Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "Yun Hee Baek"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Development of an RT-LAMP−CRISPR/Cas12a assay for rapid and specific detection of Bandavirus dabieense
Bo Seung Song, Yun Hee Baek, Eun-Ha Kim, Hyeok-Il Kwon, Ah-Hyeon Kim, Si-Hyun Lee, Yu-Bin Son, Soo-Hyeon Kim, Min-Suk Song, Young Ki Choi, Su-Jin Park
J. Microbiol. 2025;63(11):e2506013.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2506013
  • 23 View
  • 1 Download
AbstractAbstract PDF

Bandavirus dabieense, a single-stranded RNA virus, is the causative agent of severe fever with thrombocytopenia syndrome (SFTS), a disease associated with high fatality rates. Early and accurate diagnosis is essential for improving clinical outcomes, particularly given the limited therapeutic options and high mortality rates associated with SFTS. However, while highly sensitive, conventional diagnostic methods such as PCR and qRT-PCR require specialized laboratory facilities and trained personnel, making them impractical for rapid detection in resource-limited settings. To address these challenges, we developed a rapid and highly sensitive assay for Bandavirus dabieense detection by integrating reverse transcription loop-mediated isothermal amplification (RT-LAMP) with CRISPR/Cas12a technology. LAMP primers and guide RNA sequences were designed to target the L gene, ensuring broad detection across viral genotypes. The optimized assay demonstrated a detection limit of 5 RNA copies per reaction, showing more sensitivity than qRT-PCR, and exhibited 100% concordance with qRT-PCR results in clinical samples. Given its speed, accuracy, and field applicability, this LAMP-CRISPR/Cas12a-based assay represents a promising diagnostic tool for early SFTSV detection, particularly in resource-constrained environments where conventional molecular diagnostics are not readily available.

Research Support, Non-U.S. Gov'ts
Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice
Kuk Jin Park , Min-Suk Song , Eun-Ha Kim , Hyeok-il Kwon , Yun Hee Baek , Eun-hye Choi , Su-Jin Park , Se Mi Kim , Young-il Kim , Won-Suk Choi , Dae-Won Yoo , Chul-Joong Kim , Young Ki Choi
J. Microbiol. 2015;53(8):570-577.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5329-4
  • 329 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Avian influenza A virus (AIV) is commonly isolated from domestic poultry and wild migratory birds, and the H9N2 subtype is the most prevalent and the major cause of severe disease in poultry in Korea. In addition to the veterinary concerns regarding the H9N2 subtype, it is also considered to be the next potential human pandemic strain due to its rapid evolution and interspecies transmission. In this study, we utilize serial lung-to-lung passage of a low pathogenic avian influenza virus (LPAI) H9N2 (A/Ck/Korea/163/04, WT163) (Y439-lineage) in mice to increase pathogenicity and investigate the potential virulence marker. Mouse-adapted H9N2 virus obtained high virulence (100% mortality) in mice after 98 serial passages. Sequence results show that the mouse adaptation (ma163) possesses several mutations within seven gene segments (PB2, PA, HA, NP, NA, M, and NS) relative to the wild-type strain. The HA gene showed the most mutations (at least 11) with one resulting in the loss of an N-glycosylation site (at amino acid 166). Moreover, reverse genetic studies established that an E627K substitution in PB2 and the loss of the N-glycosylation site in the HA protein (aa166) are critical virulence markers in the mouse-adapted H9N2 virus. Thus, these results add to the increasing body of mutational analysis data defining the function of the viral polymerase and HA genes and their roles in mammalian host adaptation. To our knowledge, this is first report of the generation of a mammalian-adapted Korea H9N2 virus (Y493-lineages). Therefore, this study offers valuable insights into the molecular evolution of the LPAI Korean H9N2 in a new host and adds to the current knowledge of the molecular markers associated with increased virulence.

Citations

Citations to this article as recorded by  
  • Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals
    Barshagul Baikara, Kobey Karamendin, Yermukhammet Kassymbekov, Klara Daulbayeva, Temirlan Sabyrzhan, Sardor Nuralibekov, Yelizaveta Khan, Nurlan Sandybayev, Sasan Fereidouni, Aidyn Kydyrmanov
    Viruses.2025; 17(5): 685.     CrossRef
  • An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization
    Carol M. Sheppard, Daniel H. Goldhill, Olivia C. Swann, Ecco Staller, Rebecca Penn, Olivia K. Platt, Ksenia Sukhova, Laury Baillon, Rebecca Frise, Thomas P. Peacock, Ervin Fodor, Wendy S. Barclay
    Nature Communications.2023;[Epub]     CrossRef
  • Current situation and control strategies of H9N2 avian influenza in South Korea
    Mingeun Sagong, Kwang-Nyeong Lee, Eun-Kyoung Lee, Hyunmi Kang, Young Ki Choi, Youn-Jeong Lee
    Journal of Veterinary Science.2023;[Epub]     CrossRef
  • Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China
    Qingzheng Liu, Lingcai Zhao, Yanna Guo, Yongzhen Zhao, Yingfei Li, Na Chen, Yuanlu Lu, Mengqi Yu, Lulu Deng, Jihui Ping
    Viruses.2022; 14(4): 726.     CrossRef
  • Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh
    Ripatun Nahar Ripa, Joshua E. Sealy, Jayna Raghwani, Tridip Das, Himel Barua, Md. Masuduzzaman, A. K. M. Saifuddin, Md. Reajul Huq, Mohammad Inkeyas Uddin, Munir Iqbal, Ian Brown, Nicola S. Lewis, Dirk Pfeiffer, Guillaume Fournie, Paritosh Kumar Biswas
    Emerging Microbes & Infections.2021; 10(1): 2223.     CrossRef
  • Mouse adaptation of the H9N2 avian influenza virus causes the downregulation of genes related to innate immune responses and ubiquitin-mediated proteolysis in mice
    Jing Guo, Xinxin Gao, Baotao Liu, Yubao Li, Wenqiang Liu, Jianbiao Lu, Cheng Liu, Rui Xue, Xuyong Li
    Medical Microbiology and Immunology.2020; 209(2): 151.     CrossRef
  • H9 Influenza Viruses: An Emerging Challenge
    Silvia Carnaccini, Daniel R. Perez
    Cold Spring Harbor Perspectives in Medicine.2020; 10(6): a038588.     CrossRef
  • Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs
    Liu Lina, Chen Saijuan, Wang Chengyu, Lu Yuefeng, Dong Shishan, Chen Ligong, Guo Kangkang, Guo Zhendong, Li Jiakai, Zhang Jianhui, Luo Qingping, Zhang Wenting, Shang Yu, Wang Honglin, Zhang Tengfei, Wen Guoyuan, Zhu Jiping, Zhang Chunmao, Jin Meilin, Gao
    Scientific Reports.2019;[Epub]     CrossRef
  • A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice
    Haruhiko Kamiki, Hiromichi Matsugo, Tomoya Kobayashi, Hiroho Ishida, Akiko Takenaka-Uema, Shin Murakami, Taisuke Horimoto
    Viruses.2018; 10(11): 653.     CrossRef
  • Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses
    Min Kang, Hyung-Kwan Jang
    Veterinary Microbiology.2017; 204: 96.     CrossRef
  • The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents
    Won-Suk Choi, Khristine Kaith S. Lloren, Yun Hee Baek, Min-Suk Song
    Clinical and Experimental Vaccine Research.2017; 6(2): 83.     CrossRef
  • Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse
    Won-Suk Choi, Yun Hee Baek, Jin Jung Kwon, Ju Hwan Jeong, Su-Jin Park, Young-il Kim, Sun-Woo Yoon, Jungwon Hwang, Myung Hee Kim, Chul-Joong Kim, Richard J. Webby, Young Ki Choi, Min-Suk Song
    Scientific Reports.2017;[Epub]     CrossRef
  • Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy
    Se Mi Kim, Young-Il Kim, Su-Jin Park, Eun-Ha Kim, Hyeok-il Kwon, Young-Jae Si, In-Won Lee, Min-Suk Song, Young Ki Choi, Jae U. Jung
    Journal of Virology.2017;[Epub]     CrossRef
  • Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014
    Duong Mai Thuy, Thomas P. Peacock, Vu Thi Ngoc Bich, Thomas Fabrizio, Dang Nguyen Hoang, Nguyen Dang Tho, Nguyen Thi Diep, Minh Nguyen, Le Nguyen Minh Hoa, Hau Thi Thu Trang, Marc Choisy, Ken Inui, Scott Newman, Nguyen vu Trung, Rogier van Doorn, Thanh Lo
    Infection, Genetics and Evolution.2016; 44: 530.     CrossRef
  • PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor
    Hanna Sediri, Swantje Thiele, Folker Schwalm, Gülsah Gabriel, Hans-Dieter Klenk
    Journal of General Virology.2016; 97(1): 39.     CrossRef
Molecular Characterization and Phylogenetic Analysis of H3N2 Human Influenza A Viruses in Cheongju, South Korea
Yun Hee Baek , Jeung Hyun Park , Young Jun Song , Min-Suk Song , Philippe Noriel Q. Pascua , Yoon-Soo Hahn , Heon-Seok Han , Ok-Jun Lee , Ki-Soon Kim , Chun Kang , Young-Ki Choi
J. Microbiol. 2009;47(1):91-100.   Published online February 20, 2009
DOI: https://doi.org/10.1007/s12275-008-0207-y
  • 240 View
  • 0 Download
  • 10 Crossref
AbstractAbstract PDF
To investigate the genetic characteristics of human influenza viruses circulating in Chungbuk province, we tested 510 clinical samples of nasopharyngeal suction from pediatric patients diagnosed with respiratory illness between June 2007 and June 2008. Genetic characterization of the HA genes of H3N2 isolates indicated the relative higher similarity to A/Virginia/04/07 (99.6%) rather than that of A/Wisconsin/67/2005 (98.4%), a Northern Hemisphere 2007~2008 vaccine strain, based on amino acid sequences. We found several altered amino acids at the H3 HA1 antigenic sites compared with the vaccine strain; K140I at site A, K158R at site B, and K173N (H471) or K173Q, and S262N at site E, but there was no antigenic shift among the H3N2 viruses. Interestingly, A/Cheongju/H383/08 and A/Cheongju/H407/08 isolates had single amino acid substitution at D151G on the catalytic site of the N2 NA while A/Cheongju/H412/08 and A/Cheongju/H398/07 isolates had one amino acid deletion at residue 146. Furthermore, we found that 25% (3 out of 12 isolates) of the H3N2 subtype viruses had the amino acid substitution at position 31 on the M2 protein (Aspartic acid to Asparagine) and confirmed their drug-resistance by biological assays. Taken together, the results of this study demonstrated continuous evolutions of human H3N2 viruses by antigenic drift and also highlighted the need to closely monitor antigenic drug resistance in influenza A viruses to aid in the early detection of potentially pandemic strains, as well as underscore the need for new therapeutics.

Citations

Citations to this article as recorded by  
  • A benchmark dataset of protein antigens for antigenicity measurement
    Tianyi Qiu, Jingxuan Qiu, Yiyan Yang, Lu Zhang, Tiantian Mao, Xiaoyan Zhang, Jianqing Xu, Zhiwei Cao
    Scientific Data.2020;[Epub]     CrossRef
  • Full Genome Characterization of Human Influenza A/H3N2 Isolates from Asian Countries Reveals a Rare Amantadine Resistance-Conferring Mutation and Novel PB1-F2 Polymorphisms
    Hassan Zaraket, Hiroki Kondo, Akinobu Hibino, Ren Yagami, Takashi Odagiri, Nobuhiro Takemae, Ryota Tsunekuni, Takehiko Saito, Yi Yi Myint, Yadanar Kyaw, Khin Yi Oo, Htay Htay Tin, Nay Lin, Nguyen Phuong Anh, Nguyen Le Khanh Hang, Le Quynh Mai, Mohd R. Has
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Phylogenetic, molecular and drug-sensitivity analysis of HA and NA genes of human H3N2 influenza A viruses in Guangdong, China, 2007–2011
    P. HUANG, L.-J. LIANG, N.-M. HOU, X. ZHANG, W.-Z. SU, S.-Y. YU, Y.-H. ZHANG, J. WU, W. Q. CHEN
    Epidemiology and Infection.2013; 141(5): 1061.     CrossRef
  • Seroprevalence of subtype H3 influenza A virus in South Korean cats
    Hye-Young Jeoung, Bo-Hye Shin, Won-Ha Lee, Dae-Sub Song, Young-Ki Choi, WooSeog Jeong, Jae-Young Song, Dong-Jun An
    Journal of Feline Medicine and Surgery.2012; 14(10): 746.     CrossRef
  • Susceptibility of human H3N2 influenza virus to oseltamivir in South Korea, 2009–2011
    Sehee Park, Jin Il Kim, Ilseob Lee, Sangmoo Lee, Min-Woong Hwang, Joon-Yong Bae, Jun Heo, Eun-Joo Lim, Won-Seok Seok, Hee Jin Cheong, Joon Young Song, Woo Joo Kim, Man-Seong Park
    Journal of Microbiology.2012; 50(6): 1067.     CrossRef
  • Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains
    Tapasi Roy Mukherjee, Anurodh S Agrawal, Sekhar Chakrabarti, Mamta Chawla-Sarkar
    Virology Journal.2012;[Epub]     CrossRef
  • Antigenic epitope peptides of influenza H3N2 virus neuraminidase gene based on experiments
    Jing Zhong, Ping Huang, MiaoHeng Wen, LiJun Liang, Xin Zhang, SongNuan Tan, XiaoLan Zhu
    Chinese Science Bulletin.2012; 57(22): 2908.     CrossRef
  • Virulence and Genetic Compatibility of Polymerase Reassortant Viruses Derived from the Pandemic (H1N1) 2009 Influenza Virus and Circulating Influenza A Viruses
    Min-Suk Song, Philippe Noriel Q. Pascua, Jun Han Lee, Yun Hee Baek, Kuk Jin Park, Hyeok-il Kwon, Su-Jin Park, Chul-Joong Kim, Hyunggee Kim, Richard J. Webby, Robert G. Webster, Young Ki Choi
    Journal of Virology.2011; 85(13): 6275.     CrossRef
  • Genetic characterization of circulating seasonal Influenza A viruses (2005–2009) revealed introduction of oseltamivir resistant H1N1 strains during 2009 in eastern India
    Anurodh S. Agrawal, Mehuli Sarkar, Swati Ghosh, Tapasi Roy, Sekhar Chakrabarti, Renu Lal, Akhilesh C. Mishra, Mandeep S. Chadha, Mamta Chawla-Sarkar
    Infection, Genetics and Evolution.2010; 10(8): 1188.     CrossRef
  • Monoclonal antibodies isolated from human B cells neutralize a broad range of H1 subtype influenza A viruses including swine-origin Influenza virus (S-OIV)
    Roberto Burioni, Filippo Canducci, Nicasio Mancini, Nicola Clementi, Monica Sassi, Donata De Marco, Roberta Antonia Diotti, Diego Saita, Michela Sampaolo, Giuseppe Sautto, Matteo Pianezze, Massimo Clementi
    Virology.2010; 399(1): 144.     CrossRef
Evaluation of the Efficacy of a Pre-pandemic H5N1 Vaccine (MG1109) in Mouse and Ferret Models
Min-Suk Song , Ho-Jin Moon , Hyeok-il Kwon , Philippe Noriel Q. Pascua , Jun Han Lee , Yun Hee Baek , Kyu-Jin Woo , Juhee Choi , Sangho Lee , Hyunseung Yoo , In gyeong Oh , Yeup Yoon , Jong-Bok Rho , Moon-Hee Sung , Seung-Pyo Hong , Chul-Joong Kim , Young Ki Choi
J. Microbiol. 2012;50(3):487-488.
  • 176 View
  • 1 Download
AbstractAbstract PDF
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide crossprotection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.
ERRATUM] Evaluation of the Efficacy of a Pre-pandemic H5N1 Vaccine (MG1109) in Mouse and Ferret Models
Min-Suk Song , Ho-Jin Moon , Hyeok-il Kwon , Philippe Noriel Q. Pascua , Jun Han Lee , Yun Hee Baek , Kyu-Jin Woo , Juhee Choi , Sangho Lee , Hyunseung Yoo , In gyeong Oh , Yeup Yoon , Jong-Bok Rho , Moon-Hee Sung , Seung-Pyo Hong , Chul-Joong Kim , Young Ki Choi
J. Microbiol. 2012;50(4):715-715.
  • 158 View
  • 0 Download
AbstractAbstract PDF
In the article by Song et al. that appears in the Journal of Microbiology 2012; 50, 478-488. Page 478, the name of 7th author, Kyu-Jin Woo, should read as Gyu-Jin Woo.

Journal of Microbiology : Journal of Microbiology
TOP