Abstract
Sulfite is a commonly used preservative in foods, beverages, and pharmaceuticals because it is toxic to many microorganisms. In order to understand the global response of Saccharomyces cerevisiae to sulfite, genome-wide transcript profiling following sulfite exposure was obtained. The transcription levels of 21 genes were increased more than 2-fold, while those of 37 genes decreased to a similar extent. Genes involved in carbohydrate metabolism represented the highest proportion of induced genes, which may account for the easily acquired resistance to sulfite. Most of down-regulated genes are involved in transcription, protein biosynthesis, and cell growth. The down-regulation of these genes is thought to reflect growth arrest which occurs during sulfite treatment, allowing cells to save energy. Cells treated with sulfite generated more than 70% of acetaldehyde than untreated cells, suggesting that the increased acetaldehyde production is correlated with the induction of PDC1 gene encoding pyruvate decarboxylase.
Citations
Citations to this article as recorded by

- Comparative transcriptomic effects of Harpephyllum caffrum extracts and sodium metabisulphite on hydrogen peroxide stressed Saccharomyces cerevisiae cells using RNA-seq
Trust M. Pfukwa, Thato Y. Motlhalamme, Mathabatha E. Setati, Olaniyi A. Fawole, Marena Manley, Carel J. van Heerden, Cletos Mapiye
Food Bioscience.2024; 57: 103464. CrossRef - Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae
Ao Gong, Wenyue Liu, Yelong Lin, Laili Huang, Zhixiong Xie, Kate S. Howell
Microbiology Spectrum.2023;[Epub] CrossRef - Use of Oenological Tannins to Protect the Colour of Rosé Wine in a Bioprotection Strategy with Metschnikowia pulcherrima
Maëlys Puyo, Scott Simonin, Géraldine Klein, Vanessa David-Vaizant, Natalia Quijada-Morín, Hervé Alexandre, Raphaëlle Tourdot-Maréchal
Foods.2023; 12(4): 735. CrossRef - Must protection, sulfites versus bioprotection: A metabolomic study
Manon Lebleux, Hervé Alexandre, Rémy Romanet, Jordi Ballester, Vanessa David-Vaizant, Marielle Adrian, Raphaëlle Tourdot-Maréchal, Chloé Rouiller-Gall
Food Research International.2023; 173: 113383. CrossRef -
Manganese Modulates Metabolic Activity and Redox Homeostasis in Translationally Blocked
Lactococcus cremoris
, Impacting Metabolic Persistence, Cell Culturability, and Flavor Formation
Avis Dwi Wahyu Nugroho, Berdien van Olst, Stephanie Agnes Bachtiar, Sjef Boeren, Michiel Kleerebezem, Herwig Bachmann, Eva C. Sonnenschein
Microbiology Spectrum.2022;[Epub] CrossRef - Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction
Giacomo Zara, Tiziana Nardi
Fermentation.2021; 7(2): 57. CrossRef -
Viable but Nonculturable State of Yeast
Candida
sp. Strain LN1 Induced by High Phenol Concentrations
Mengqi Xie, Luning Xu, Rong Zhang, Yan Zhou, Yeyuan Xiao, Xiaomei Su, Chaofeng Shen, Faqian Sun, Muhammad Zaffar Hashmi, Hongjun Lin, Jianrong Chen, Rebecca E. Parales
Applied and Environmental Microbiology.2021;[Epub] CrossRef - Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid
María Lairón-Peris, Gabriel L. Castiglioni, Sarah J. Routledge, Javier Alonso-del-Real, John A. Linney, Andrew R. Pitt, Josef Melcr, Alan D. Goddard, Eladio Barrio, Amparo Querol
Microbial Genomics.2021;[Epub] CrossRef - Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments?
Luca Roscini, Angela Conti, Debora Casagrande Pierantoni, Vincent Robert, Laura Corte, Gianluigi Cardinali
Microorganisms.2020; 8(8): 1242. CrossRef - Autophagy is required for sulfur dioxide tolerance in Saccharomyces cerevisiae
Eva Valero, Jordi Tronchoni, Pilar Morales, Ramon Gonzalez
Microbial Biotechnology.2020; 13(2): 599. CrossRef - SSU1 Checkup, a Rapid Tool for Detecting Chromosomal Rearrangements Related to the SSU1 Promoter in Saccharomyces cerevisiae: An Ecological and Technological Study on Wine Yeast
Philippe Marullo, Olivier Claisse, Maria Laura Raymond Eder, Marine Börlin, Nadine Feghali, Margaux Bernard, Jean-Luc Legras, Warren Albertin, Alberto Luis Rosa, Isabelle Masneuf-Pomarede
Frontiers in Microbiology.2020;[Epub] CrossRef - Response to Sulfur Dioxide Addition by Two Commercial Saccharomyces cerevisiae Strains
Sydney C. Morgan, Jade J. Haggerty, Britney Johnston, Vladimir Jiranek, Daniel M. Durall
Fermentation.2019; 5(3): 69. CrossRef - Brettanomyces bruxellensis SSU1Haplotypes Confer Different Levels of Sulfite Tolerance When Expressed in aSaccharomyces cerevisiae SSU1Null Mutant
C. Varela, C. Bartel, M. Roach, A. Borneman, C. Curtin, M. Julia Pettinari
Applied and Environmental Microbiology.2019;[Epub] CrossRef - Adaptation of Candida albicans to Reactive Sulfur Species
Yasmin Chebaro, Michael Lorenz, Alice Fa, Rui Zheng, Michael Gustin
Genetics.2017; 206(1): 151. CrossRef - Different mechanisms of resistance modulate sulfite tolerance in wine yeasts
Chiara Nadai, Laura Treu, Stefano Campanaro, Alessio Giacomini, Viviana Corich
Applied Microbiology and Biotechnology.2016; 100(2): 797. CrossRef - Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae
D.B.R.K. Gupta Udatha, Evangelos Topakas, Margarita Salazar, Lisbeth Olsson, Mikael R. Andersen, Gianni Panagiotou
BMC Systems Biology.2015;[Epub] CrossRef - Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software
Alessandro Sardu, Laura Treu, Stefano Campanaro
BMC Genomics.2014;[Epub] CrossRef - QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite
Adrien Zimmer, Cécile Durand, Nicolás Loira, Pascal Durrens, David James Sherman, Philippe Marullo, Joseph Schacherer
PLoS ONE.2014; 9(1): e86298. CrossRef - Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry
B. E. Della-Bianca, A. K. Gombert
Antonie van Leeuwenhoek.2013; 104(6): 1083. CrossRef - Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts
Benoit Divol, Maret du Toit, Edward Duckitt
Applied Microbiology and Biotechnology.2012; 95(3): 601. CrossRef - Effect of pH on potassium metabisulphite biocidic activity against yeast and human cell cultures
Laura Corte, Luca Roscini, Claudia Zadra, Livio Antonielli, Brunella Tancini, Alessandro Magini, Carla Emiliani, Gianluigi Cardinali
Food Chemistry.2012; 134(3): 1327. CrossRef - Sulfite Action in Glycolytic Inhibition: In Vivo Real‐Time Observation by Hyperpolarized 13C NMR Spectroscopy
Sebastian Meier, Natalia Solodovnikova, Pernille R. Jensen, Jürgen Wendland
ChemBioChem.2012; 13(15): 2265. CrossRef - Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance
Elizabeth K. Engle, Justin C. Fay, Harmit S. Malik
PLoS Genetics.2012; 8(6): e1002763. CrossRef - A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae
Miguel C Teixeira, Nuno P Mira, Isabel Sá-Correia
Current Opinion in Biotechnology.2011; 22(2): 150. CrossRef - Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae
J.N. Jackowetz, S. Dierschke, R. Mira de Orduña
Food Research International.2011; 44(1): 310. CrossRef - Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character
Naoufel Cheraiti, Stéphane Guezenec, Jean-Michel Salmon
Applied Microbiology and Biotechnology.2010; 86(2): 693. CrossRef - Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns
Karen R. Christie, Eurie L. Hong, J. Michael Cherry
Trends in Microbiology.2009; 17(7): 286. CrossRef