Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Most downloaded

Page Path
HOME > Browse Articles > Most downloaded
103 Most downloaded
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles

The most downloaded articles in the last three months among those published since 2025.

Full article
Development of an RT-LAMP−CRISPR/Cas12a assay for rapid and specific detection of Bandavirus dabieense
Bo Seung Song, Yun Hee Baek, Eun-Ha Kim, Hyeok-Il Kwon, Ah-Hyeon Kim, Si-Hyun Lee, Yu-Bin Son, Soo-Hyeon Kim, Min-Suk Song, Young Ki Choi, Su-Jin Park
J. Microbiol. 2025;63(11):e2506013.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2506013
  • 1,536 View
  • 103 Download
AbstractAbstract PDF

Bandavirus dabieense, a single-stranded RNA virus, is the causative agent of severe fever with thrombocytopenia syndrome (SFTS), a disease associated with high fatality rates. Early and accurate diagnosis is essential for improving clinical outcomes, particularly given the limited therapeutic options and high mortality rates associated with SFTS. However, while highly sensitive, conventional diagnostic methods such as PCR and qRT-PCR require specialized laboratory facilities and trained personnel, making them impractical for rapid detection in resource-limited settings. To address these challenges, we developed a rapid and highly sensitive assay for Bandavirus dabieense detection by integrating reverse transcription loop-mediated isothermal amplification (RT-LAMP) with CRISPR/Cas12a technology. LAMP primers and guide RNA sequences were designed to target the L gene, ensuring broad detection across viral genotypes. The optimized assay demonstrated a detection limit of 5 RNA copies per reaction, showing more sensitivity than qRT-PCR, and exhibited 100% concordance with qRT-PCR results in clinical samples. Given its speed, accuracy, and field applicability, this LAMP-CRISPR/Cas12a-based assay represents a promising diagnostic tool for early SFTSV detection, particularly in resource-constrained environments where conventional molecular diagnostics are not readily available.

Minireview
A review on computational models for predicting protein solubility
Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na
J. Microbiol. 2025;63(1):e.2408001.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2408001
  • 10,443 View
  • 435 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Protein solubility is a critical factor in the production of recombinant proteins, which are widely used in various industries, including pharmaceuticals, diagnostics, and biotechnology. Predicting protein solubility remains a challenging task due to the complexity of protein structures and the multitude of factors influencing solubility. Recent advances in computational methods, particularly those based on machine learning, have provided powerful tools for predicting protein solubility, thereby reducing the need for extensive experimental trials. This review provides an overview of current computational approaches to predict protein solubility. We discuss the datasets, features, and algorithms employed in these models. The review aims to bridge the gap between computational predictions and experimental validations, fostering the development of more accurate and reliable solubility prediction models that can significantly enhance recombinant protein production.

Citations

Citations to this article as recorded by  
  • MPRL: Multi-perspective representation learning for accurate and generalizable protein solubility prediction
    Xiongyan Yang, Shouyong Jiang, Yong Wang, Jinsong Gong
    Expert Systems with Applications.2026; 308: 131142.     CrossRef
Review
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 8,747 View
  • 334 Download
  • 2 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Biorefinery-based production of biodegradable bioplastics: advances and challenges in circular bioeconomy
    Ariane Fátima Murawski de Mello, Clara Matte Borges Machado, Lucia Carolina Ramos Neyra, Diego Yamir Ocán-Torres, Rafael Novaes Barros, Mariana Camargo Medeiros, Carlos Ricardo Soccol, Luciana Porto de Souza Vandenberghe
    npj Materials Sustainability.2025;[Epub]     CrossRef
Protocol
A guide to genome mining and genetic manipulation of biosynthetic gene clusters in Streptomyces
Heonjun Jeong, YeonU Choe, Jiyoon Nam, Yeon Hee Ban
J. Microbiol. 2025;63(4):e2409026.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2409026
  • 10,131 View
  • 332 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.

Citations

Citations to this article as recorded by  
  • A review of geomicrobial bioprospecting strategies for novel therapeutic discovery from Earth’s extreme environments
    Trideep Saikia, Sandipan Das
    Discover Geoscience.2025;[Epub]     CrossRef
  • Biodiversity-Driven Natural Products and Bioactive Metabolites
    Giancarlo Angeles Flores, Gaia Cusumano, Roberto Venanzoni, Paola Angelini
    Plants.2025; 15(1): 104.     CrossRef
Review
CRISPR-Cas technologies: Emerging tools from research to clinical application
Hana Hyeon, Soonhye Hwang, Yongyang Luo, Eunkyoung Shin, Ji-Hyun Yeom, Hong-Man Kim, Minkyung Ryu, Kangseok Lee
J. Microbiol. 2025;63(8):e2504012.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2504012
  • 12,341 View
  • 176 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In addition to the widely used SpCas9 system, alternative platforms including modified amino acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial species have been developed to apply this technology in various genetic contexts. In addition, base editors and prime editors for precise gene editing, the Cas13 system targeting RNA, and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using various delivery methods, such as electroporation, adeno-associated viruses, and lipid nanoparticles. To amplify therapeutic efficiency, continued developments in targeted delivery technologies are required, with increased safety and stability of therapeutic biomolecules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many diseases, including rare congenital diseases, by making permanent corrections at the genomic DNA level. In this review, we present various CRISPR-based tools, their delivery systems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative prospects for gene therapy.

Citations

Citations to this article as recorded by  
  • CRISPR: a precise genome editing strategy for the treatment of hepatocellular carcinoma
    Subhrojyoti Mukherjee, Manish Kumar
    Expert Review of Anticancer Therapy.2025; : 1.     CrossRef
Editorial
Advancing microbial engineering through synthetic biology
Ki Jun Jeong
J. Microbiol. 2025;63(3):e2503100.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2503100
  • 7,504 View
  • 183 Download
PDF
Full article
Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov., isolated from kimchi, a traditional Korean fermented food
Min Ji Lee, Jisu Lee, Sohee Nam, Mi-Ja Jung, Yeon Bee Kim, Yujin Kim, Jeong Ui Yun, Seong Woon Roh, Tae Woong Whon, Che Ok Jeon, Se Hee Lee
J. Microbiol. 2025;63(11):e2507007.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2507007
  • 1,500 View
  • 68 Download
AbstractAbstract PDFSupplementary Material

Two Gram-stain-positive, facultatively anaerobic, rod-shaped, and non-motile lactic acid bacterial strains, designated as strains CBA3605T and CBA3606T, were isolated from kimchi, a traditional Korean fermented food. Both strains were oxidase- and catalase-negative, non-spore-forming, non-hemolytic, and non-gas-producing. Optimal growth conditions for the two strains were observed at 30°C, pH 5.0, and 0% NaCl. The two genomes were composed of a circular chromosome and three plasmids and the DNA G + C content of 43.0%, respectively. Strains CBA3605T and CBA3606T were most closely related to Lactiplantibacillus (Lp.) pingfangensis 382-1T with 16S rRNA sequence similarity of 99.4% and 99.1%, respectively. However, the orthologous average nucleotide identities between CBA3605T and CBA3606T were 91.7%, and those with strain 382-1T were 76.9% and 76.5%, respectively. Digital DNA–DNA hybridization values between CBA3605T and CBA3606T were 45.0%, and those with strain 382-1T were 21.4% and 21.0%, respectively. The major fatty acids detected in both strains included C16:0, C18:1 ω9c, and summed features 7 (C19:1 ω7c, C19:1 ω6c, C19:0 cyclo ω10c, and/or C19:0 ω6c). The peptidoglycan of both strains CBA3605T and CBA3606T contained meso-diaminopimelic acid and was classified as A4α type (L-Lys–D-Asp). In polar lipid analyses, only strain CBA3605T contained aminophosphoglycolipid, which was absent in CBA3606T, although both strains harbored same major polar lipids (diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine). Based on phenotypic, phylogenetic, genomic, biochemical, and chemotaxonomic analyses, strains CBA3605T and CBA3606T represent two novel species of the genus Lactiplantibacillus, for which the names Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov. are proposed, with CBA3605T (= KACC 81073BPT = JCM 37965T), and CBA3606T (= KACC 81074BPT = JCM 37966T) as the type strains.

Reviews
Extracellular vesicles of Gram-negative and Gram-positive probiotics
Yangyunqi Wang, Chongxu Duan, Xiaomin Yu
J. Microbiol. 2025;63(7):e2506005.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2506005
  • 5,069 View
  • 171 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDF

Extracellular vesicles derived from probiotics have received considerable attention for their pivotal role in bacterial‒host communication. These nanosized, bilayer-encapsulated vesicles carry diverse bioactive molecules, such as proteins, lipids, nucleic acids, and metabolites. Currently, ample evidence has emerged that probiotic extracellular vesicles may modulate several processes of host physiological hemostasis and offer therapeutic benefits. This review examines the biogenesis, composition, and immunomodulatory functions of probiotic-derived extracellular vesicles in probiotic–host interactions, highlighting the therapeutic potential of probiotic extracellular vesicles in the diagnosis and treatment of conditions such as cancer and inflammatory bowel disease. We further summarize the techniques for the separation and purification of extracellular vesicles, providing a methodological foundation for future research and applications. Although the field of probiotic extracellular vesicle research is still in its infancy, the prospects for their application in the biomedical field are broad, potentially emerging as a novel therapeutic approach.

Citations

Citations to this article as recorded by  
  • Decoding bacterial extracellular vesicles: A review on isolation and characterization techniques
    Malatesh S. Devati, Apoorva Jnana, Stephen P. Kidd, Slade O. Jensen, T. G. Satheesh Babu, Dinesh Upadhya, Thokur S. Murali
    Archives of Microbiology.2026;[Epub]     CrossRef
  • The supernatant of Lactiplantibacillus plantarum 25 is more effective than extracellular vesicles in alleviating ulcerative colitis and improving intestinal barrier function
    Shuang Gong, Xin Li, Qiong Zhang, Rui Wang, Ruixia Zeng, Yibo Zhang
    Frontiers in Microbiology.2026;[Epub]     CrossRef
  • Standardizing Bacterial Extracellular Vesicle Purification: A Call for Consensus
    Dongsic Choi, Eun-Young Lee
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Advances in Biological Functions and Applications of Feeding Microorganism-derived Extracellular Vesicles
    Yuanyuan Zhu, Xiaofang Zhang, Xin Feng, Yanyan Huang, Langhong Wang, Huihua Zhang, Xinan Zeng, Zhonglin Tang, Qien Qi
    Probiotics and Antimicrobial Proteins.2025;[Epub]     CrossRef
Metabolite-mediated mechanisms linking the urinary microbiome to bladder cancer
Thu Anh Trần, Ho Young Lee, Hae Woong Choi
J. Microbiol. 2025;63(11):e2509001.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2509001
  • 1,461 View
  • 49 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Bladder cancer is the most common malignancy of the urinary tract and is a major health burden globally. Recent advances in microbiome research have revealed that the urinary tract harbors a resident microbial community, overturning the long-held belief in its sterility. Increasing evidence suggests that microbial dysbiosis and microbially derived metabolites contribute to bladder cancer carcinogenesis, progression, and therapeutic responses. Distinct microbial signatures have been observed in bladder cancer patients, with notable differences across disease stages and between primary and recurrent cases. Mechanistic studies have demonstrated that microbe-associated metabolites and toxins can drive DNA damage, chronic inflammation, extracellular matrix remodeling, and epithelial–mesenchymal transition. In addition, biofilm formation allows bacteria to evade immune responses and promotes persistent inflammation, creating a tumor-permissive niche. Beyond pathogenesis, microbial activity also influences therapeutic outcomes; for instance, some microbial pathways can inactivate frontline chemotherapy, while others generate metabolites with anti-tumor properties. Collectively, these patterns define a microbiota–metabolite–immunity axis, presenting opportunities for precision oncology. Targeting microbial pathways, profiling urinary microbiota, and harnessing beneficial metabolites offer promising advancements in biomarker discovery, prognostic refinement, and the development of novel therapeutic strategies for bladder cancer.

Citations

Citations to this article as recorded by  
  • The infection–microbiome–immunity axis in bladder cancer: mechanistic insights and therapeutic perspectives
    Shen Pan, Wanlin Cui, Jiaman Lin, Zhujun Wang, Zhenhua Li, Bitian Liu
    Frontiers in Immunology.2026;[Epub]     CrossRef
Full article
Characterization of novel bacteriophages for effective phage therapy against Vibrio infections in aquaculture
Kira Moon, Sangdon Ryu, Seung Hui Song, Se Won Chun, Nakyeong Lee, Aslan Hwanhwi Lee
J. Microbiol. 2025;63(5):e2502009.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2502009
  • 5,999 View
  • 200 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDFSupplementary Material

The widespread use of antibiotics in aquaculture has led to the emergence of multidrug-resistant pathogens and environmental concerns, highlighting the need for sustainable, eco-friendly alternatives. In this study, we isolated and characterized three novel bacteriophages from aquaculture effluents in Korean shrimp farms that target the key Vibrio pathogens, Vibrio harveyi, and Vibrio parahaemolyticus. Bacteriophages were isolated through environmental enrichment and serial purification using double-layer agar assays. Transmission electron microscopy revealed that the phages infecting V. harveyi, designated as vB_VhaS-MS01 and vB_VhaS-MS03, exhibited typical Siphoviridae morphology with long contractile tails and icosahedral heads, whereas the phage isolated from V. parahaemolyticus (vB_VpaP-MS02) displayed Podoviridae characteristics with an icosahedral head and short tail.

Whole-genome sequencing produced complete, circularized genomes of 81,710 bp for vB_VhaS-MS01, 81,874 bp for vB_VhaS-MS03, and 76,865 bp for vB_VpaP-MS02, each showing a modular genome organization typical of Caudoviricetes. Genomic and phylogenetic analyses based on the terminase large subunit gene revealed that although vB_VhaS-MS01 and vB_VhaS-MS03 were closely related, vB_VpaP-MS02 exhibited a distinct genomic architecture that reflects its unique morphology and host specificity. Collectively, these comparative analyses demonstrated that all three phages possess genetic sequences markedly different from those of previously reported bacteriophages, thereby establishing their novelty. One-step growth and multiplicity of infection (MOI) experiments demonstrated significant differences in replication kinetics, such as burst size and lytic efficiency, among the phages, with vB_VhaS-MS03 maintaining the most effective bacterial control, even at an MOI of 0.01. Additionally, host range assays showed that vB_VhaS-MS03 possessed a broader spectrum of activity, supporting its potential use as a stand-alone agent or key component of phage cocktails. These findings highlight the potential of region-specific phage therapy as a targeted and sustainable alternative to antibiotics for controlling Vibrio infections in aquaculture.

Citations

Citations to this article as recorded by  
  • Revolutionizing seafood safety with bacteriophages: emerging technologies and applications
    Nigar Sultana Meghla, Soo-Jin Jung, Md Furkanur Rahaman Mizan, Syeda Roufun Nesa, IkSoon Kang, Sang-Do Ha
    Food Microbiology.2026; 137: 105021.     CrossRef
  • Genomic characterization of APEC phages and evaluation of the efficacy in reducing the loads of APEC O78 infections in chickens
    Qin Lu, Xinxin Jin, Zui Wang, Rongrong Zhang, Yunqing Guo, Qiao Hu, Wenting Zhang, Tengfei Zhang, Qingping Luo
    Frontiers in Microbiology.2026;[Epub]     CrossRef
  • Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
    Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe, Reuben Okocha
    Fishes.2025; 10(9): 471.     CrossRef
Review
Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates
Kai Yan, Lingjing Mao, Jiaming Lan, Zhongdang Xiao
J. Microbiol. 2025;63(2):e2410018.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410018
  • 14,691 View
  • 464 Download
  • 8 Web of Science
  • 11 Crossref
AbstractAbstract PDF

Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and attention to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsening dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.

Citations

Citations to this article as recorded by  
  • E protein inhibitors and host-directed therapies in dengue virus infection: perspectives on combination and complementary antiviral strategies
    Ricardo Jiménez-Camacho, Carlos Noe Farfan-Morales, José De Jesús Bravo-Silva, Magda Lizbeth Benítez-Vega, Marcos Pérez-García, Jonathan Hernández-Castillo, Carlos Daniel Cordero-Rivera, Rosa María Del Ángel
    Expert Opinion on Drug Discovery.2026; 21(1): 101.     CrossRef
  • Dengue Fever Vaccines: Progress and Challenges
    Alan L. Rothman, Heather Friberg
    Annual Review of Pharmacology and Toxicology .2026; 66(1): 129.     CrossRef
  • A Capabilities, Opportunities, and Motivations behavioral analysis of healthcare professionals concerning dengue vaccination in selected countries from Latin America and Asia Pacific
    Andrew Green, Alberta Di Pasquale, Eduardo Lopez-Medina
    Human Vaccines & Immunotherapeutics.2026;[Epub]     CrossRef
  • A Multivalent Dengue Fusion Protein ΔcNS1–cEDIII–ΔnNS3 Confers Cross‐Serotype Protection and Durable Immunity in Mice
    Mu‐Fan Pi, Wei‐Chiao Liao, Xin‐Yan Li, Miao‐Huei Cheng, Chu‐En Tsai, Yen‐Chung Lai, Hsing‐Han Lin, Yung‐Chun Chuang, Chin‐Kai Tseng, Yee‐Shin Lin, Chih‐Peng Chang, Tzong‐Shiann Ho, Guan‐Da Syu, Trai‐Ming Yeh, Jen‑Ren Wang, Justin Jang Hann Chu, Chia‐Yi Yu
    Journal of Medical Virology.2026;[Epub]     CrossRef
  • Role of c-ABL in DENV-2 Infection and Actin Remodeling in Vero Cells
    Grace Paola Carreño-Flórez, Alexandra Milena Cuartas-López, Ryan L. Boudreau, Miguel Vicente-Manzanares, Juan Carlos Gallego-Gómez
    International Journal of Molecular Sciences.2025; 26(9): 4206.     CrossRef
  • Crystallographic Fragment Screening of the Dengue Virus Polymerase Reveals Multiple Binding Sites for the Development of Non-nucleoside Antiflavivirals
    Manisha Saini, Jasmin C. Aschenbrenner, Francesc Xavier Ruiz, Ashima Chopra, Anu V. Chandran, Peter G. Marples, Blake H. Balcomb, Daren Fearon, Frank von Delft, Eddy Arnold
    Journal of Medicinal Chemistry.2025; 68(17): 18356.     CrossRef
  • Understanding the Diversity of Dengue Serotypes: Impacts on Public Health and Disease Control
    Gopinath Ramalingam, Madhumitha Patchaiyappan, M. Arundadhi, Krishnapriya Subramani, A. Dhanasezhian, Sucila Thangam Ganesan
    The Journal of Medical Research.2025; 11(4): 69.     CrossRef
  • Dengue Fever Resurgence in Iran: An Integrative Review of Causative Factors and Control Strategies
    Seyed Hassan Nikookar, Saeedeh Hoseini, Omid Dehghan, Mahmoud Fazelidinan, Ahmadali Enayati
    Tropical Medicine and Infectious Disease.2025; 10(11): 309.     CrossRef
  • Enhancement of viral infection by antibodies and consequences
    Corentin Morvan, Magloire Pandoua Nekoua, Cyril Debuysschere, Enagnon Kazali Alidjinou, Didier Hober, Sebla Bulent Kutluay
    Microbiology and Molecular Biology Reviews.2025;[Epub]     CrossRef
  • Microbial Volatiles from Human Skin and Floral Nectar: Insufficiently Understood Adult Feeding Cues To Improve Odor-Based Traps for Aedes Vector Control
    Simon Malassigné, Claire Valiente Moro, Patricia Luis
    Journal of Chemical Ecology.2025;[Epub]     CrossRef
  • An interpretable machine learning model for dengue detection with clinical hematological data
    Izaz Ahmmed Tuhin, A.K.M.Fazlul Kobir Siam, Md Mahfuzur Rahman Shanto, Md Rajib Mia, Imran Mahmud, Apurba Ghosh
    Healthcare Analytics.2025; 8: 100430.     CrossRef
Minireview
Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data
Sungwon Jung
J. Microbiol. 2025;63(1):e.2411006.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2411006
  • 5,401 View
  • 210 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract PDF

This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.

Citations

Citations to this article as recorded by  
  • Microbiota, chronic inflammation, and health: The promise of inflammatome and inflammatomics for precision medicine and health care
    Huan Zhang, Bing Jun Yang Lee, Tong Wang, Xuesong Xiang, Yafang Tan, Yanping Han, Yujing Bi, Fachao Zhi, Xin Wang, Fang He, Seppo J. Salminen, Baoli Zhu, Ruifu Yang
    hLife.2025; 3(7): 307.     CrossRef
  • Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions
    Jingjing Du, Shengqian Guo, Xiaohang Li, Zhonghu Geng, Zhiliang Yuan, Xiqiang Song
    Diversity.2025; 17(9): 605.     CrossRef
  • Bioengineered Skin Microbiome: The Next Frontier in Personalized Cosmetics
    Cherelle Atallah, Ayline El Abiad, Marita El Abiad, Mantoura Nakad, Jean Claude Assaf
    Cosmetics.2025; 12(5): 205.     CrossRef
  • Computational Metagenomics: State of the Art
    Marco Antonio Pita-Galeana, Martin Ruhle, Lucía López-Vázquez, Guillermo de Anda-Jáuregui, Enrique Hernández-Lemus
    International Journal of Molecular Sciences.2025; 26(18): 9206.     CrossRef
  • Rotation of Corydalis yanhusuo with different crops enhances its quality and soil nutrients: a multi-dimensional analysis of rhizosphere microecology
    Jia Liu, Qiang Yuan, Kejie Zhang, Xiaoxiao Sheng, Zixuan Zhu, Ning Sui, Hui Wang
    BMC Plant Biology.2025;[Epub]     CrossRef
  • Next‐Generation Eco‐Omics: Integrating Microbial Function Into Predictive Ecosystem Models
    Kulmani Mehar, Kamakshi Priya K, Amit Prakash Sen, Ravi Kumar Paliwal, Bhavan Kumar M., Aravindan Munusamy Kalidhas, Tapas Kumar Mohapatra, Aseel Samrat, Ravikumar Jayabal
    Biotechnology and Applied Biochemistry.2025;[Epub]     CrossRef
Full article
Synergistic anti-obesity effects of Bifidobacterium breve BR3 and Lactiplantibacillus plantarum LP3 via coordinated regulation of lipid metabolism and gut microbiota
Misun Yun, Dooheon Son, Namhee Kim, Se Hee Lee, Eunbee Cho, Sanghyun Lim
J. Microbiol. 2025;63(12):e2511001.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511001
  • 1,264 View
  • 43 Download
AbstractAbstract PDFSupplementary Material

The global rise in obesity and its associated metabolic complications underscores the urgent need for safe and effective interventions. This study investigated the anti-obesity efficacy of a probiotic mixture containing Bifidobacterium breve BR3 and Lactiplantibacillus plantarum LP3 in C57BL/6 mice with high-fat diet (HFD)-induced obesity. After obesity was established by feeding a 60% kcal HFD, the probiotic mixture was administered orally for 4 weeks. Compared with the control group, mice receiving the L. plantarum LP3 and B. breve BR3 mixture exhibited significant reductions in body weight and total fat mass, as assessed by Dual-energy X-ray Absorptiometry (DXA) and Echo Magnetic Resonance Imaging (EchoMRI). The probiotic treatment also lowered serum Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), and glucose levels, and attenuated lipid accumulation in both hepatic and epididymal adipose tissues. Transcriptomic profiling revealed upregulation of lipolytic genes (Sirt1, Pparα) and downregulation of lipogenic genes (Srebp1c, Fas), suggesting that the probiotic mixture promotes lipid catabolism while suppressing lipid synthesis. Additionally, serum adipokine levels were favorably modulated, indicating improved metabolic homeostasis. Gut microbiota analysis demonstrated an increased relative abundance of beneficial genera, including Akkermansia and Bacteroides, highlighting a microbiome-mediated contribution to the observed metabolic benefits. Overall, our findings indicate that the combined administration of Lactiplantibacillus plantarum LP3 and Bifidobacterium breve BR3 exerts multi-faceted anti-obesity effects by enhancing lipolysis, regulating lipid metabolism, and restoring a healthy gut microbial balance. This probiotic mixture represents a promising therapeutic approach for managing obesity and related metabolic disorders.

Reviews
Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation
Jun Ren, So Hee Oh, Dokyun Na
J. Microbiol. 2025;63(3):e2501033.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501033
  • 7,406 View
  • 176 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Recombinase-Mediated Cassette Exchange-Based CRISPR Activation Screening Identifies Hyperosmotic Stress-Resistant Genes in Chinese Hamster Ovary Cells
    Minhye Baek, Seokchan Kweon, Yujin Kim, Nathan E. Lewis, Jae Seong Lee, Gyun Min Lee
    ACS Synthetic Biology.2025; 14(8): 3116.     CrossRef
Integrative perspectives on glycosylation networks in fungi and oomycetes
Heeji Moon, Hokyoung Son
J. Microbiol. 2025;63(12):e2510003.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2510003
  • 925 View
  • 41 Download
AbstractAbstract PDF

Pathogenic fungi pose major threats to both global food security and human health, yet the molecular basis of their virulence remains only partially understood. Beyond genetic and transcriptional control, emerging evidence highlights protein glycosylation as a key post-translational modification that governs fungal development, stress adaptation, and host interactions. Glycosylation regulates protein folding, stability, trafficking, and immune evasion, thereby shaping infection processes across diverse pathogens. While extensively studied in model organisms, our understanding of glycosylation in pathogenic fungi remains fragmented and lacks a coherent framework linking glycosylation dynamics to fungal development and pathogenicity. This review synthesizes recent advances from proteomic, transcriptomic, and glycomic studies in pathogenic fungi, focusing on interspecific variation in glycogenes and enzymes, hierarchical regulatory networks, and glycoprotein-mediated mechanisms of virulence. Finally, we outline current challenges and highlight glycosylation-targeted strategies as promising avenues for antifungal intervention.

Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria
Yubin Yang, Hana Hyeon, Minju Joo, Kangseok Lee, Eunkyoung Shin
J. Microbiol. 2025;63(4):e2501027.   Published online April 2, 2025
DOI: https://doi.org/10.71150/jm.2501027
  • 6,794 View
  • 245 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF

The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.

Citations

Citations to this article as recorded by  
  • Current insights into the application of bacterial small RNAs in combating multidrug-resistant pathogens
    Zeleke Ayenew, Tadesse Eguale, Abebaw Bitew, Eshetu Gadisa, Aklilu Feleke Haile
    Scientific African.2026; 31: e03212.     CrossRef
  • Biofilm, resistance, and quorum sensing: The triple threat in bacterial pathogenesis
    Mohammad Nazrul Islam Bhuiyan
    The Microbe.2025; 9: 100578.     CrossRef
  • Biofilm maturation in carbapenem-resistant Pseudomonas aeruginosa is regulated by the sRNA PA213 and its corresponding encoded small protein
    Yongli Song, Jie Li, Yating Zhang, Lingge Su, Shuang Qin, Chunyan Wu, Guibo Song
    International Journal of Antimicrobial Agents.2025; 66(6): 107625.     CrossRef
Recent advances in the Design-Build-Test-Learn (DBTL) cycle for systems metabolic engineering of Corynebacterium glutamicum
Subeen Jeon, Yu Jung Sohn, Haeyoung Lee, Ji Young Park, Dojin Kim, Eun Seo Lee, Si Jae Park
J. Microbiol. 2025;63(3):e2501021.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501021
  • 2,442 View
  • 183 Download
  • 3 Web of Science
  • 6 Crossref
AbstractAbstract PDF

Existing microbial engineering strategies—encompassing metabolic engineering, systems biology, and systems metabolic engineering—have significantly enhanced the potential of microbial cell factories as sustainable alternatives to the petrochemical industry by optimizing metabolic pathways. Recently, systems metabolic engineering, which integrates tools from synthetic biology, enzyme engineering, omics technology, and evolutionary engineering, has been successfully developed. By leveraging modern engineering strategies within the Design-Build-Test-Learn (DBTL) cycle framework, these advancements have revolutionized the biosynthesis of valuable compounds. This review highlights recent progress in the metabolic engineering of Corynebacterium glutamicum, a versatile microbial platform, achieved through various approaches from traditional metabolic engineering to advanced systems metabolic engineering, all within the DBTL cycle. A particular focus is placed C5 platform chemicals derived from L-lysine, one of the key amino acid production pathways of C. glutamicum. The development of DBTL cycle-based metabolic engineering strategies for this process is discussed.

Citations

Citations to this article as recorded by  
  • Designing prokaryotic gene expression regulatory elements: From genomic mining to artificial intelligence-driven generation
    Xuan Zhou, Wenyan Cao, Chao Huang, Xiaojuan Zhang, Shenghu Zhou, Yu Deng
    Biotechnology Advances.2026; 87: 108781.     CrossRef
  • Green bioconversion of insoluble chitin: chitinase development pathways via multi-strategy synergy
    Zhi-Ping Sai, Yi-Rui Yin, Li-Quan Yang, Jia-Hui Wang, Xin-Yi Yang, Fu-Xian Liu, Xin Jing, Yi Zhang, Yu-Da Li, Peng Sang, Zheng-Feng Yang
    Bioresources and Bioprocessing.2026;[Epub]     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Time-Series Metabolome and Transcriptome Analyses Reveal the Genetic Basis of Vanillin Biosynthesis in Vanilla
    Zeyu Dong, Shaoguan Zhao, Yizhang Xing, Fan Su, Fei Xu, Lei Fang, Zhiyuan Zhang, Qingyun Zhao, Fenglin Gu
    Plants.2025; 14(13): 1922.     CrossRef
  • Systems and Synthetic Biology Approaches for Optimizing Microbial Cell Factories
    Jongoh Shin, Myung Hyun Noh, Seung-Ho Baek, Jonghyeok Shin, Jung Ho Ahn, Sung Sun Yim, Sungho Jang, Hyun Gyu Lim
    KSBB Journal.2025; 40(3): 214.     CrossRef
  • Digital to Biological Translation: How the Algorithmic Data-Driven Design Reshapes Synthetic Biology
    Abdul Manan, Nabila Qayyum, Rajath Ramachandran, Naila Qayyum, Sidra Ilyas
    SynBio.2025; 3(4): 17.     CrossRef
Recent advances in targeted mutagenesis to expedite the evolution of biological systems
Seungjin Kim, Seungwon Lee, Hyun Gyu Lim
J. Microbiol. 2025;63(3):e2501008.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501008
  • 1,757 View
  • 182 Download
  • 1 Crossref
AbstractAbstract PDF

Evolution has been systematically exploited to engineer biological systems to obtain improved or novel functionalities by selecting beneficial mutations. Recent innovations in continuous targeted mutagenesis within living cells have emerged to generate large sequence diversities without requiring multiple steps. This review comprehensively introduces recent advancements in this field, categorizing them into three approaches depending on methods to create mutations: orthogonal error-prone DNA polymerases, site-specific base editors, and homologous recombination of mutagenic DNA fragments. Combined with high-throughput screening methods, these advances expedited evolution processes with significant reduction of labor and time. These approaches promise broader industrial and research applications, including enzyme improvement, metabolic engineering, and drug resistance studies.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Progress and challenges in CRISPR/Cas applications in microalgae
Quynh-Giao Tran, Trang Thi Le, Dong-Yun Choi, Dae-Hyun Cho, Jin-Ho Yun, Hong Il Choi, Hee-Sik Kim, Yong Jae Lee
J. Microbiol. 2025;63(3):e2501028.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501028
  • 3,821 View
  • 197 Download
  • 8 Web of Science
  • 13 Crossref
AbstractAbstract PDF

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have emerged as powerful tools for precise genome editing, leading to a revolution in genetic research and biotechnology across diverse organisms including microalgae. Since the 1950s, microalgal production has evolved from initial cultivation under controlled conditions to advanced metabolic engineering to meet industrial demands. However, effective genetic modification in microalgae has faced significant challenges, including issues with transformation efficiency, limited target selection, and genetic differences between species, as interspecies genetic variation limits the use of genetic tools from one species to another. This review summarized recent advancements in CRISPR systems applied to microalgae, with a focus on improving gene editing precision and efficiency, while addressing organism-specific challenges. We also discuss notable successes in utilizing the class 2 CRISPR-associated (Cas) proteins, including Cas9 and Cas12a, as well as emerging CRISPR-based approaches tailored to overcome microalgal cellular barriers. Additionally, we propose future perspectives for utilizing CRISPR/Cas strategies in microalgal biotechnology.

Citations

Citations to this article as recorded by  
  • Active and targeted micro/nanoplastics remediation via engineered microalgae co-displaying polymer-binding peptides and plastic-degrading enzymes: A critical review and perspectives
    Ling Wang, Mingjing Zhang, Jialin Wang, Chen Hu, Zhanyou Chi, Lei Li, Wenjun Luo, Chengze Li, Chenba Zhu
    Algal Research.2026; 93: 104455.     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Progress and prospects in metabolic engineering approaches for isoprenoid biosynthesis in microalgae
    Sonia Mohamadnia, Borja Valverde-Pérez, Omid Tavakoli, Irini Angelidaki
    Biotechnology for Biofuels and Bioproducts.2025;[Epub]     CrossRef
  • Beyond Biomass: Reimagining Microalgae as Living Environmental Nano-Factories
    Thinesh Selvaratnam, Shaseevarajan Sivanantharajah, Kirusha Sriram
    Environments.2025; 12(7): 221.     CrossRef
  • Harnessing MicroRNAs and CRISPR to enhance biofuel production in microalgae
    Dariga K. Kirbayeva, Altynay Y. Shayakhmetova, Bekzhan D. Kossalbayev, Assemgul K. Sadvakasova, Meruyert O. Bauenova
    International Journal of Hydrogen Energy.2025; 157: 150399.     CrossRef
  • Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
    Limin Yang, Qian Lu
    International Journal of Molecular Sciences.2025; 26(15): 7470.     CrossRef
  • Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
    Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra, Pankaj Gautam
    Applied Microbiology.2025; 5(3): 79.     CrossRef
  • Strain Improvement Through Genetic Engineering and Synthetic Biology for the Creation of Microalgae with Enhanced Lipid Accumulation, Stress Tolerance, and Production of High-value
    Alebachew Molla, Gedif Meseret
    Science Frontiers.2025; 6(3): 80.     CrossRef
  • The Role of Molecular Tools in Microalgal Strain Improvement: Current Status and Future Perspectives
    Alebachew Molla, Gedif Meseret
    Advances in Bioscience and Bioengineering.2025; 13(3): 51.     CrossRef
  • CRISPR-Cas9 genome editing in microalgae for improved high-value products (HVP) production
    Fazleen Haslinda Mohd Hatta, Nurin Nisa’ Ahmad Zamri, Norazlina Ahmad
    Asia Pacific Journal of Molecular Biology and Biotechnology.2025; : 245.     CrossRef
  • Advances in Algae-Based Bioplastics: From Strain Engineering and Fermentation to Commercialization and Sustainability
    Nilay Kumar Sarker, Prasad Kaparaju
    Fermentation.2025; 11(10): 574.     CrossRef
  • Exploring the nutritional and bioactive potential of microalgal sulfated polysaccharides for functional food applications
    Fajar Sofyantoro, Eka Sunarwidhi Prasedya, Fahrul Nurkolis, Andri Frediansyah
    Food Science and Biotechnology.2025;[Epub]     CrossRef
  • Harnessing microalgae for bioproducts: innovations in synthetic biology
    Zheng Li, Yuhui Cheng, Chengcheng Li, Qianyi Wu, Yi Xin
    World Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
Advancements in the production of value-added products via methane biotransformation by methanotrophs: Current status and future perspectives
Ok Kyung Lee, Jong Seok Lee, Yoonyong Yang, Moonsuk Hur, Kyung Jin Lee, Eun Yeol Lee
J. Microbiol. 2025;63(3):e2412024.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2412024
  • 1,859 View
  • 175 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Methane gas is recognized as a promising carbon substrate for the biosynthesis of value-added products due to its abundance and low price. Methanotrophs utilized methane as their sole source of carbon and energy, thus they can serve as efficient biocatalysts for methane bioconversion. Methanotrophs-catalyzed microbial bioconversion offer numerous advantages, compared to chemical processes. Current indirect chemical conversions of methane suffer from their energy-intensive processes and high capital expenditure. Methanotrophs can be cell factories capable of synthesizing various value-added products from methane such as methanol, organic acids, ectoine, polyhydroxyalkanoates, etc. However, the large-scale commercial implementation using methanotrophs remains a formidable challenge, primarily due to limitations in gas-liquid mass transfer and low metabolic capacity. This review explores recent advancements in methanotroph research, providing insights into their potential for enabling methane bioconversion.

Citations

Citations to this article as recorded by  
  • Biodegradable Plastic Production from Waste C1 Carbon Sources: Current Trends and Future Directions
    Zeeshan Mustafa, Eun Yeol Lee
    ChemCatChem.2026;[Epub]     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Harnessing organelle engineering to facilitate biofuels and biochemicals production in yeast
Phuong Hoang Nguyen Tran, Taek Soon Lee
J. Microbiol. 2025;63(3):e2501006.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501006
  • 2,624 View
  • 129 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract PDF

Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.

Citations

Citations to this article as recorded by  
  • Peroxisome engineering in yeast: Advances, challenges, and prospects
    Cuifang Ye, Xiaoqian Li, Tao Liu, Shiyu Li, Mengyu Zhang, Yao Zhao, Jintao Cheng, Guiling Yang, Peiwu Li
    Biotechnology Advances.2026; 86: 108747.     CrossRef
  • Building an expanded bio-based economy through synthetic biology
    Andrea M. Garza Elizondo, Ilenne del Valle Kessra, Erica Teixeira Prates, Evan Komp, Elise K. Phillips, Nandhini Ashok, Daniel A. Jacobson, Erin G. Webb, Yannick J. Bomble, William G. Alexander, Joanna Tannous, Chung-Jui Tsai, Wayne A. Parrott, Xiaohan Ya
    Biotechnology Advances.2026; 87: 108775.     CrossRef
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Metabolic engineering strategies for constructing methylotrophic cell factories
    Pei Zhou, Yang Sun, Yinbiao Xu, Yupeng Liu, Hua Li
    Systems Microbiology and Biomanufacturing.2025; 5(4): 1371.     CrossRef
Full article
Encapsulin protein MAV2054 enhances Mycobacterium avium virulence by promoting Cdc42-dependent epithelial cell invasion
Dong Ho Kim, I Jeong Jo, Min Ju Kang, Yi Seol Kim, Duyen Do Tran Huong, Kyungho Woo, Ho-Sung Park, Hwa-Jung Kim, Chul Hee Choi
J. Microbiol. 2025;63(11):e2506008.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2506008
  • 1,069 View
  • 35 Download
AbstractAbstract PDF

Mycobacterium avium complex (MAC) organisms are widespread environmental pathogens associated with chronic pulmonary infections. Although M. avium is known to invade epithelial cells, the molecular mechanisms underlying this process remain incompletely understood. In this study, we identified a novel role for MAVRS09815 (formerly MAV2054), a family 2A encapsulin nanocompartment shell protein, in mediating bacterial adhesion, epithelial cell invasion, and in vivo virulence. We engineered a recombinant M. smegmatis strain expressing MAV2054 (Ms_2054) and an M. avium MAV2054 deletion mutant (Δ2054). Ms_2054 exhibited enhanced epithelial invasion, whereas Δ2054 showed reduced intracellular survival. Recombinant MAV2054 protein was bound directly to human epithelial cells in a dose-dependent manner. Pretreatment of host cells with cytochalasin D or vinblastine significantly inhibited bacterial internalization, indicating that MAV2054-mediated invasion is cytoskeleton-dependent. Confocal and scanning electron microscopy revealed MAV2054-dependent membrane rearrangements during infection. Pull-down assays demonstrated that MAV2054 activates Cdc42, a key regulator of actin polymerization, with reduced activation observed in Δ2054-infected cells. In a murine intratracheal infection model, the Δ2054 exhibited significantly reduced bacterial burdens and lung inflammation compared to the wild type. These findings demonstrate that MAV2054 enhances M. avium virulence by promoting epithelial cell invasion through Cdc42-dependent cytoskeletal remodeling. This study reveals a previously unrecognized role for an encapsulin-like protein in host-pathogen interactions and highlights its potential as a therapeutic target in MAC infections.

Review
Obesity, skin disorders, and the microbiota: Unraveling a complex web
Yu Ri Woo, Hei Sung Kim
J. Microbiol. 2026;64(1):e2508007.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2508007
  • 757 View
  • 29 Download
AbstractAbstract PDF

Obesity is increasingly recognized as a systemic pro-inflammatory condition that influences not only metabolic and cardiovascular health but also the development and exacerbation of cutaneous inflammatory diseases. This review examines the interplay between obesity, microbial dysbiosis, and two archetypal inflammatory skin disorders—hidradenitis suppurativa (HS) and psoriasis. We highlight how obesity-induced changes in immune signaling, gut permeability, and microbiota composition—both in the gut and the skin—contribute to cutaneous inflammation. Special emphasis is placed on shared pathways such as the Th17/IL-23 and IL-22 signaling axes, adipokine imbalance, and microbial metabolites like short-chain fatty acids and lipopolysaccharides. The review critically evaluates the current literature, distinguishing preclinical insights from clinical evidence, and underscores the potential of microbiota-targeted therapies and metabolic interventions as adjunctive treatment strategies. By integrating metabolic, immunologic, and microbiome data, we synthesize emerging evidence to better understand the gut–skin–obesity interplay and guide future therapeutic innovations.

Full articles
Proteolytic enzymes from Bacillus subtilis AB2 as antibiofilm adjuvants: Bioprocess optimization, mechanistic insights, and synergy with antibiotics
Afra M. Baghdadi
J. Microbiol. 2025;63(12):e2509019.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509019
  • 945 View
  • 27 Download
AbstractAbstract PDFSupplementary Material

Collagenase and keratinase are two important proteolytic enzymes with recognized applications in biotechnology and medicine, particularly in the enzymatic removal of necrotic tissue and the control of infection. In the present work, a soil isolate of Bacillus subtilis strain AB2 (PX453297.1) was optimized for enzyme production under different nutritional and physicochemical conditions. The enzymes were recovered by ammonium sulphate precipitation and dialysis, examined by SDS-PAGE and zymography, and further assessed for pH and temperature optima, stability, the influence of metal ions, and kinetic parameters. Maximum collagenase activity (4.41 ± 0.22 U/ml) was observed at 37°C and pH 7.5 in a glucose–peptone medium, whereas keratinase production was enhanced between 37 and 40°C at pH 7.5 in lactose–peptone medium. Protein bands of approximately 55 and 33 kDa were detected, representing 6.2- and 5.5-fold purification. Collagenase showed an alkaline optimum (pH 10.0, 37–45°C) with Km 0.31% and Vmax 1.92 U/ml, while keratinase exhibited dual optima (pH 3.0 and ~7.0) with Km 0.27% and Vmax 0.84 U/ml. Biofilm assays revealed that collagenase reduced pre-formed biomass by 62–68% and viable counts by 1.1–1.7 log10, clearly outperforming keratinase (41–57%, 0.7–1.2 log10). When combined with conventional antibiotics, both enzymes potentiated activity, with notable synergy between collagenase and oxacillin against Staphylococcus aureus (FICI 0.31–0.37), ciprofloxacin against Pseudomonas aeruginosa (FICI 0.37–0.50), and meropenem against Klebsiella pneumoniae (FICI 0.28–0.44). These results indicate that B. subtilis AB2 produces collagenase and keratinase with distinct biochemical characteristics and strong antibiofilm properties, underscoring their promise as adjuncts in chronic wound care as well as in industrial applications.

Mucilaginibacter florum sp. nov., isolated from the flower of Coreopsis grandiflora and Mucilaginibacter oryzagri sp. nov., isolated from rice paddy soil in Korea
Parthiban Subramanian, Jun Heo, Daseul Lee, Seunghwan Kim, Hyorim Choi, Yunhee Choi, Yiseul Kim
J. Microbiol. 2025;63(12):e2509014.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509014
  • 778 View
  • 27 Download
AbstractAbstract PDFSupplementary Material

Two aerobic, Gram-stain-negative, non-motile and rod-shaped bacterial strains designated GGG-R5T and M4-18T were isolated from flowers of golden wave (Coreopsis grandiflora) and rice paddy soil, respectively in the Republic of Korea. Both strains were pigmented and produced flexirubin-type pigments. Based on phylogenetic analysis using 16S rRNA gene sequence, both strains were placed within the genus Mucilaginibacter with M. agri R11T and M. jinjuensis YC7004T both being the closest relatives to GGG-R5T (97.7%) and in case of M4-18T, M. ginsenosidivorax KHI28T (98.5%) was the nearest neighbor. Characteristic to genus Mucilaginibacter, the major cellular fatty acids in both strains were iso-C15:0, iso-C17:0 3-OH, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c); menaquinone-7 was the major menaquinone and phosphatidylethanolamine was the major polar lipid observed. Comparison of genome sequences with the other members of Mucilaginibacter indicated orthologous average nucleotide identity (orthoANI) at 73.3–73.5% for GGG-R5T and 78.9–88.5% for M4-18T. Digital DNA-DNA hybridization (dDDH) values ranged at 19.1–19.7% between GGG-R5T and its neighbor species. In case of M4-18T, the observed range was at 21.9–36.6%. Considering the 16S rRNA similarity, orthoANI and dDDH values as well as comparison of phenotypic and chemotaxonomic characteristics indicated that both strains belonged to genus Mucilaginibacter but were distinctly distinguishable from previously described species. The strains GGG-R5T and M4-18T, therefore represent distinct novel species for which names Mucilaginibacter florum GGG-R5T and Mucilaginibacter oryzagri M4-18T are proposed. The type strains are GGG-R5T (= KACC 22063T = JCM 36590T) and M4-18T (= KACC 22773T = JCM 35894T).

Inhibition of cardiolipin biosynthesis partially suppresses the sensitivity of an Escherichia coli mutant lacking OmpC to envelope stress
Dae-Beom Ryu, Umji Choi, Gyubin Han, Chang-Ro Lee
J. Microbiol. 2025;63(11):e2507004.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2507004
  • 1,328 View
  • 28 Download
AbstractAbstract PDFSupplementary Material

Porins in the outer membrane (OM) of Gram-negative bacteria play two main functions: passage of various extracellular molecules and maintenance of membrane integrity. OmpC, a non-specific porin, is involved in both functions; however, the exact mechanism of maintenance of membrane integrity remains unknown. In this study, we found that inhibiting cardiolipin biosynthesis partially restored the growth defect of the ompC mutant under envelope stress. Among the three enzymes involved in cardiolipin biosynthesis, ClsABC, this effect is primarily associated with ClsA. Notably, the deletion of ClsA also suppressed the similar phenotypes of an Escherichia coli mutant lacking YhdP, a transmembrane protein involved in phospholipid transport from the inner membrane to the OM. Collectively, these results imply that OmpC may contribute to membrane integrity, partially through mechanisms linked to transport or biosynthesis of phospholipids such as cardiolipin.

Prebiotic potential of proso millet and quinoa: Effects on gut microbiota composition and functional metabolic pathways
Jinwoo Kim, Jiwoon Kim, Yewon Jung, Gyungcheon Kim, Seongok Kim, Hakdong Shin
J. Microbiol. 2025;63(7):e2503002.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2503002
  • 2,909 View
  • 109 Download
AbstractAbstract PDFSupplementary Material

Prebiotics are indigestible dietary components that improve host health by stimulating the growth and metabolic activity of beneficial intestinal microbes. The whole grains are rich in non-digestible carbohydrates, which may confer prebiotic potential. Among them, millet and quinoa have gained attention as dietary alternatives due to the growing popularity of gluten-free diets. In this study, we examined the effects of proso millet and quinoa on the human gut microbiota using an in vitro fecal incubation model. Both grains altered alpha diversity metrics, including microbial richness, evenness, and phylogenetic diversity. Beta diversity analysis showed that the proso millet and quinoa treatment groups exhibited distinct clustering patterns compared to the control, highlighting their impact on microbial community structure. Taxonomic analysis showed an increase in beneficial genera, including Bifidobacterium, and a decrease in taxa such as Enterobacteriaceae and Flavonifractor. To assess metabolic changes associated with microbial fermentation, short-chain fatty acid (SCFA) intensities were measured. The intensities of acetic acid, propionic acid, and butyric acid were significantly higher in the proso millet- and quinoa-treated groups compared to the control group. Spearman correlation analysis showed that the abundances of Bifidobacterium and Blautia were significantly positively associated with SCFA intensities. Furthermore, predicted functional pathway analysis identified enrichment of carbohydrate-related pathways in proso millet and quinoa treatments. Quinoa supplementation led to a broader enhancement of metabolic pathways, including glycolysis/gluconeogenesis, starch and sucrose metabolism, and pentose phosphate pathways, whereas proso millet enriched galactose metabolism, and starch and sucrose metabolism. These findings suggest that proso millet and quinoa influence gut microbial diversity, composition, and function.

Genome-based classification of Paraniabella aurantiaca gen. nov., sp. nov., isolated from soil and taxonomic reclassification of five species within the genus Niabella
Yong-Seok Kim, Yerang Yang, Miryung Kim, Do-Hoon Lee, Chang-Jun Cha
J. Microbiol. 2025;63(10):e2505005.   Published online October 31, 2025
DOI: https://doi.org/10.71150/jm.2505005
  • 2,115 View
  • 58 Download
AbstractAbstract PDFSupplementary Material

A Gram-stain-negative, aerobic, non-motile, rod-shaped, and orange-pigmented bacterium, designated CJ426T, was isolated from ginseng soil in Anseong, Korea. Strain CJ426T grew optimally on Reasoner’s 2A agar at 30°C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ426T belonged to the family Chitinophagaceae and had the highest sequence similarity with Niabella hibiscisoli KACC 18857T (98.7%). The 16S rRNA gene sequence similarities with other members of the genus Niabella ranged from 92.3% to 98.1%. Phylogenomic analyses and overall genomic relatedness indices, including average nucleotide identity, average amino acid identity, and the percentage of conserved proteins values, supported the classification of strain CJ426T as a representative of a novel genus within the family Chitinophagaceae. Furthermore, genome-based analyses suggested that five members of the genus Niabella, including N. aquatica, N. defluvii, N. ginsengisoli, N. hibiscisoli, and, N. yanshanensis, should be separated from other Niabella species and be assigned as a novel genus. The major isoprenoid quinone of strain CJ426T was menaquinone-7 (MK-7). The predominant polar lipids were phosphatidylethanolamine and six unidentified aminolipids. The major fatty acids were iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The genome of strain CJ426T was 6.3 Mbp in size, consisting of three contigs, with a G + C content of 41.9%. Based on a polyphasic taxonomic approach, strain CJ426T represents a novel genus and species within the family Chitinophagaceae, for which the name Paraniabella aurantiaca gen. nov., sp. nov. is proposed. The type strain is CJ426T (= KACC 23908T = JCM 37728T).

Review
Metabolic engineering of Saccharomyces cerevisiae for efficient utilization of pectin-rich biomass
Dahye Lee, Fransheska Semidey, Luping Xu, Eun Joong Oh
J. Microbiol. 2025;63(7):e2503001.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2503001
  • 3,744 View
  • 109 Download
AbstractAbstract PDF

Pectin-rich biomass, derived from fruit and citrus processing waste, presents a promising yet underutilized resource for sustainable biofuel and biochemical production. Its low lignin content and high concentrations of fermentable sugars, including D-galacturonic acid, L-arabinose, and D-xylose, make it an attractive feedstock. Unlike lignocellulosic biomass, pectin-rich hydrolysates require milder pretreatment, improving sugar recovery efficiency. However, industrial strains such as Saccharomyces cerevisiae exhibit strong glucose preference, limiting the efficient co-fermentation of mixed sugars. While prior reviews have broadly addressed lignocellulosic biomass utilization, this mini-review uniquely centers on the specific metabolic challenges and opportunities associated with pectin-rich feedstocks. In addition to incorporating established strategies for the co-utilization of cellobiose and xylose, we highlight recent advances that allow S. cerevisiae to metabolize carbon sources specifically from pectin-rich biomass, such as L-arabinose and D-galacturonic acid—monomers not prevalent in traditional lignocellulosic biomass. By integrating discussions on sugar transport engineering, redox balancing, and pathway optimization, this review offers a comprehensive framework to overcome glucose repression and support efficient co-fermentation of carbon sources from conventional and pectin-rich biomass. Drawing on these advances, we outline practical strategies to enhance fermentation performance and expand the valorization of food processing residues in biomanufacturing.

Research Article
Korean Red ginseng enhances ZBP1-mediated cell death to suppress viral protein expression in host defense against Influenza A virus
Jueun Oh, Hayeon Kim, Jihye Lee, Suhyun Kim, Seyun Shin, Young-Eui Kim, Sehee Park, SangJoon Lee
J. Microbiol. 2025;63(1):e.2409007.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2409007
  • 2,114 View
  • 129 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFSupplementary Material

Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.

Citations

Citations to this article as recorded by  
  • Formation and biological implications of Z-DNA
    Yonghang Run, Mahmoud Tavakoli, Yuxuan Zhang, Karen M. Vasquez, Wenli Zhang
    Trends in Genetics.2026; 42(2): 163.     CrossRef
  • Pattern recognition receptors and inflammasome: Now and beyond
    SuHyeon Oh, Young Ki Choi, SangJoon Lee
    Molecules and Cells.2025; 48(8): 100239.     CrossRef
  • Targeting innate immune sensors for therapeutic strategies in infectious diseases
    Seyun Shin, Young Ki Choi, SangJoon Lee
    Journal of Microbiology.2025; 63(6): e2503009.     CrossRef
  • mGem: Noncanonical nucleic acid structures—powerful but neglected antiviral targets
    Václav Brázda, Richard P. Bowater, Petr Pečinka, Martin Bartas, Vinayaka R. Prasad
    mBio.2025;[Epub]     CrossRef
  • AIM2 drives inflammatory cell death and monkeypox pathogenesis
    Jueun Oh, Yun-Ho Hwang, Jihye Lee, Cheong Seok, SuHyeon Oh, Hye Yoon Kim, Nabukenya Mariam, Jaeyoung Ahn, GyeongJu Yu, Jaewoo Park, Hayeon Kim, Suhyun Kim, Seyun Shin, Min-Chul Jung, Jinwoo Gil, Joo Sang Lee, Young Ki Choi, Dokeun Kim, Daesik Kim, You-Jin
    Cellular & Molecular Immunology.2025; 22(12): 1615.     CrossRef
Protocol
Protocol for efficient recovery of high-quality DNA from microbiome of marine invertebrates
Yeong-Jun Park, Jae Kyu Lim, Yeon-Ju Lee, Kae Kyoung Kwon
J. Microbiol. 2025;63(9):e2507003.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2507003
  • 2,238 View
  • 82 Download
AbstractAbstract PDF

Marine organisms often form symbiotic relationships with various microorganisms to adapt and thrive in harsh environments. These symbiotic microbes contribute to host survival by providing nutrition, modulating the hosts’ immune system, and supporting overall physiological stability. Advances in high-throughput sequencing technologies have enabled a deeper understanding of the structure and function of symbiotic microbial communities, as well as host-microbe interactions. Notably, symbiotic bacteria associated with marine invertebrates such as corals and sponges are recognized as a potential source of useful bioactive compounds, including antibiotics and enzymes. However, obtaining high-quality microbial DNA from host tissues still remains a technical challenge due to the presence of unknown substances. This study focuses on optimizing sample preparation and DNA extraction procedures and additional purification to improve the recovery of microbial DNA while minimizing host DNA contamination. Comparison between several methods was conducted using sponge samples to evaluate DNA quality and microbial recovery. A sample designated as 2110BU-001 was collected from the east coast of the Republic of Korea and used for culture-independent microbial cell isolation. Total bacterial DNA was extracted by using a manual Phenol-Chloroform protocol and three commercial kits. DNA extracted using the standard manual method showed both the highest yield and the largest fragment size. However, PCR (Polymerase chain reaction) test showed that quality of manually extracted DNA was not enough for sequencing. Therefore, the quality of DNA was improved through additional purification steps. Briefly, host eukaryotic cells were removed by mechanical process and almost only bacterial DNA was successfully obtained by combination of manual extraction method and further purification processes. The established protocol was successfully introduced to extraction of metagenomic DNA from mussel and jellyfish microbiomes, indicating that it can be widely applied to various marine organisms.

Research Article
Synbiotic combination of fructooligosaccharides and probiotics ameliorates the metabolic dysfunction-associated steatotic liver disease
Sang Yoon Lee, Su-Been Lee, Goo-Hyun Kwon, Seol Hee Song, Jeong Ha Park, Min Ju Kim, Jung A Eom, Kyeong Jin Lee, Sang Jun Yoon, Hyunjoon Park, Sung-Min Won, Jin-Ju Jeong, Ki-Kwang Oh, Young Lim Ham, Gwang Ho Baik, Dong Joon Kim, Satya Priya Sharma, Ki Tae Suk
J. Microbiol. 2025;63(2):e2411002.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411002
  • 2,788 View
  • 118 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF

Synbiotics have become a new-age treatment tool for limiting the progression of metabolic dysfunction-associated steatotic liver disease; however, inclusive comparisons of various synbiotic treatments are still lacking. Here, we have explored and evaluated multiple synbiotic combinations incorporating three distinctive prebiotics, lactitol, lactulose and fructooligosaccharides. Of the synbiotic treatments evaluated, a combination of fructooligosaccharides and probiotics (FOS+Pro) exhibited superior protection against western diet-induced liver degeneration. This synbiotic (FOS+Pro) combination resulted in the lowest body weight gains, liver weights and liver/body weight ratios. The FOS+Pro synbiotic combination substantially alleviated liver histopathological markers and reduced serum AST and cholesterol levels. FOS+Pro ameliorated hepatic inflammation by lowering expression of proinflammatory markers including TNF-α, IL-1β, IL-6, and CCL2. FOS+Pro significantly improved steatosis by restricting the expression of lipid metabolic regulators (ACC1, FAS) and lipid transporters (CD36) in the liver. These findings are critical in suggesting that synbiotic treatments are capable of restraining western diet-induced metabolic dysfunction in the liver. Additionally, this study demonstrated that adding probiotic strains amplified the effectiveness of fructooligosaccharides but not all prebiotics.

Citations

Citations to this article as recorded by  
  • Therapeutic Potential of Probiotics in Metabolic Dysfunction-Associated Steatohepatitis: A Comprehensive Review
    Xueying Wang, Zhiying Wei, Qing Xiang, Lijie Tang, Weichun Xie
    Microorganisms.2025; 13(8): 1894.     CrossRef
  • Profiling oligosaccharide components in Polygonatum kingianum with potential anti-NAFLD activity using UPLC-Orbitrap-MS/MS technology
    Hong Guo, Rui Yao, Jing Fan, Ying Wang, Lingzhi Zhang, Hua Sun, Xiaohan Guo, Jianbo Yang, Jingzhe Pu, Yazhong Zhang, Baozhong Duan, Jia Chen, Wenguang Jing, Xianlong Cheng, Feng Wei
    Food Hydrocolloids for Health.2025; 8: 100248.     CrossRef
  • Probiotics and cholesterol metabolism: new frontiers in science from intestinal microecology to cardiovascular health
    Yue Li, Dayong Ren
    Food Science of Animal Products.2025; 4(1): 9240146.     CrossRef
Full articles
Efficient CRISPR-based genome editing for inducible degron systems to enable temporal control of protein function in large double-stranded DNA virus genomes
Kihye Shin, Eui Tae Kim
J. Microbiol. 2025;63(9):e2504008.   Published online August 29, 2025
DOI: https://doi.org/10.71150/jm.2504008
  • 2,095 View
  • 105 Download
AbstractAbstract PDF

CRISPR-Cas9-based gene editing enables precise genetic modifications. However, its application to human cytomegalovirus (HCMV) remains challenging due to the large size of the viral genome and the essential roles of key regulatory genes. Here, we establish an optimized CRISPR-Cas9 system for precise labeling and functional analysis of HCMV immediate early (IE) genes. By integrating a multifunctional cassette encoding an auxin-inducible degron (AID), a self-cleaving peptide (P2A), and GFP into the viral genome via homology-directed repair (HDR), we achieved efficient knock-ins without reliance on bacterial artificial chromosome (BAC) cloning, a labor-intensive and time-consuming approach. We optimized delivery strategies, donor template designs, and component ratios to enhance HDR efficiency, significantly improving knock-in success rates. This system enables real-time fluorescent tracking and inducible protein degradation, allowing temporal control of essential viral proteins through auxin-mediated depletion. Our approach provides a powerful tool for dissecting the dynamic roles of viral proteins throughout the HCMV life cycle, facilitating a deeper understanding of viral pathogenesis and potential therapeutic targets.

Ecological characteristics of the truncal skin mycobiome in acne and its association with doxycycline exposure
Hyun Ji Lee, Yong-Joon Cho, Nayan Jin, Piyapat Rintarhat, Won Hee Jung, Hei Sung Kim
J. Microbiol. 2026;64(1):e2511019.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2511019
  • 732 View
  • 20 Download
AbstractAbstract PDFSupplementary Material

Truncal acne significantly impairs quality of life yet remains underexplored relative to facial acne, particularly with respect to fungal ecology. The trunk represents a distinct cutaneous niche characterized by thicker epidermis, larger follicular units, and frequent occlusion, and harbors a high abundance of Malassezia species. In this study, we used internal transcribed spacer 2 (ITS2) amplicon sequencing to characterize the truncal mycobiome in patients with acne and in healthy controls and to compare fungal community features across doxycycline exposure groups. Although serial sampling was planned, seven participants contributed a single follow-up sample after doxycycline treatment, and only two participants contributed multiple follow-up samples sufficient for true within-subject longitudinal analyses; therefore, most analyses represent exposure-stratified cross-sectional comparisons rather than confirmed temporal change. At baseline, truncal acne lesions exhibited increased fungal richness and distinct community composition compared with controls. Acne lesions were more frequently enriched for Malassezia globosa, whereas healthy controls were dominated by M. sympodialis. Across doxycycline exposure groups, fungal communities remained Malassezia-dominant with substantial inter-individual variability. Doxycycline exposure was associated with partial and heterogeneous differences in Malassezia species composition without uniform normalization toward control profiles. Because only fungal sequencing was performed, bacterial–fungal interactions were inferred from prior literature and not directly measured. These findings indicate that truncal acne is associated with a distinct fungal community structure and highlight the need for integrated, longitudinal multi-omics studies to clarify treatment-associated microbial dynamics.

Microbial signatures in oral sites of patients with primary Sjögren’s syndrome: Association with salivary gland hypofunction
Sarah Kamounah, Arjun Sarathi, Christiane Elisabeth Sørensen, Manimozhiyan Arumugam, Anne Marie Lynge Pedersen
J. Microbiol. 2025;63(6):e2501030.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2501030
  • 2,525 View
  • 80 Download
AbstractAbstract PDFSupplementary Material

This study aimed to determine if the microbiota in four different oral sites and the oral health status differ between patients with primary Sjögren’s syndrome (pSS), non-pSS sicca symptoms, and healthy controls. All participants underwent an interview and clinical oral examination. Stimulated whole saliva (SWS), supragingival plaque (SGP), buccal mucosa tissue (BLM), and tongue scrape (TGS) samples from 23 pSS patients, 36 patients with sicca symptoms, not fulfilling the classification criteria for pSS (non-pSS sicca), and 21 age-matched healthy controls (HC) were analyzed using V3–V4 16S rRNA gene amplicon sequencing, and determination of amplicon sequence variants (ASVs). PSS and non-pSS sicca patients did not differ with respect to oral health status, saliva flow rates, abundance of predominant genera, relative abundance on genus level or bacterial diversity in any of the oral sites. Both patient groups differed significantly from the healthy control group in the abundance of 61 ASVs across all sites. The alpha-diversity was lower in SGP from non-pSS sicca patients (p = 0.019), and in TGS from pSS patients (p = 0.04). The proportion of variation in the beta-diversity across all four sites could be explained by the diagnosis (pSS, non-pSS sicca, and HC). However, subgrouping of patients according to their stimulated salivary flow rates (SWS > 0.7 ml/min versus SWS ≤ 0.7 ml/min), revealed significantly different abundance of three ASVs in SWS, 11 in SGP, and six in TGS. Our findings suggest that hyposalivation rather than pSS itself modifies the microbial composition in oral site-specific patterns leading to oral diseases.

Cinchonidine induces muscle weakness by inhibiting insulin-mediated IRS-1-AKT signaling pathway
Mi Ran Byun, Sang Hoon Joo, Young-Suk Jung, Joon-Seok Choi
J. Microbiol. 2025;63(12):e2511017.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511017
  • 859 View
  • 19 Download
AbstractAbstract PDF

Sarcopenia is an age-related condition marked by a reduction in muscle mass and strength, and it is associated with impaired muscle regeneration and differentiation. While diseases like cardiovascular and chronic liver disease can induce sarcopenia, there is limited evidence regarding the specific diseases and mechanisms responsible for its development. In skeletal muscle, the loss of muscle mass is accompanied by a decrease in myofilament proteins and the inhibition of muscle differentiation in satellite cells. Bioactive compounds obtained from natural products have been traditionally used as therapeutics for diverse conditions. In this report, we investigated the effect of cinchonidine (CD) extracted from Cinchona tree on muscle differentiation of mouse satellite cells, and myoblast cell lines. CD significantly inhibited muscle differentiation by suppressing myotube formation and gene expression of myogenesis markers. In addition, CD reduced muscle differentiation by blocking phosphorylation of insulin receptor substrate 1 (IRS-1) during insulin-induced signal transduction. Therefore, the results show that CD, an antimalarial agent, inhibited muscle differentiation through the suppression of IRS-1 phosphorylation, suggesting that sarcopenia can be induced by CD.

Comparative genome analysis of enterohemorrhagic Escherichia coli ATCC 43894 and its pO157-cured strain 277
Se Kye Kim, Yong-Joon Cho, Carolyn J. Hovde, Sunwoo Hwang, Jonghyun Kim, Jang Won Yoon
J. Microbiol. 2025;63(12):e2511015.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2511015
  • 763 View
  • 19 Download
AbstractAbstract PDFSupplementary Material

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 ATCC 43894 (also known as EDL932) has been widely used as a reference strain for studying the pathophysiology of EHEC. To elucidate the role of a large virulence plasmid pO157 and its relationship with acid resistance, for example, both EHEC ATCC 43894 and its pO157-cured derivative strain 277 were well studied. However, it is unclear whether or not these two strains are isogenic and share the same genetic background. To address this question, we analyzed the whole genome sequences of ATCC 43894 and 277. As expected, three and two closed contigs were identified from ATCC 43894 and 277, respectively; two contigs shared in both strains were a chromosome and a small un-identified plasmid, and one contig found only in ATCC 43894 was pO157. Surprisingly, our pan-genome analyses of the two sequences revealed several genetic variations including frameshift, substitution, and deletion mutations. In particular, the deletion mutation of hdeD and gadE in ATCC 43894 was identified, and further PCR analysis also confirmed their deletion of a 2.5-kb fragment harboring hdeD, gadE, and mdtE in ATCC 43894. Taken together, our findings demonstrate that EHEC ATCC 43894 harbors genetic mutations affecting glutamate-dependent acid resistance system and imply that the pO157-cured EHEC 277 may not be isogenic to ATCC 43894. This is the first report that such genetic differences between both reference strains of EHEC should be considered in future studies on pathogenic E. coli.

Protocol
Protocol for the generation and purification of minicells from Lactiplantibacillus plantarum
Hyemin Kang, Donghyun Kim, Juhyun Kim
J. Microbiol. 2025;63(5):e2412002.   Published online April 30, 2025
DOI: https://doi.org/10.71150/jm.2412002
  • 2,596 View
  • 113 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Minicells, which are anucleate cells generated by irregular cell division, are emerging as promising drug delivery systems owing to advances in synthetic biology. However, their development is largely limited to a few model bacteria, highlighting the need to explore minicell platforms in alternative hosts. Lactiplantibacillus plantarum (L. plantarum), a probiotic bacterium classified as Generally Recognized as Safe, is an ideal candidate for such exploration. Minicell-producing L. plantarum was engineered by deleting the putative minD gene via plasmid-mediated homologous recombination, which inactivates cell division to form spherical minicells. Anucleate cells were isolated through differential centrifugation and filtration, followed by additional drug treatment to completely eliminate progenitor cells. Microscopy and flow cytometry analyses of the purified sample confirmed the absence of progenitor cells by DAPI staining. This protocol effectively produces bacterial minicells from L. plantarum for use in various biotechnological applications, including therapeutic agent delivery.

Citations

Citations to this article as recorded by  
  • A Safe and Versatile Minicell Platform Derived from Lactiplantibacillus plantarum for Biotechnological Applications
    Junhyeon Park, Seungjune Chang, Heymin Kang, SangKu Yi, In-Hwan Jang, Kyung-Ah Lee, Donghyun Kim, Juhyun Kim
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • Development of Nanobody-Expressing Nanosomes for Neutralization of Influenza Virus
    Taehyun Kim, In-Hwan Jang, Sohyeon Shin, Juhyun Kang, Hyo-Joo Ahn, Sungmin Moon, Juhyun Kim, Ji-Hwan Ryu, Kyung-Ah Lee
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
Full article
FunVIP: Fungal Validation and Identification Pipeline based on phylogenetic analysis
Chang Wan Seo, Shinnam Yoo, Yoonhee Cho, Ji Seon Kim, Martin Steinegger, Young Woon Lim
J. Microbiol. 2025;63(4):e2411017.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411017
  • 5,276 View
  • 174 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFSupplementary Material

The increase of sequence data in public nucleotide databases has made DNA sequence-based identification an indispensable tool for fungal identification. However, the large proportion of mislabeled sequence data in public databases leads to frequent misidentifications. Inaccurate identification is causing severe problems, especially for industrial and clinical fungi, and edible mushrooms. Existing species identification pipelines require separate validation of a dataset obtained from public databases containing mislabeled taxonomic identifications. To address this issue, we developed FunVIP, a fully automated phylogeny-based fungal validation and identification pipeline (https://github.com/Changwanseo/FunVIP). FunVIP employs phylogeny-based identification with validation, where the result is achievable only with a query, database, and a single command. FunVIP command comprises nine steps within a workflow: input management, sequence-set organization, alignment, trimming, concatenation, model selection, tree inference, tree interpretation, and report generation. Users may acquire identification results, phylogenetic tree evidence, and reports of conflicts and issues detected in multiple checkpoints during the analysis. The conflicting sample validation performance of FunVIP was demonstrated by re-iterating the manual revision of a fungal genus with a database with mislabeled sequences, Fuscoporia. We also compared the identification performance of FunVIP with BLAST and q2-feature-classifier with two mass double-revised fungal datasets, Sanghuangporus and Aspergillus section Terrei. Therefore, with its automatic validation ability and high identification performance, FunVIP proves to be a highly promising tool for achieving easy and accurate fungal identification.

Citations

Citations to this article as recorded by  
  • Hidden diversity of crust-like Sebacinaceae (Sebacinales, Agaricomycetes) in Asia
    Hannah Suh, Chang Wan Seo, Ki Hyeong Park, Shinnam Yoo, Dohye Kim, Yoonhee Cho, Young Woon Lim
    IMA Fungus.2026;[Epub]     CrossRef
  • Exploring Macrofungal Biodiversity and Distribution on Kyodong Island, Republic of Korea
    Hannah Suh, Abel Severin Lupala, Hae Jin Cho, Sumin Jo, Jiyun Choi, Young Woon Lim
    Mycobiology.2025; 53(4): 466.     CrossRef
  • Expanding the Inventory of Seven Unrecorded Marine Penicillium with Morphological Descriptions and Phenotypic Variability
    Wonjun Lee, Ji Seon Kim, Sumin Jo, Young Woon Lim
    Mycobiology.2025; 53(5): 648.     CrossRef
  • Exploring Fungal Diversity in Marine Plastic (PET) Wastes and Seafoam in Udo Island, South Korea, with Reports of Two New Species ( Leptospora conidiifera and Neodevriesia oceanoplastica )
    Wonjun Lee, Sumin Jo, Soo Hyun Maeng, Ji Seon Kim, Myung Kyum Kim, Young Woon Lim
    Mycobiology.2025; 53(6): 770.     CrossRef
  • Potential of Trichoderma asperellum against root-rot caused by Fusarium equiseti in tomato plants
    Louis Antoniel Joseph, Manoucheca Jean, Frantzdy Luc, Kerley-Vivaldi Jean, Bento Gil Uane, Marisa Aida Diogo Matsinhe, Meque Samuel Tivane, Inocêncio Oliveira Mulaveia
    Research, Society and Development.2025; 14(12): e62141250223.     CrossRef
Research Article
Efficiency of reverse genetics methods for rescuing severe acute respiratory syndrome coronavirus 2
Chang-Joo Park, Taehun Kim, Seung-Min Yoo, Myung-Shin Lee, Nam-Hyuk Cho, Changhoon Park
J. Microbiol. 2025;63(2):e2411023.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411023
  • 4,290 View
  • 110 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF

Bacteria-free reverse genetics techniques are crucial for the efficient generation of recombinant viruses, bypassing the need for labor-intensive bacterial cloning. These methods are particularly relevant for studying the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. This study compared the efficiency of three bacteria-free approaches—circular polymerase extension reaction (CPER) with and without nick sealing and infectious sub-genomic amplicons (ISA)—to bacterial artificial chromosome (BAC)-based technology for rescuing SARS-CoV-2. Significant differences in viral titers following transfection were observed between methods. CPER with nick sealing generated virus titers comparable to those of the BAC-based method and 10 times higher than those of the standard CPER. In contrast, ISA demonstrated extremely low efficiency, as cytopathic effects were detected only after two passages. All rescued viruses exhibited replication kinetics consistent with those of the original strain, with no significant deviation in replication capacity. Furthermore, the utility of CPER and ISA in genetically modifying SARS-CoV-2 was demonstrated by successfully inserting the gene encoding green fluorescent protein into the genome. Overall, this study underscores the potential of bacteria-free methods, such as CPER and ISA, in advancing SARS-CoV-2 research while highlighting their significant differences in efficiency.

Citations

Citations to this article as recorded by  
  • Research Progress of Coronavirus Reverse Genetics Technology
    Ziqi Han, Jiaxu Han, Yan Zhao, Chao Xu, Xue Leng, Boyin Jia, Naichao Diao, Fei Liu, Chunmei Cui, Jian Liang, Yuhang Jiang, Rui Du
    Journal of Medical Virology.2026;[Epub]     CrossRef
Full article
Lactobacillus crispatus KBL693 alleviates atopic dermatitis symptoms through immune modulation
Seokcheon Song, Jun-Hyeong Kim, Sung Jae Jang, Eun Jung Jo, Sang Kyun Lim, GwangPyo Ko
J. Microbiol. 2025;63(10):e2509005.   Published online October 31, 2025
DOI: https://doi.org/10.71150/jm.2509005
  • 1,458 View
  • 54 Download
AbstractAbstract PDFSupplementary Material

Atopic dermatitis (AD) is a widespread inflammatory skin condition that affects the population worldwide. Given the implication of microbiota in AD pathogenesis, we investigated whether human-derived Lactobacillus strains could modulate AD. In this study, we identified Lactobacillus crispatus KBL693 as a probiotic candidate for AD treatment. In vitro, KBL693 suppressed mast cell degranulation and IL-4 production by T cells, suggesting its ability to attenuate key type 2 immune responses. Consistent outcomes were observed in a murine AD model, where oral administration of KBL693 alleviated disease symptoms and reduced hallmark type 2 immune markers, including plasma IgE as well as IL-4, IL-5, and IL-13 levels in skin lesions. In addition to downregulating these AD-associated immune responses, KBL693 promoted regulatory T cell (Treg) expansion in mesenteric lymph nodes, indicating its potential to restore immune balance. Collectively, these findings highlight the therapeutic potential of KBL693 for AD through enhancement of Tregs and suppression of type 2 immune responses.

Research Article
Lactic acid bacteria from Ethiopian traditional beverage, Tella: technological and metabolic profiles for industrial application
Gashaw Assefa Yehuala, Jaein Choe, Nurelegne Tefera Shibeshi, Kumsa Delessa, Asnake Desalegn, Mi-Kyung Park
J. Microbiol. 2025;63(1):e.2409008.   Published online December 20, 2024
DOI: https://doi.org/10.71150/jm.2409008
  • 2,284 View
  • 149 Download
  • 1 Crossref
AbstractAbstract PDF

Tella is a traditional beverage widely accepted by consumers, despite the lack of product consistency owing to its reliance on natural fermentation. This study aimed to identify potential industrial lactic acid bacteria (LAB) starter cultures based on their technological properties. Seven LAB strains isolated from Tella were characterized for their carbohydrate utilization, salt content, temperature, and acid tolerances, growth and acidification rates, and metabolite profiles. Most strains efficiently utilized various carbohydrates, with Lactiplantibacillus plantarum TDM41 showing exceptional versatility. The strains exhibited similar growth characteristics. Principal component analysis of stress tolerance properties revealed that L. plantarum TDM41, Pediococcus pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 exhibited superior tolerance ability. Strong acidification properties were detected in the L. plantarum TDM41, P. pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 strains after 24 h incubation at 30°C. L. plantarum TDM41 displayed the fastest acidification rate throughout the analysis period. All LAB strains produced significant amounts of diverse organic acids, including lactic acid, citric acid, acetic acid, malic acid, and succinic acid, with lactic acid being the primary acid produced by each strain. Overall, strains L. plantarum TDM41 and P. pentosaceus TAA01 prove to be potential candidates for Tella industrial starter cultures and similar cereal products owing to their robust technological properties.

Citations

Citations to this article as recorded by  
  • Preparation method and physicochemical characteristics of Tella: an Ethiopian fermented beverage
    Rabira Lemessa Gudeta, Solomon Abera, Hirpha Adugna Areti
    Journal of Ethnic Foods.2025;[Epub]     CrossRef
Full articles
Sphingomonas degradans sp. nov. and Sphingomonas paludis sp. nov., isolated from the Han River and a wetland in South Korea
Seung-Tae Kim, Miryung Kim, Chang-Jun Cha
J. Microbiol. 2026;64(1):e2510010.   Published online January 31, 2026
DOI: https://doi.org/10.71150/jm.2510010
  • 890 View
  • 16 Download
AbstractAbstract PDFSupplementary Material

Two novel bacterial strains, designated CJ20T and CJ99T, belonging to the genus Sphingomonas, were isolated from the Han River in South Korea and a wetland in South Korea, respectively. Cells of both strains were Gram-stain-negative, aerobic, non-motile and yellow-pigmented. Strains were shown to grow optimally at 30˚C and pH 7 in the absence of NaCl on tryptic soy medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ20T and CJ99T belonged to the genus Sphingomonas and were most closely related to S. asaccharolytica Y-345T and Sphingomonas koreensis JSS26T with 97.87% and 97.58% 16S rRNA gene sequence similarities, respectively. Average nucleotide identity and digital DNA-DNA hybridization values of strain CJ20T with S. asaccharolytica Y-345T were 74.1% and 15.9%, respectively and those values of strain CJ99T with S. koreensis JSS26T were 73.9% and 15.6%, respectively. Both strains contained ubiquinone (Q-10) as the predominant respiratory quinone. The major polar lipids of strains CJ20T and CJ99T comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and sphingoglycolipid. The predominant fatty acids of both strains were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0. Based on polyphasic taxonomic analyses, strains CJ20T and CJ99T represent novel species of the genus Sphingomonas, for which names Sphingomonas degradans sp. nov. and Sphingomonas paludis are proposed, respectively. The type strains are CJ20T (= KACC 23909 = JCM 37720) and CJ99T (= KACC 24077 = JCM 37956).

Multi-omic profiling reveals the impact of keratinase kerZJ on mouse gut homeostasis
Xueqing Gan, Yijiao Wen, Si Chen, Famin Ke, Siyuan Liu, Zening Wang, Chunhua Zhang, Xuanting Wang, Qin Wang, Xiaowei Gao
J. Microbiol. 2025;63(12):e2509011.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509011
  • 661 View
  • 16 Download
AbstractAbstract PDF

Keratinase kerZJ is a multifunctional protease with potential as a feed additive and functional ingredient. Here we performed an integrated multi‑omics evaluation of its biosafety and impact on gut homeostasis in mice. Our findings confirm that kerZJ is well-tolerated, with no evidence of systemic toxicity or intestinal epithelial damage. Integrated transcriptomic and proteomic analyses revealed that kerZJ reinforces intestinal barrier integrity by upregulating extracellular matrix components, including collagen IV, and modulates mucosal immunity by enhancing B-cell activation and antimicrobial peptide defenses without inducing inflammation. Furthermore, kerZJ administration led to a significant upregulation of digestive enzymes and a dose-dependent increase in short-chain fatty acids production. Microbiome analysis showed that while high-dose kerZJ altered community composition, it enriched for beneficial taxa like Lactobacillaceae and did not induce dysbiosis. These results demonstrate that kerZJ safely enhances gut barrier function, promotes a favorable immune and metabolic environment, and fosters a resilient gut ecosystem, supporting its development as a safe feed additive and nutraceutical component.

Safety evaluation and hypolipidemic ability of water-soluble blue pigment extracted by HPD-400 resin from Quambalaria cyanescens
Ruobing Shi, Chengzhong Wang, Nianping Xue, Zhiguo Zhang
J. Microbiol. 2025;63(11):e2412011.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2412011
  • 988 View
  • 18 Download
AbstractAbstract PDF

The oral administration of synthetic drugs can effectively reduce blood lipid levels, but adverse reactions may occur. Because of this, the hypolipidemic ability of natural products has been increasingly investigated. We evaluate the safety and hypolipidemic characteristics of a water-soluble blue pigment extracted using HPD-400 resin from the fungus Quambalaria cyanescens. Hypolipidemic ability was examined by constructing a hyperlipidemia model with different doses of blue pigment (50, 100, and 200 mg/kg. mouse body weight) for 28 d. Blue pigment purity increased from 20.32% to 70.70% following treatment with HPD-400 resin. Acute toxicity tests revealed blue pigment sourced from Q. cyanescens to have no toxic effects on mouse body weight, mortality, or behavioral characteristics. Subacute toxicity tests revealed no significant differences in food intake, body weight, or organ weights between treatment groups and controls. Histopathological examination of the liver and kidney tissues of mice administered blue pigment were normal, and serum enzyme activities and blood constituents were also within normal ranges. Blue pigment can significantly reduce the weight of mice, reduce liver and kidney damage and fat accumulation. It can also reduce total cholesterol, triglyceride and low density lipoprotein cholesterol in serum and liver tissue, and increase the level of high density lipoprotein cholesterol. Reduce the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, urea and uric acid in serum. Increase the activities of total superoxide dismutase, glutathione peroxidase and catalase in serum and liver tissue, reduce the content of malondialdehyde, and up-regulate liver lipase and lipoprotein lipase. Our work proves that blue pigment is nontoxic, has the function of reducing blood lipid, and can alleviate obesity-related symptoms by regulating lipid metabolism and oxidative stress.

PhoU interaction with the PhoR PAS domain is required for repression of the pho regulon and Salmonella virulence, but not for polyphosphate accumulation
Seungwoo Baek, Soomin Choi, Yoontak Han, Eunna Choi, Shinae Park, Jung-Shin Lee, Eun-Jin Lee
J. Microbiol. 2025;63(9):e2505013.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2505013
  • 1,745 View
  • 44 Download
AbstractAbstract PDFSupplementary Material

The pho regulon plays a critical role in maintaining phosphate homeostasis in bacteria, with the PhoU protein functioning as a regulator that bridges the PhoB/PhoR two-component system and the PstSCAB2 phosphate transporter. While PhoU is known to suppress PhoR autophosphorylation under high phosphate conditions via interaction with its PAS domain, its broader regulatory functions remain elusive. Here, we investigated the role of the PhoU Ala147 residue in Salmonella enterica serovar Typhimurium using a phoUA147E substitution mutant. Bacterial two-hybrid and immunoprecipitation assays confirmed that Ala147 is essential for PhoU-PhoR PAS domain interaction, and its substitution leads to derepression of pho regulon genes, even in high phosphate conditions. This disruption impaired Salmonella survival inside macrophages and mouse virulence, demonstrating the importance of PhoU-PhoR interaction in Salmonella pathogenesis. However, unlike the phoU deletion mutant, the phoUA147E mutant does not exhibit growth defects or polyphosphate accumulation, indicating that the PhoU-PhoR interaction is not involved in these phenotypes. Our findings reveal PhoU as a multifaceted regulator, coordinating phosphate uptake and pho regulon expression through distinct molecular interactions, and provide new insights into its role in bacterial physiology and virulence.

Exploring the biosynthetic potential of Korean Actinobacteria for antibacterial metabolite discovery
Sehong Park, Hyun-Woo Je, Yujin Cha, Boncheol Gu, Yeojeong Cho, Jin-Il Kim, Ji Won Seo, Seung Bum Kim, Jino Son, Moonsuk Hur, Changmin Sung, Min-Kyu Oh, Hahk-Soo Kang
J. Microbiol. 2025;63(9):e2504002.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2504002
  • 1,411 View
  • 59 Download
AbstractAbstract PDFSupplementary Material

Actinobacteria, a phylum of Gram-positive bacteria, are renowned for their remarkable ability to produce antibacterial natural products. The National Institute of Biological Resources (NIBR) of Korea maintains a collection of Korean native actinobacteria. In this study, we explored the phylogenetic and biosynthetic diversity of the NIBR actinobacteria collection to assess its potential as a source of new antibacterial natural products. A 16S rDNA-based phylogenetic analysis revealed a high level of genetic diversity within the collection, with a predominance of Streptomyces, along with rare actinobacterial genera such as Kitasatospora and Micromonospora. Additionally, genetic network analysis of biosynthetic gene clusters (BGCs) from 15 sequenced NIBR actinobacterial strains demonstrated extensive BGC diversity, with many clusters identified as cryptic. Screening of culture extracts for antibacterial activity, followed by dereplication of active extracts, suggested the presence of potentially novel antibacterial natural products. Activity-guided isolation and whole-genome sequencing of the active strain KU57 led to the isolation of one new and three known svetamycin congeners along with their BGC. Overall, our findings highlight the NIBR actinobacteria collection as a valuable source for the discovery of new antibacterial natural products.

Staphylococcus parequorum sp. nov. and Staphylococcus halotolerans sp. nov., isolated from traditional Korean soybean foods
Ju Hye Baek, Dong Min Han, Dae Gyu Choi, Chae Yeong Moon, Jae Kyeong Lee, Chul-Hong Kim, Jung-Woong Kim, Che Ok Jeon
J. Microbiol. 2025;63(8):e2503003.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2503003
Correction in: J. Microbiol 2025;63(9):e2509100 Correction in: J. Microbiol 2025;63(10):e2510101
  • 2,515 View
  • 103 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

Strains Mo2-6T, S9, KG4-3T, and 50Mo3-2, identified as coagulase-negative, Gram-stain-positive, halotolerant, non-motile coccoid bacteria, were isolated from traditional Korean soybean foods. Strains Mo2-6T and S9 were both catalase- and oxidase-negative, whereas KG4-3T and 50Mo3-2 were catalase-positive but oxidase-negative. The optimal growth conditions for Mo2-6T and S9 were 30°C, 2% NaCl, and pH 7.0, while KG4-3T and 50Mo3-2 grew best at 35°C, 2% NaCl, and pH 7.0. All strains contained menaquinone-7 as the predominant isoprenoid quinone, with anteiso-C15:0 and iso-C15:0 as the major cellular fatty acids (> 10%). Additionally, anteiso-C13:0 was a major fatty acid in strain KG4-3T. The DNA G + C contents of strains Mo2-6T, S9, KG4-3T, and 50Mo3-2 were 33.4%, 33.3%, 32.5%, and 32.7%, respectively. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, formed distinct lineages within the genus Staphylococcus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, belonged to the same species. Meanwhile, dDDH and ANI values between strains Mo2-6T and KG4-3T, as well as comparisons with other Staphylococcus type strains, were below the species delineation thresholds, indicating they represent novel species. Based on phenotypic, chemotaxonomic, and molecular data, we propose strain Mo2-6T as the type strain of Staphylococcus parequorum sp. nov. (=KACC 23685T =JCM 37038T) and strain KG4-3T as the type strain of Staphylococcus halotolerans sp. nov. (=KACC 23684T =JCM 37037T).

Citations

Citations to this article as recorded by  
  • Validation List no. 227: valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2026;[Epub]     CrossRef
Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
Sojung Bae, Jinjong Myoung
J. Microbiol. 2025;63(7):e2504015.   Published online July 21, 2025
DOI: https://doi.org/10.71150/jm.2504015
  • 3,810 View
  • 406 Download
  • 1 Crossref
AbstractAbstract PDF

The global spread of COVID-19 has underscored the urgent need for advanced tools to study emerging coronaviruses. Reverse genetics systems have become indispensable for dissecting viral gene functions, developing live-attenuated vaccine candidates, and identifying antiviral targets. In this study, we describe a robust and efficient reverse genetics platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The system is based on the assembly of a full-length infectious cDNA clone from seven overlapping fragments, each flanked by homologous sequences to facilitate seamless assembly using the Gibson assembly method. Individual cloning of each fragment into plasmids enables modular manipulation of the viral genome, allowing rapid site-directed mutagenesis by fragment exchange. Infectious recombinant virus was successfully recovered from the assembled cDNA, exhibiting uniform plaque morphology and genetic homogeneity compared to clinical isolates. Additionally, fluorescent reporter viruses were generated to enable real-time visualization of infection, and the effects of different mammalian promoters on viral rescue were evaluated. This reverse genetics platform enables efficient generation and manipulation of recombinant SARS-CoV-2, providing a valuable resource for virological research and the development of preventive and therapeutic antiviral measures.

Citations

Citations to this article as recorded by  
  • Research Progress of Coronavirus Reverse Genetics Technology
    Ziqi Han, Jiaxu Han, Yan Zhao, Chao Xu, Xue Leng, Boyin Jia, Naichao Diao, Fei Liu, Chunmei Cui, Jian Liang, Yuhang Jiang, Rui Du
    Journal of Medical Virology.2026;[Epub]     CrossRef
Review
Targeting innate immune sensors for therapeutic strategies in infectious diseases
Seyun Shin, Young Ki Choi, SangJoon Lee
J. Microbiol. 2025;63(6):e2503009.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2503009
  • 3,836 View
  • 102 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF

The innate immune system relies on innate immune sensors, such as pattern recognition receptors (PRRs), to detect pathogens and initiate immune responses, crucial for controlling infections but also implicated in inflammatory diseases. These innate immune sensors, including Toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like receptors (RLRs), absent in melanoma 2 (AIM2), and Z-DNA binding protein 1 (ZBP1) trigger signaling pathways that produce cytokines, modulating inflammation and cell death. Traditional therapies focus on directly targeting pathogens; however, host-targeting therapeutic strategies have emerged as innovative approaches to modulate innate immune sensor activity. These strategies aim to fine-tune the immune response, either enhancing antiviral defenses or mitigating hyperinflammation to prevent tissue damage. This review explores innate immune sensor-based therapeutic approaches, including inhibitors, agonists, and antagonists, that enhance antiviral defense or suppress harmful inflammation, highlighting innate immune sensors as promising targets in infectious and inflammatory disease treatment.

Citations

Citations to this article as recorded by  
  • A new fucosylated glucuronoxylomannan from the fruit bodies of Tremella aurantia: structural characterization and immunoenhancing activity on seasonal influenza mRNA vaccine
    Jing Chen, Yuan Ma, Zhi-Min Rao, Song-Lin Jiang, Ying-Jun Lou, Karim Malik, Arman Chowdhury, Hua-Zhong Ying, Chen-Huan Yu
    Carbohydrate Polymers.2026; 373: 124660.     CrossRef
  • Z-DNA interaction proteins - insights from ChIP-seq data
    Michaela Dobrovolná, Václav Brázda
    Biochemical and Biophysical Research Communications.2025; 790: 152910.     CrossRef
  • AIM2 drives inflammatory cell death and monkeypox pathogenesis
    Jueun Oh, Yun-Ho Hwang, Jihye Lee, Cheong Seok, SuHyeon Oh, Hye Yoon Kim, Nabukenya Mariam, Jaeyoung Ahn, GyeongJu Yu, Jaewoo Park, Hayeon Kim, Suhyun Kim, Seyun Shin, Min-Chul Jung, Jinwoo Gil, Joo Sang Lee, Young Ki Choi, Dokeun Kim, Daesik Kim, You-Jin
    Cellular & Molecular Immunology.2025; 22(12): 1615.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP