesity, skin disorders, and the microbiota: Unraveling a complex web
Yu Ri Woo, Hei Sung Kim
J. Microbiol. 2026;64(1):e2508007.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2508007
  • 757 View
  • 29 Download
AbstractAbstract PDF

Obesity is increasingly recognized as a systemic pro-inflammatory condition that influences not only metabolic and cardiovascular health but also the development and exacerbation of cutaneous inflammatory diseases. This review examines the interplay between obesity, microbial dysbiosis, and two archetypal inflammatory skin disorders—hidradenitis suppurativa (HS) and psoriasis. We highlight how obesity-induced changes in immune signaling, gut permeability, and microbiota composition—both in the gut and the skin—contribute to cutaneous inflammation. Special emphasis is placed on shared pathways such as the Th17/IL-23 and IL-22 signaling axes, adipokine imbalance, and microbial metabolites like short-chain fatty acids and lipopolysaccharides. The review critically evaluates the current literature, distinguishing preclinical insights from clinical evidence, and underscores the potential of microbiota-targeted therapies and metabolic interventions as adjunctive treatment strategies. By integrating metabolic, immunologic, and microbiome data, we synthesize emerging evidence to better understand the gut–skin–obesity interplay and guide future therapeutic innovations.

Metabolite-mediated mechanisms linking the urinary microbiome to bladder cancer
Thu Anh Trần, Ho Young Lee, Hae Woong Choi
J. Microbiol. 2025;63(11):e2509001.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2509001
  • 1,461 View
  • 49 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Bladder cancer is the most common malignancy of the urinary tract and is a major health burden globally. Recent advances in microbiome research have revealed that the urinary tract harbors a resident microbial community, overturning the long-held belief in its sterility. Increasing evidence suggests that microbial dysbiosis and microbially derived metabolites contribute to bladder cancer carcinogenesis, progression, and therapeutic responses. Distinct microbial signatures have been observed in bladder cancer patients, with notable differences across disease stages and between primary and recurrent cases. Mechanistic studies have demonstrated that microbe-associated metabolites and toxins can drive DNA damage, chronic inflammation, extracellular matrix remodeling, and epithelial–mesenchymal transition. In addition, biofilm formation allows bacteria to evade immune responses and promotes persistent inflammation, creating a tumor-permissive niche. Beyond pathogenesis, microbial activity also influences therapeutic outcomes; for instance, some microbial pathways can inactivate frontline chemotherapy, while others generate metabolites with anti-tumor properties. Collectively, these patterns define a microbiota–metabolite–immunity axis, presenting opportunities for precision oncology. Targeting microbial pathways, profiling urinary microbiota, and harnessing beneficial metabolites offer promising advancements in biomarker discovery, prognostic refinement, and the development of novel therapeutic strategies for bladder cancer.

Citations

Citations to this article as recorded by  
  • The infection–microbiome–immunity axis in bladder cancer: mechanistic insights and therapeutic perspectives
    Shen Pan, Wanlin Cui, Jiaman Lin, Zhujun Wang, Zhenhua Li, Bitian Liu
    Frontiers in Immunology.2026;[Epub]     CrossRef
Full articles
Staphylococcus parequorum sp. nov. and Staphylococcus halotolerans sp. nov., isolated from traditional Korean soybean foods
Ju Hye Baek, Dong Min Han, Dae Gyu Choi, Chae Yeong Moon, Jae Kyeong Lee, Chul-Hong Kim, Jung-Woong Kim, Che Ok Jeon
J. Microbiol. 2025;63(8):e2503003.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2503003
Correction in: J. Microbiol 2025;63(9):e2509100 Correction in: J. Microbiol 2025;63(10):e2510101
  • 2,515 View
  • 103 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

Strains Mo2-6T, S9, KG4-3T, and 50Mo3-2, identified as coagulase-negative, Gram-stain-positive, halotolerant, non-motile coccoid bacteria, were isolated from traditional Korean soybean foods. Strains Mo2-6T and S9 were both catalase- and oxidase-negative, whereas KG4-3T and 50Mo3-2 were catalase-positive but oxidase-negative. The optimal growth conditions for Mo2-6T and S9 were 30°C, 2% NaCl, and pH 7.0, while KG4-3T and 50Mo3-2 grew best at 35°C, 2% NaCl, and pH 7.0. All strains contained menaquinone-7 as the predominant isoprenoid quinone, with anteiso-C15:0 and iso-C15:0 as the major cellular fatty acids (> 10%). Additionally, anteiso-C13:0 was a major fatty acid in strain KG4-3T. The DNA G + C contents of strains Mo2-6T, S9, KG4-3T, and 50Mo3-2 were 33.4%, 33.3%, 32.5%, and 32.7%, respectively. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, formed distinct lineages within the genus Staphylococcus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, belonged to the same species. Meanwhile, dDDH and ANI values between strains Mo2-6T and KG4-3T, as well as comparisons with other Staphylococcus type strains, were below the species delineation thresholds, indicating they represent novel species. Based on phenotypic, chemotaxonomic, and molecular data, we propose strain Mo2-6T as the type strain of Staphylococcus parequorum sp. nov. (=KACC 23685T =JCM 37038T) and strain KG4-3T as the type strain of Staphylococcus halotolerans sp. nov. (=KACC 23684T =JCM 37037T).

Citations

Citations to this article as recorded by  
  • Validation List no. 227: valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2026;[Epub]     CrossRef
Ecological characteristics of the truncal skin mycobiome in acne and its association with doxycycline exposure
Hyun Ji Lee, Yong-Joon Cho, Nayan Jin, Piyapat Rintarhat, Won Hee Jung, Hei Sung Kim
J. Microbiol. 2026;64(1):e2511019.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2511019
  • 732 View
  • 20 Download
AbstractAbstract PDFSupplementary Material

Truncal acne significantly impairs quality of life yet remains underexplored relative to facial acne, particularly with respect to fungal ecology. The trunk represents a distinct cutaneous niche characterized by thicker epidermis, larger follicular units, and frequent occlusion, and harbors a high abundance of Malassezia species. In this study, we used internal transcribed spacer 2 (ITS2) amplicon sequencing to characterize the truncal mycobiome in patients with acne and in healthy controls and to compare fungal community features across doxycycline exposure groups. Although serial sampling was planned, seven participants contributed a single follow-up sample after doxycycline treatment, and only two participants contributed multiple follow-up samples sufficient for true within-subject longitudinal analyses; therefore, most analyses represent exposure-stratified cross-sectional comparisons rather than confirmed temporal change. At baseline, truncal acne lesions exhibited increased fungal richness and distinct community composition compared with controls. Acne lesions were more frequently enriched for Malassezia globosa, whereas healthy controls were dominated by M. sympodialis. Across doxycycline exposure groups, fungal communities remained Malassezia-dominant with substantial inter-individual variability. Doxycycline exposure was associated with partial and heterogeneous differences in Malassezia species composition without uniform normalization toward control profiles. Because only fungal sequencing was performed, bacterial–fungal interactions were inferred from prior literature and not directly measured. These findings indicate that truncal acne is associated with a distinct fungal community structure and highlight the need for integrated, longitudinal multi-omics studies to clarify treatment-associated microbial dynamics.

Review
Recent advances in the Design-Build-Test-Learn (DBTL) cycle for systems metabolic engineering of Corynebacterium glutamicum
Subeen Jeon, Yu Jung Sohn, Haeyoung Lee, Ji Young Park, Dojin Kim, Eun Seo Lee, Si Jae Park
J. Microbiol. 2025;63(3):e2501021.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501021
  • 2,442 View
  • 183 Download
  • 3 Web of Science
  • 6 Crossref
AbstractAbstract PDF

Existing microbial engineering strategies—encompassing metabolic engineering, systems biology, and systems metabolic engineering—have significantly enhanced the potential of microbial cell factories as sustainable alternatives to the petrochemical industry by optimizing metabolic pathways. Recently, systems metabolic engineering, which integrates tools from synthetic biology, enzyme engineering, omics technology, and evolutionary engineering, has been successfully developed. By leveraging modern engineering strategies within the Design-Build-Test-Learn (DBTL) cycle framework, these advancements have revolutionized the biosynthesis of valuable compounds. This review highlights recent progress in the metabolic engineering of Corynebacterium glutamicum, a versatile microbial platform, achieved through various approaches from traditional metabolic engineering to advanced systems metabolic engineering, all within the DBTL cycle. A particular focus is placed C5 platform chemicals derived from L-lysine, one of the key amino acid production pathways of C. glutamicum. The development of DBTL cycle-based metabolic engineering strategies for this process is discussed.

Citations

Citations to this article as recorded by  
  • Designing prokaryotic gene expression regulatory elements: From genomic mining to artificial intelligence-driven generation
    Xuan Zhou, Wenyan Cao, Chao Huang, Xiaojuan Zhang, Shenghu Zhou, Yu Deng
    Biotechnology Advances.2026; 87: 108781.     CrossRef
  • Green bioconversion of insoluble chitin: chitinase development pathways via multi-strategy synergy
    Zhi-Ping Sai, Yi-Rui Yin, Li-Quan Yang, Jia-Hui Wang, Xin-Yi Yang, Fu-Xian Liu, Xin Jing, Yi Zhang, Yu-Da Li, Peng Sang, Zheng-Feng Yang
    Bioresources and Bioprocessing.2026;[Epub]     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Time-Series Metabolome and Transcriptome Analyses Reveal the Genetic Basis of Vanillin Biosynthesis in Vanilla
    Zeyu Dong, Shaoguan Zhao, Yizhang Xing, Fan Su, Fei Xu, Lei Fang, Zhiyuan Zhang, Qingyun Zhao, Fenglin Gu
    Plants.2025; 14(13): 1922.     CrossRef
  • Systems and Synthetic Biology Approaches for Optimizing Microbial Cell Factories
    Jongoh Shin, Myung Hyun Noh, Seung-Ho Baek, Jonghyeok Shin, Jung Ho Ahn, Sung Sun Yim, Sungho Jang, Hyun Gyu Lim
    KSBB Journal.2025; 40(3): 214.     CrossRef
  • Digital to Biological Translation: How the Algorithmic Data-Driven Design Reshapes Synthetic Biology
    Abdul Manan, Nabila Qayyum, Rajath Ramachandran, Naila Qayyum, Sidra Ilyas
    SynBio.2025; 3(4): 17.     CrossRef
Full article
Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov., isolated from kimchi, a traditional Korean fermented food
Min Ji Lee, Jisu Lee, Sohee Nam, Mi-Ja Jung, Yeon Bee Kim, Yujin Kim, Jeong Ui Yun, Seong Woon Roh, Tae Woong Whon, Che Ok Jeon, Se Hee Lee
J. Microbiol. 2025;63(11):e2507007.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2507007
  • 1,500 View
  • 68 Download
AbstractAbstract PDFSupplementary Material

Two Gram-stain-positive, facultatively anaerobic, rod-shaped, and non-motile lactic acid bacterial strains, designated as strains CBA3605T and CBA3606T, were isolated from kimchi, a traditional Korean fermented food. Both strains were oxidase- and catalase-negative, non-spore-forming, non-hemolytic, and non-gas-producing. Optimal growth conditions for the two strains were observed at 30°C, pH 5.0, and 0% NaCl. The two genomes were composed of a circular chromosome and three plasmids and the DNA G + C content of 43.0%, respectively. Strains CBA3605T and CBA3606T were most closely related to Lactiplantibacillus (Lp.) pingfangensis 382-1T with 16S rRNA sequence similarity of 99.4% and 99.1%, respectively. However, the orthologous average nucleotide identities between CBA3605T and CBA3606T were 91.7%, and those with strain 382-1T were 76.9% and 76.5%, respectively. Digital DNA–DNA hybridization values between CBA3605T and CBA3606T were 45.0%, and those with strain 382-1T were 21.4% and 21.0%, respectively. The major fatty acids detected in both strains included C16:0, C18:1 ω9c, and summed features 7 (C19:1 ω7c, C19:1 ω6c, C19:0 cyclo ω10c, and/or C19:0 ω6c). The peptidoglycan of both strains CBA3605T and CBA3606T contained meso-diaminopimelic acid and was classified as A4α type (L-Lys–D-Asp). In polar lipid analyses, only strain CBA3605T contained aminophosphoglycolipid, which was absent in CBA3606T, although both strains harbored same major polar lipids (diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine). Based on phenotypic, phylogenetic, genomic, biochemical, and chemotaxonomic analyses, strains CBA3605T and CBA3606T represent two novel species of the genus Lactiplantibacillus, for which the names Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov. are proposed, with CBA3605T (= KACC 81073BPT = JCM 37965T), and CBA3606T (= KACC 81074BPT = JCM 37966T) as the type strains.

Research Article
Synbiotic combination of fructooligosaccharides and probiotics ameliorates the metabolic dysfunction-associated steatotic liver disease
Sang Yoon Lee, Su-Been Lee, Goo-Hyun Kwon, Seol Hee Song, Jeong Ha Park, Min Ju Kim, Jung A Eom, Kyeong Jin Lee, Sang Jun Yoon, Hyunjoon Park, Sung-Min Won, Jin-Ju Jeong, Ki-Kwang Oh, Young Lim Ham, Gwang Ho Baik, Dong Joon Kim, Satya Priya Sharma, Ki Tae Suk
J. Microbiol. 2025;63(2):e2411002.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411002
  • 2,788 View
  • 118 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF

Synbiotics have become a new-age treatment tool for limiting the progression of metabolic dysfunction-associated steatotic liver disease; however, inclusive comparisons of various synbiotic treatments are still lacking. Here, we have explored and evaluated multiple synbiotic combinations incorporating three distinctive prebiotics, lactitol, lactulose and fructooligosaccharides. Of the synbiotic treatments evaluated, a combination of fructooligosaccharides and probiotics (FOS+Pro) exhibited superior protection against western diet-induced liver degeneration. This synbiotic (FOS+Pro) combination resulted in the lowest body weight gains, liver weights and liver/body weight ratios. The FOS+Pro synbiotic combination substantially alleviated liver histopathological markers and reduced serum AST and cholesterol levels. FOS+Pro ameliorated hepatic inflammation by lowering expression of proinflammatory markers including TNF-α, IL-1β, IL-6, and CCL2. FOS+Pro significantly improved steatosis by restricting the expression of lipid metabolic regulators (ACC1, FAS) and lipid transporters (CD36) in the liver. These findings are critical in suggesting that synbiotic treatments are capable of restraining western diet-induced metabolic dysfunction in the liver. Additionally, this study demonstrated that adding probiotic strains amplified the effectiveness of fructooligosaccharides but not all prebiotics.

Citations

Citations to this article as recorded by  
  • Therapeutic Potential of Probiotics in Metabolic Dysfunction-Associated Steatohepatitis: A Comprehensive Review
    Xueying Wang, Zhiying Wei, Qing Xiang, Lijie Tang, Weichun Xie
    Microorganisms.2025; 13(8): 1894.     CrossRef
  • Profiling oligosaccharide components in Polygonatum kingianum with potential anti-NAFLD activity using UPLC-Orbitrap-MS/MS technology
    Hong Guo, Rui Yao, Jing Fan, Ying Wang, Lingzhi Zhang, Hua Sun, Xiaohan Guo, Jianbo Yang, Jingzhe Pu, Yazhong Zhang, Baozhong Duan, Jia Chen, Wenguang Jing, Xianlong Cheng, Feng Wei
    Food Hydrocolloids for Health.2025; 8: 100248.     CrossRef
  • Probiotics and cholesterol metabolism: new frontiers in science from intestinal microecology to cardiovascular health
    Yue Li, Dayong Ren
    Food Science of Animal Products.2025; 4(1): 9240146.     CrossRef
Full articles
Haloimpatiens sporogenes sp. nov. and Haloimpatiens myeolchijeotgali sp. nov., anaerobic bacteria isolated from Myeolchi-jeot, a traditional Korean fermented anchovy
Yu Jeong Lee, Byung Hee Chun
J. Microbiol. 2025;63(7):e2504009.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2504009
  • 2,687 View
  • 57 Download
AbstractAbstract PDFSupplementary Material

Two rod-shaped, Gram-positive, spore-forming, motile, and strictly anaerobic bacteria, FM7315T and FM7330T were isolated from Myeolchi-jeot, a traditional Korean fermented anchovy. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene and genome sequences revealed that strains FM7315T and FM7330T represent novel species within the genus Haloimpatiens. The genome sizes of strains FM7315T and FM7330T were 3,052,517 bp and 4,194,114 bp, respectively, with G + C contents of 29.7 mol% and 28.0 mol%, respectively. Strain FM7315T exhibited growth at 20–37°C, 0–2% NaCl, and pH range of 5.0–8.0, whereas strain FM7330T grew at 25–45°C, 0–4% NaCl, and pH range of 5.0–9.0. Strain FM7315T contains C14:0, C16:0, C18:1 ω9c, Summed Feature 3 (C16:1 ω7c/C16:1 ω6c), and Summed Feature 8 (C18:1 ω7c/C18:1 ω6c) as major fatty acids, along with diphosphatidylglycerol, phosphatidylglycerol, glycolipid, two aminophospholipids, and five unidentified lipids. Strain FM7330T contains C16:0, C17:1 ω8c, and C18:1 ω9c as major fatty acids, along with diphosphatidylglycerol, two phosphatidylglycerols, four aminophospholipids, and six unidentified lipids. Based on their phenotypic, chemotaxonomic, and molecular characteristics, strains FM7315T and FM7330T represent two novel species of the genus Haloimpatiens, for which the names Haloimpatiens sporogenes sp. nov. (FM7315T = KCTC 25939T = JCM 37574T) and Haloimpatiens myeolchijeotgali sp. nov. (FM7330T = KCTC 25938T = JCM 37575T) have been proposed.

Mouse strain-dependent neutralizing antibody responses to Zika virus vaccines
Sang Hwan Seo, Jung-ah Choi, Eunji Yang, Hayan Park, Dae-Im Jung, Jae-Ouk Kim, Jae Seung Yang, Manki Song
J. Microbiol. 2025;63(8):e2504005.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2504005
  • 2,535 View
  • 30 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDF

The 2015 Zika virus (ZIKV) outbreak in Brazil and its global spread underscored the urgent need for effective and broadly protective vaccines. While C57BL/6 and BALB/c mice are widely used in preclinical vaccine research, direct comparisons of their ability to elicit ZIKV-specific neutralizing antibodies (nAbs) remain limited. This study aimed to systematically evaluate and compare the immunogenic potential of these two common mouse strains across diverse vaccine platforms, focusing on their capacity to generate functional neutralizing antibody responses. We assessed nAb and IgG responses following four vaccination strategies: (1) DNA vaccine encoding prMEΔTM followed by E protein domain III boost, (2) recombinant EΔTM protein expressed using baculovirus system, (3) formalin-inactivated ZIKV, and (4) live ZIKV. Although both strains generated detectable ZIKV- and E protein-specific IgG, the magnitude and quality of responses varied by vaccine platform and strain. Notably, C57BL/6 mice consistently mounted significantly higher nAb titers than BALB/c mice across all immunization groups, including subunit- and whole-virus-based vaccines. In contrast, BALB/c mice showed lower or undetectable nAb responses, despite comparable or higher total IgG levels in some cases. These findings show that host genetic background is a critical determinant of vaccine-induced neutralization and underscore the importance of selecting appropriate animal models in ZIKV vaccine development. C57BL/6 mice, due to their robust nAb responses, represent a reliable model for evaluating vaccine immunogenicity. Conversely, the limited nAb responses in BALB/c mice position them as a potential low-responder model, offering a stringent system to test the potency and breadth of protective immunity under suboptimal conditions.

Citations

Citations to this article as recorded by  
  • The Pathogenesis and Virulence of the Major Enterovirus Pathogens Associated with Severe Clinical Manifestations: A Comprehensive Review
    Yuwei Liu, Maiheliya Maisimu, Zhihang Ge, Suling Xiao, Haoran Wang
    Cells.2025; 14(20): 1617.     CrossRef
  • Development and Immunogenicity Assessment of a Multi-Epitope Antigen Against Zika Virus: An In Silico and In Vivo Approach
    Lígia Rosa Sales Leal, Matheus Gardini Amâncio Marques de Sena, Maria da Conceição Viana Invenção, Ingrid Andrêssa de Moura, André Luiz Santos de Jesus, Georon Ferreira de Sousa, Bárbara Rafaela da Silva Barros, Cristiane Moutinho Lagos de Melo, Lindomar
    Vaccines.2025; 14(1): 31.     CrossRef
Development of tri-cistronic CLDN18.2 CAR-T cells incorporating PD-1/CD28 switch and cyclophilin A for enhanced solid tumor immunotherapy
Heon Ju Lee, Seo Jin Hwang, Eun Hee Jeong, Mi Hee Chang, Bu Yeon Heo, Jaeyul Kwon, Yoona Noh, Jihoon Nah
J. Microbiol. 2026;64(1):e2510017.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2510017
  • 663 View
  • 12 Download
AbstractAbstract PDFSupplementary Material

Chimeric antigen receptor (CAR)-T cell therapy holds significant potential for the treatment of solid tumors. However, immune suppression and tumor-specific barriers limit its application. Claudin 18.2 (CLDN18.2), a gastric lineage-specific tight junction protein highly expressed in gastric and pancreatic cancers, is a promising therapeutic target. In this study, we aimed to develop a next-generation tri-cistronic CLDN18.2-directed CAR-T cell platform that integrates a programmed cell death protein 1 (PD-1)/CD28 chimeric switch receptor with cyclophilin A (CypA). This platform sought to counteract PD-1–mediated immunosuppression and enhance T-cell activation and persistence. We generated CLDN18.2 CAR-T cells incorporating costimulatory inducible T-cell costimulator (ICOS) domains using lentiviral vector-based recombinant engineering. We further evaluated their cytokine release, cytotoxic activity, and safety profiles. In vitro, tri-cistronic CAR-T cells exhibited markedly increased interferon γ and tumor necrosis factor α secretion and enhanced cytotoxicity against CLDN18.2-positive gastric cancer cells compared with conventional CAR-T constructs. In vivo, these cells showed superior antitumor efficacy and sustained tumor regression without observable toxicity in xenograft gastric cancer models. Collectively, these findings demonstrate that the integration of PD-1/CD28 signaling and CypA within a tri-cistronic framework significantly reinforces CAR-T cell functionality and durability. This suggests strong clinical potential as a next-generation immunotherapy for solid tumors.

Multi-omic profiling reveals the impact of keratinase kerZJ on mouse gut homeostasis
Xueqing Gan, Yijiao Wen, Si Chen, Famin Ke, Siyuan Liu, Zening Wang, Chunhua Zhang, Xuanting Wang, Qin Wang, Xiaowei Gao
J. Microbiol. 2025;63(12):e2509011.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509011
  • 661 View
  • 16 Download
AbstractAbstract PDF

Keratinase kerZJ is a multifunctional protease with potential as a feed additive and functional ingredient. Here we performed an integrated multi‑omics evaluation of its biosafety and impact on gut homeostasis in mice. Our findings confirm that kerZJ is well-tolerated, with no evidence of systemic toxicity or intestinal epithelial damage. Integrated transcriptomic and proteomic analyses revealed that kerZJ reinforces intestinal barrier integrity by upregulating extracellular matrix components, including collagen IV, and modulates mucosal immunity by enhancing B-cell activation and antimicrobial peptide defenses without inducing inflammation. Furthermore, kerZJ administration led to a significant upregulation of digestive enzymes and a dose-dependent increase in short-chain fatty acids production. Microbiome analysis showed that while high-dose kerZJ altered community composition, it enriched for beneficial taxa like Lactobacillaceae and did not induce dysbiosis. These results demonstrate that kerZJ safely enhances gut barrier function, promotes a favorable immune and metabolic environment, and fosters a resilient gut ecosystem, supporting its development as a safe feed additive and nutraceutical component.

Protocol
Protocol for the generation and purification of minicells from Lactiplantibacillus plantarum
Hyemin Kang, Donghyun Kim, Juhyun Kim
J. Microbiol. 2025;63(5):e2412002.   Published online April 30, 2025
DOI: https://doi.org/10.71150/jm.2412002
  • 2,596 View
  • 113 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Minicells, which are anucleate cells generated by irregular cell division, are emerging as promising drug delivery systems owing to advances in synthetic biology. However, their development is largely limited to a few model bacteria, highlighting the need to explore minicell platforms in alternative hosts. Lactiplantibacillus plantarum (L. plantarum), a probiotic bacterium classified as Generally Recognized as Safe, is an ideal candidate for such exploration. Minicell-producing L. plantarum was engineered by deleting the putative minD gene via plasmid-mediated homologous recombination, which inactivates cell division to form spherical minicells. Anucleate cells were isolated through differential centrifugation and filtration, followed by additional drug treatment to completely eliminate progenitor cells. Microscopy and flow cytometry analyses of the purified sample confirmed the absence of progenitor cells by DAPI staining. This protocol effectively produces bacterial minicells from L. plantarum for use in various biotechnological applications, including therapeutic agent delivery.

Citations

Citations to this article as recorded by  
  • A Safe and Versatile Minicell Platform Derived from Lactiplantibacillus plantarum for Biotechnological Applications
    Junhyeon Park, Seungjune Chang, Heymin Kang, SangKu Yi, In-Hwan Jang, Kyung-Ah Lee, Donghyun Kim, Juhyun Kim
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Development of Nanobody-Expressing Nanosomes for Neutralization of Influenza Virus
    Taehyun Kim, In-Hwan Jang, Sohyeon Shin, Juhyun Kang, Hyo-Joo Ahn, Sungmin Moon, Juhyun Kim, Ji-Hwan Ryu, Kyung-Ah Lee
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
Full article
Vitamin D disrupts NS1-TUFM interaction to suppress pathogenic mitophagy in RSV-induced mitochondrial injury of bronchial epithelial cells
Li Peng, Yao Liu, Xiaofang Ding, Tuhong Yang, Lili Zhong, Fangcai Li
J. Microbiol. 2026;64(1):e2508009.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2508009
  • 629 View
  • 10 Download
AbstractAbstract PDFSupplementary Material

This study aims to examine the mechanism by which vitamin D mitigates bronchiolitis caused by respiratory syncytial virus (RSV) through the regulation of RSV nonstructural protein 1 (NS1)-TUFM-mediated mitophagy in bronchial epithelial cells. Clinical serum and PBMC samples from RSV-infected children and healthy controls were analyzed for vitamin D, mitochondrial DNA, mitophagy markers (LC3, ATG5, VDAC1, TOMM20, and COXIV), TUFM, and inflammatory cytokines (IL-6, IL-8, and TNF-α). In vitro, human bronchial epithelial cells Beas-2B were transfected with RSV-NS1 plasmid and TUFM silencing or overexpression constructs. Vitamin D (0.1–10 μM) was administered to evaluate mitophagy inhibition using Western blot, immunofluorescence, and JC-1 staining. NS1-TUFM interaction was confirmed by co-immunoprecipitation. RSV-positive patients exhibited reduced serum vitamin D, elevated TUFM and mitophagy markers, impaired mitochondrial mass, and increased inflammation. Vitamin D inversely correlated with LC3 and TUFM. RSV-NS1 overexpression induced mitochondrial translocation of NS1, TUFM-dependent mitophagy activation, and mitochondrial dysfunction (JC-1 depolarization). Vitamin D (10 μM) suppressed mitophagy by redistributing NS1 to the cytosol and reducing mitochondrial TUFM. TUFM overexpression abolished the protective effects of vitamin D on mitophagy and inflammation. In conclusion, vitamin D inhibits mitophagy in bronchial epithelial cells infected with RSV by disrupting NS1-TUFM interaction, suggesting that the vitamin D-TUFM axis may serve as a potential therapeutic target.

Research Article
Dissimilatory nitrate reductions in soil Neobacillus and Bacillus strains under aerobic condition
Seohyun Ahn, Min Cho, Michael J. Sadowsky, Jeonghwan Jang
J. Microbiol. 2025;63(2):e2411019.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411019
  • 2,317 View
  • 93 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDFSupplementary Material

Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were thought to be carried-out by anaerobic bacteria constrained to anoxic conditions as they use nitrate (NO3-) as a terminal electron acceptor instead of molecular O2. Three soil bacilli, Neobacillus spp. strains PS2-9 and PS3-12 and Bacillus salipaludis PS3-36, were isolated from rice paddy field soil in Korea. The bacterial strains were selected as possible candidates performing aerobic denitrification and DNRA as they were observed to reduce NO3- and produce extracellular NH4+ regardless of oxygen presence at the initial screening. Whole genome sequencing revealed that these strains possessed all the denitrification and DNRA functional genes in their genomes, including the nirK, nosZ, nirB, and nrfA genes, which were simultaneously cotranscribed under aerobic condition. The ratio between the assimilatory and dissimilatory NO3- reduction pathways depended on the availability of a nitrogen source for cell growth, other than NO3-. Based on the phenotypic and transcriptional analyses of the NO3- reductions, all three of the facultative anaerobic strains reduced NO3- likely in both assimilatory and dissimilatory pathways under both aerobic and anoxic conditions. To our knowledge, this is the first report that describes coexistence of NO3- assimilation, denitrification, and DNRA in a Bacillus or Neobacillus strain under aerobic condition. These strains may play a pivotal role in the soil nitrogen cycle.

Citations

Citations to this article as recorded by  
  • Biofertilizers Enhance Soil Fertility and Crop Yields Through Microbial Community Modulation
    Xu Zhang, Lei Zhang, Junjie Liu, Zongzuan Shen, Zhuxiu Liu, Haidong Gu, Xiaojing Hu, Zhenhua Yu, Yansheng Li, Jian Jin, Guanghua Wang
    Agronomy.2025; 15(7): 1572.     CrossRef
  • Strategy of nitrate-enhanced natural attenuation for remediation of PAHs-contaminated subsoil
    Xuyang Jiang, Zhen Mao, Zhenqi Hu, Tao Jin, Licun Zhong, Jinbiao Yu
    Journal of Environmental Chemical Engineering.2025; 13(5): 118037.     CrossRef
  • Leveraging iron-rich recovered waste as a co-electron donor in sulfur autotrophic denitrification for simultaneous nitrate and phosphate removal from low C/N hydroponic wastewater
    Sandesh Pandey, Anup Gurung, Choe Earn Choong, Suleman Shahzad, Fida Hussain, Woochang Kang, Syed Ejaz Hussain Mehdi, Aparna Sharma, Min Jang, Sang-Eun Oh
    Journal of Water Process Engineering.2025; 79: 108948.     CrossRef
  • narG, rather than napA, mediates aerobic nitrate reduction process in Pseudomonas putida Y-9
    Yuwen Luo, Luo Luo, Xuejiao Huang, Daihua Jiang, Zhenlun Li
    Water Research X.2025; 29: 100437.     CrossRef
Protocol
Protocol for efficient recovery of high-quality DNA from microbiome of marine invertebrates
Yeong-Jun Park, Jae Kyu Lim, Yeon-Ju Lee, Kae Kyoung Kwon
J. Microbiol. 2025;63(9):e2507003.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2507003
  • 2,238 View
  • 82 Download
AbstractAbstract PDF

Marine organisms often form symbiotic relationships with various microorganisms to adapt and thrive in harsh environments. These symbiotic microbes contribute to host survival by providing nutrition, modulating the hosts’ immune system, and supporting overall physiological stability. Advances in high-throughput sequencing technologies have enabled a deeper understanding of the structure and function of symbiotic microbial communities, as well as host-microbe interactions. Notably, symbiotic bacteria associated with marine invertebrates such as corals and sponges are recognized as a potential source of useful bioactive compounds, including antibiotics and enzymes. However, obtaining high-quality microbial DNA from host tissues still remains a technical challenge due to the presence of unknown substances. This study focuses on optimizing sample preparation and DNA extraction procedures and additional purification to improve the recovery of microbial DNA while minimizing host DNA contamination. Comparison between several methods was conducted using sponge samples to evaluate DNA quality and microbial recovery. A sample designated as 2110BU-001 was collected from the east coast of the Republic of Korea and used for culture-independent microbial cell isolation. Total bacterial DNA was extracted by using a manual Phenol-Chloroform protocol and three commercial kits. DNA extracted using the standard manual method showed both the highest yield and the largest fragment size. However, PCR (Polymerase chain reaction) test showed that quality of manually extracted DNA was not enough for sequencing. Therefore, the quality of DNA was improved through additional purification steps. Briefly, host eukaryotic cells were removed by mechanical process and almost only bacterial DNA was successfully obtained by combination of manual extraction method and further purification processes. The established protocol was successfully introduced to extraction of metagenomic DNA from mussel and jellyfish microbiomes, indicating that it can be widely applied to various marine organisms.

Full article
Alizarin, which reduces ExoS, attenuates inflammation by P. aeruginosa in H292 cells
Seung-Ho Kim, Hye In Ahn, Jae-Hoon Oh, Da Yun Seo, Jung-Hee Kim, Ok-kyoung Kwon, Ji-Won Park, Kyung-Seop Ahn
J. Microbiol. 2025;63(5):e2411012.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2411012
  • 1,654 View
  • 34 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Pseudomonas aeruginosa (P. aeruginosa) is resistant to several drugs as well as antibiotics and is thus classified as multidrug resistant and extensively drug resistant. These bacteria have a secretion system called the "type 3 secretion system (T3SS)", which facilitates infection by delivering an effector protein. ExoenzymeS (ExoS) is known to induce cell death and activate caspase-1. In particular, patients infected with P. aeruginosa develop diseases associated with high mortality, such as pneumonia, because no drug targets an ExoS or T3SS. We selected natural compounds to treat T3SS-mediated pneumonia and chose alizarin, a red dye. We confirmed the effects of alizarin on T3SS by bacterial PCR and ELISA. It was confirmed that alizarin regulates ExoS by inhibiting exsA but also popD and pscF. Furthermore, in infected H292 cells, it not only attenuates inflammation by inhibiting lipopolysaccharide (LPS)-induced phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 but also interferes with the level of ExoS delivered into the host and modulates caspase-1. We confirmed this result and determined that it led to decreases in proinflammatory cytokines such as Interleukin-1beta (IL-1β), Interleukin-6 (IL-6), and Interleukin-18 (IL-18). Therefore, we suggest that alizarin is a suitable drug for treating pneumonia caused by P. aeruginosa because it helps to attenuate inflammation by regulating T3SS and NF-κB signaling.

Citations

Citations to this article as recorded by  
  • Beyond pathogenicity: applications of the type III secretion system (T3SS) of Pseudomonas aeruginosa
    Tianqi Su, Lin Zhang, Jie Shen, Danyu Qian, Yulei Guo, Zhenpeng Li
    Frontiers in Microbiology.2025;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP