Abstract
Hydrogen peroxide (H2O2) is produced by alpha-hemolytic
streptococci in aerobic conditions. However, the suitable method
for detection of H2O2-producing streptococci in oral
microbiota has not been setup. Here we show that o-dianisidine
dye and horseradish peroxidase were useful in tryptic
soy agar medium to detect and isolate H2O2-producing
bacteria with the detection limit of one target colony in > 106
colony-forming units. As a proof, we isolated the strain HP01
(KCTC 21190) from a saliva sample using the medium and
analyzed its characteristics. Further tests showed that the strain
HP01 belongs to Streptococcus oralis in the Mitis group and
characteristically forms short-chain streptococcal cells with
a high capacity of acid tolerance and biofilm formation. The
genome analysis revealed divergence of the strain HP01 from
the type strains of S. oralis. They showed distinctive phylogenetic
distances in their ROS-scavenging proteins, including
superoxide dismutase SodA, thioredoxin TrxA, thioredoxin
reductase TrxB, thioredoxin-like protein YtpP, and glutaredoxin-
like protein NrdH, as well as a large number of antimicrobial
resistance genes and horizontally transferred genes.
The concatenated ROS-scavenging protein sequence can be
used to identify and evaluate Streptococcus species and subspecies
based on phylogenetic analysis.
Citations
Citations to this article as recorded by

- Alleviation of H2O2 toxicity by extracellular catalases in the phycosphere of Microcystis aeruginosa
Yerim Park, Wonjae Kim, Yeji Cha, Minkyung Kim, Woojun Park
Harmful Algae.2024; 137: 102680. CrossRef