Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Current issue

Page Path
HOME > Browse Articles > Current issue
10 Current issue
Filter
Filter
Article category
Keywords
Authors
Funded articles
Volume 63(4); April 2025
Prev issue Next issue
Review
Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria
Yubin Yang, Hana Hyeon, Minju Joo, Kangseok Lee, Eunkyoung Shin
J. Microbiol. 2025;63(4):e2501027.   Published online April 2, 2025
DOI: https://doi.org/10.71150/jm.2501027
  • 107 View
  • 8 Download
AbstractAbstract PDF

The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.

Protocol
A guide to genome mining and genetic manipulation of biosynthetic gene clusters in Streptomyces
Heonjun Jeong, YeonU Choe, Jiyoon Nam, Yeon Hee Ban
J. Microbiol. 2025;63(4):e2409026.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2409026
  • 70 View
  • 3 Download
AbstractAbstract PDF

Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.

Full articles
FunVIP: Fungal Validation and Identification Pipeline based on phylogenetic analysis
Chang Wan Seo, Shinnam Yoo, Yoonhee Cho, Ji Seon Kim, Martin Steinegger, Young Woon Lim
J. Microbiol. 2025;63(4):e2411017.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411017
  • 109 View
  • 10 Download
AbstractAbstract PDFSupplementary Material

The increase of sequence data in public nucleotide databases has made DNA sequence-based identification an indispensable tool for fungal identification. However, the large proportion of mislabeled sequence data in public databases leads to frequent misidentifications. Inaccurate identification is causing severe problems, especially for industrial and clinical fungi, and edible mushrooms. Existing species identification pipelines require separate validation of a dataset obtained from public databases containing mislabeled taxonomic identifications. To address this issue, we developed FunVIP, a fully automated phylogeny-based fungal validation and identification pipeline (https://github.com/Changwanseo/FunVIP). FunVIP employs phylogeny-based identification with validation, where the result is achievable only with a query, database, and a single command. FunVIP command comprises nine steps within a workflow: input management, sequence-set organization, alignment, trimming, concatenation, model selection, tree inference, tree interpretation, and report generation. Users may acquire identification results, phylogenetic tree evidence, and reports of conflicts and issues detected in multiple checkpoints during the analysis. The conflicting sample validation performance of FunVIP was demonstrated by re-iterating the manual revision of a fungal genus with a database with mislabeled sequences, Fuscoporia. We also compared the identification performance of FunVIP with BLAST and q2-feature-classifier with two mass double-revised fungal datasets, Sanghuangporus and Aspergillus section Terrei. Therefore, with its automatic validation ability and high identification performance, FunVIP proves to be a highly promising tool for achieving easy and accurate fungal identification.

Genomic profiling of soil nitrifying microorganisms enriched on floating membrane filter
Christiana Abiola, Joo-Han Gwak, Ui-Ju Lee, Aderonke Odunayo Adigun, Sung-Keun Rhee
J. Microbiol. 2025;63(4):e2502002.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2502002
  • 129 View
  • 5 Download
AbstractAbstract PDFSupplementary Material

Recently, floating membrane filter cultivation was adopted to simulate solid surface and enrich surface-adapted soil ammonia-oxidizing archaea (AOA) communities from agricultural soil, as opposed to the conventional liquid medium. Here, we conducted metagenomic sequencing to recover nitrifier bins from the floating membrane filter cultures and reveal their genomic properties. Phylogenomic analysis showed that AOA bins recovered from this study, designated FF_bin01 and FF_bin02, are affiliated with the Nitrososphaeraceae family, while the third bin, FF_bin03, is a nitrite-oxidizing bacterium affiliated with the Nitrospiraceae family. Based on the ANI/AAI analysis, FF_bin01 and FF_bin02 are identified as novel species within the genera “Candidatus Nitrosocosmicus” and Nitrososphaera, respectively, while FF_bin03 represents a novel species within the genus Nitrospira. The pan and core genome analysis for the 29 AOA genomes considered in this study revealed 5,784 orthologous clusters, out of which 653 were core orthologous clusters. Additionally, 90 unique orthologous clusters were conserved among the Nitrososphaeraceae family, suggesting their potential role in enhancing culturability and adaptation to diverse environmental conditions. Intriguingly, FF_bin01 and FF_bin02 harbor a gene encoding manganese catalase and FF_bin03 also possesses a heme catalase gene, which might enhance their growth on the floating membrane filter. Overall, the floating membrane filter cultivation has proven to be a promising approach for isolating distinct soil AOA, and further modifications to this technique could stimulate the growth of a broader range of uncultivated nitrifiers from diverse soil environments.

Antifungal effects of Metformin against Candida albicans by autophagy regulation
Xiao Zhao, Yang Wang, Qinqin Zhang, Yun Huang, Xin Wei, Daming Wu
J. Microbiol. 2025;63(4):e2411008.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411008
  • 37 View
  • 2 Download
AbstractAbstract PDF

Candida albicans (C. albicans) is a common opportunistic fungal pathogen that can cause infections ranging from superficial to severe systemic diseases. This study investigates the antifungal effects of metformin on C. albicans and explores its underlying mechanisms. Growth inhibition was assessed via XTT assays, and hyphal formation and morphological changes were observed by light microscope and scanning electron microscopy (SEM). Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were measured with JC-1 and DCFH-DA probes, respectively. Gene expression related to ROS and autophagy was quantified by RT-qPCR, and autophagosomes were visualized using transmission electron microscopy (TEM). Metformin significantly inhibited C. albicans growth and hyphal formation, altered cell morphology, reduced MMP, and increased ROS levels. It activated autophagy in planktonic C. albicans but suppressed it in biofilm forms. Additionally, metformin exhibited synergistic effects with amphotericin B against planktonic C. albicans and with caspofungin against biofilms. The findings suggest that metformin exerts antifungal activity by modulating MMP, ROS levels, and autophagy-related pathways, and enhances the efficacy of specific antifungal drugs.

Genetic insights into novel lysis suppression by phage CSP1 in Escherichia coli
Moosung Kim, Sangryeol Ryu
J. Microbiol. 2025;63(4):e2501013.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2501013
  • 62 View
  • 5 Download
AbstractAbstract PDFSupplementary Material

Lysis inhibition (LIN) in bacteriophage is a strategy to maximize progeny production. A clear plaque-forming mutant, CSP1C, was isolated from the turbid plaque-forming CSP1 phage. CSP1C exhibited an adsorption rate and replication dynamics similar to CSP1. Approximately 90% of the phages were adsorbed to the host cell within 12 min, and both phages had a latent period of 25 min. Burst sizes were 171.42 ± 31.75 plaque-forming units (PFU) per infected cell for CSP1 and 168.94 ± 51.67 PFU per infected cell for CSP1C. Both phages caused comparable reductions in viable E. coli cell counts at a low multiplicity of infection (MOI). However, CSP1 infection did not reduce turbidity, suggesting a form of LIN distinct from the well-characterized LIN of T4 phage. Genomic analysis revealed that a 4,672-base pairs (bp) DNA region, encompassing part of the tail fiber gene, CSP1_020, along with three hypothetical genes, CSP1_021, CSP1_022, and part of CSP1_023, was deleted from CSP1 to make CSP1C. Complementation analysis in CSP1C identified CSP1_020, CSP1_021, and CSP1_022 as a minimal gene set required for the lysis suppression in CSP1. Co-expression of these genes in E. coli with holin (CSP1_092) and endolysin (CSP1_091) resulted in lysis suppression. Lysis suppression was abolished by disrupting the proton motive force (PMF), supporting their potential role as antiholin. Additionally, CSP1_021 directly interacts with holin, suggesting that it may function as an antiholin. These findings identify new genetic factors involved in lysis suppression in CSP1, providing broader insights into phage strategies for modulating host cell lysis.

Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens
Shahana Ahmed, Tridip Das, Chandan Nath, Tahia Ahmed, Keya Ghosh, Pangkaj Kumar Dhar, Ana Herrero-Fresno, Himel Barua, Paritosh Kumar Biswas, Md Zohorul Islam, John Elmerdahl Olsen
J. Microbiol. 2025;63(4):e2412009.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2412009
  • 48 View
  • 3 Download
AbstractAbstract PDFSupplementary Material

Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.

Arctic lichen Cladonia borealis-induced cell death is mediated by p53-independent activation of Caspase-9 and PARP-1 signaling in human colorectal cancer cell lines
Ju-Mi Hong, Seul Ki Min, Kyung Hee Kim, Se Jong Han, Joung Han Yim, Sojin Kim, Youn-Jung Kim, Il-Chan Kim
J. Microbiol. 2025;63(4):e2412012.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2412012
  • 46 View
  • 6 Download
AbstractAbstract PDF

The anti-cancer effects of Cladonia borealis (an Arctic lichen) methanol extract (CBME) on human colon carcinoma HCT116 cells were investigated for the first time. The proliferation of the HCT116 cells treated with CBME significantly decreased in a dose- and time-dependent manner. Flow cytometry results indicated that treatment with CBME resulted in significant apoptosis in the HCT116 cells. Furthermore, immunoblotting and qRT-PCR results revealed the expression of apoptosis-related marker genes and indicated a significant downregulation of the apoptosis regulator B-cell lymphoma expression and upregulation of the cleaved form of poly (ADP-ribose) polymerase as DNA repair and apoptosis regulators and central tumor suppressor p53. Therefore, CBME significantly inhibited cell proliferation by inducing apoptosis via the mitochondrial apoptotic pathway in colon carcinoma cells. Collectively, these data suggested that CBME contained one or more compounds with anti-cancer effects and could be a potential therapeutic agent. Further studies are required to identify candidate compounds and understand the mechanism of action of CBME.

The key pathways and genes related to oncolytic Newcastle disease virus-induced phenotypic changes in ovarian cancer cells
Wei Song, Yuan Yuan, Fangfang Cao, Huazheng Pan, Yaqing Liu
J. Microbiol. 2025;63(4):e2411018.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411018
  • 41 View
  • 3 Download
AbstractAbstract PDFSupplementary Material

The poor prognosis and high recurrence rate of ovarian cancer highlight the urgent need to develop new therapeutic strategies. Oncolytic Newcastle disease virus (NDV) can kill cancer cells directly and regulate innate and adaptive immunity. In this study, ovarian cancer cells infected with or without velogenic NDV-BJ were subjected to a CCK-8 assay for detecting cell proliferation, flow cytometry for detecting the cell cycle and apoptosis, and wound healing and transwell assays for detecting cell migration and invasion. Transcriptomic sequencing was conducted to identify the differentially expressed genes (DEGs). GO and KEGG enrichment analyses were performed to explore the mechanism underlying the oncolytic effect of NDV on ovarian cancer cells. The results showed that infection with NDV inhibited ovarian cancer cell proliferation, migration, and invasion; disrupted the cell cycle; and promoted apoptosis. Compared with those in negative control cells, the numbers of upregulated and downregulated genes in ovarian cancer cells infected with NDV were 1,499 and 2,260, respectively. Thirteen KEGG pathways related to cell growth and death, cell mobility, and signal transduction were significantly enriched. Among these pathways, 48 DEGs, especially SESN2, HLA B/C/E, GADD45B, and RELA, that may be involved in the oncolytic process were screened, and qPCR analysis verified the reliability of the transcription data. This study discovered some key pathways and genes related to oncolytic NDV-induced phenotypic changes in ovarian cancer cells, which will guide our future research directions and help further explore the specific mechanisms by which infection with NDV suppresses ovarian cancer development.

Corrigendum
Corrigendum: Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism
Viridiana Alejandre‑Castaneda, J. Alberto Patino‑Medina, Marco I. Valle‑Maldonado, Alexis Garcia, Rafael Ortiz‑Alvarado, Leon F. Ruiz‑Herrera, Karla Viridiana Castro‑Cerritos, Joel Ramirez‑Emiliano, Martha I. Ramirez‑Diaz, Victoriano Garre, Soo Chan Lee, Victor Meza‑Carmen
J. Microbiol. 2025;63(4):e2504100.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2504100
Corrects: J. Microbiol 2023;61(12):1043
  • 37 View
  • 2 Download
PDF

Journal of Microbiology : Journal of Microbiology
TOP