Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
892 "pH"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full articles
Genetic insights into novel lysis suppression by phage CSP1 in Escherichia coli
Moosung Kim, Sangryeol Ryu
J. Microbiol. 2025;63(4):e2501013.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2501013
  • 62 View
  • 5 Download
AbstractAbstract PDFSupplementary Material

Lysis inhibition (LIN) in bacteriophage is a strategy to maximize progeny production. A clear plaque-forming mutant, CSP1C, was isolated from the turbid plaque-forming CSP1 phage. CSP1C exhibited an adsorption rate and replication dynamics similar to CSP1. Approximately 90% of the phages were adsorbed to the host cell within 12 min, and both phages had a latent period of 25 min. Burst sizes were 171.42 ± 31.75 plaque-forming units (PFU) per infected cell for CSP1 and 168.94 ± 51.67 PFU per infected cell for CSP1C. Both phages caused comparable reductions in viable E. coli cell counts at a low multiplicity of infection (MOI). However, CSP1 infection did not reduce turbidity, suggesting a form of LIN distinct from the well-characterized LIN of T4 phage. Genomic analysis revealed that a 4,672-base pairs (bp) DNA region, encompassing part of the tail fiber gene, CSP1_020, along with three hypothetical genes, CSP1_021, CSP1_022, and part of CSP1_023, was deleted from CSP1 to make CSP1C. Complementation analysis in CSP1C identified CSP1_020, CSP1_021, and CSP1_022 as a minimal gene set required for the lysis suppression in CSP1. Co-expression of these genes in E. coli with holin (CSP1_092) and endolysin (CSP1_091) resulted in lysis suppression. Lysis suppression was abolished by disrupting the proton motive force (PMF), supporting their potential role as antiholin. Additionally, CSP1_021 directly interacts with holin, suggesting that it may function as an antiholin. These findings identify new genetic factors involved in lysis suppression in CSP1, providing broader insights into phage strategies for modulating host cell lysis.

Antifungal effects of Metformin against Candida albicans by autophagy regulation
Xiao Zhao, Yang Wang, Qinqin Zhang, Yun Huang, Xin Wei, Daming Wu
J. Microbiol. 2025;63(4):e2411008.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411008
  • 37 View
  • 2 Download
AbstractAbstract PDF

Candida albicans (C. albicans) is a common opportunistic fungal pathogen that can cause infections ranging from superficial to severe systemic diseases. This study investigates the antifungal effects of metformin on C. albicans and explores its underlying mechanisms. Growth inhibition was assessed via XTT assays, and hyphal formation and morphological changes were observed by light microscope and scanning electron microscopy (SEM). Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were measured with JC-1 and DCFH-DA probes, respectively. Gene expression related to ROS and autophagy was quantified by RT-qPCR, and autophagosomes were visualized using transmission electron microscopy (TEM). Metformin significantly inhibited C. albicans growth and hyphal formation, altered cell morphology, reduced MMP, and increased ROS levels. It activated autophagy in planktonic C. albicans but suppressed it in biofilm forms. Additionally, metformin exhibited synergistic effects with amphotericin B against planktonic C. albicans and with caspofungin against biofilms. The findings suggest that metformin exerts antifungal activity by modulating MMP, ROS levels, and autophagy-related pathways, and enhances the efficacy of specific antifungal drugs.

Reviews
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 528 View
  • 34 Download
  • 1 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Advancements in the production of value-added products via methane biotransformation by methanotrophs: Current status and future perspectives
Ok Kyung Lee, Jong Seok Lee, Yoonyong Yang, Moonsuk Hur, Kyung Jin Lee, Eun Yeol Lee
J. Microbiol. 2025;63(3):e2412024.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2412024
  • 349 View
  • 26 Download
  • 1 Crossref
AbstractAbstract PDF

Methane gas is recognized as a promising carbon substrate for the biosynthesis of value-added products due to its abundance and low price. Methanotrophs utilized methane as their sole source of carbon and energy, thus they can serve as efficient biocatalysts for methane bioconversion. Methanotrophs-catalyzed microbial bioconversion offer numerous advantages, compared to chemical processes. Current indirect chemical conversions of methane suffer from their energy-intensive processes and high capital expenditure. Methanotrophs can be cell factories capable of synthesizing various value-added products from methane such as methanol, organic acids, ectoine, polyhydroxyalkanoates, etc. However, the large-scale commercial implementation using methanotrophs remains a formidable challenge, primarily due to limitations in gas-liquid mass transfer and low metabolic capacity. This review explores recent advancements in methanotroph research, providing insights into their potential for enabling methane bioconversion.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Research Articles
Single nucleotide genome recognition and selective bacterial lysis using synthetic phages loaded with CRISPR-Cas12f1-truncated sgRNA
Ho Joung Lee, Song Hee Jeong, Sang Jun Lee
J. Microbiol. 2025;63(2):e2501012.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2501012
  • 510 View
  • 29 Download
AbstractAbstract PDFSupplementary Material

Phage specificity primarily relies on host cell-surface receptors. However, integrating cas genes and guide RNAs into phage genomes could enhance their target specificity and regulatory effects. In this study, we developed a CRISPR-Cas12f1 system-equipped bacteriophage λ model capable of detecting Escherichia coli target genes. We demonstrated that synthetic λ phages carrying Cas12f1-sgRNA can effectively prevent lysogen formation. Furthermore, we showcased that truncating the 3'-end of sgRNA enables precise identification of single-nucleotide variations in the host genome. Moreover, infecting E. coli strains carrying various stx2 gene subtypes encoding Shiga toxin with bacteriophages harboring Cas12f1 and truncated sgRNAs resulted in the targeted elimination of strains with matching subtype genes. These findings underscore the ability of phages equipped with the CRISPR-Cas12f1 system to precisely control microbial hosts by recognizing genomic sequences with high resolution.

Functional importance of Ser323 in cysteine desulfhydrase and cystathionine gamma-lyase MccB of Staphylococcus aureus
Dukwon Lee, Hyojeong Lee, Kyumi Byun, Eun-Su Park, Nam-Chul Ha
J. Microbiol. 2025;63(2):e2411026.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411026
  • 336 View
  • 19 Download
AbstractAbstract PDFSupplementary Material

Pyridoxal 5'-phosphate (PLP)-dependent enzymes participate in various reactions involved in methionine and cysteine metabolism. The representative foodborne pathogen Staphylococcus aureus expresses the PLP-dependent enzyme MccB, which exhibits both cystathionine gamma-lyase (CGL) and cysteine desulfhydrase activities. In this study, we investigated the role of Ser323 in MccB, a conserved residue in many PLP-dependent enzymes in the transsulfuration pathway. Our findings reveal that Ser323 forms a hydrogen bond with the catalytic lysine in the absence of PLP, and upon internal aldimine formation, PLP-bound lysine is repositioned away from Ser323. Substituting Ser323 with alanine abolishes the enzymatic activity, similar to mutations at the catalytic lysine site. Spectroscopic analysis suggests that Ser323 is essential for the rapid formation of the internal aldimine with lysine in wild-type MccB. This study highlights the crucial role of Ser323 in catalysis, with broader implications for other PLP-dependent enzymes, and enhances our understanding of the molecular mechanisms involved in the selective control of foodborne pathogenic bacteria.

Journal Articles
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 63 View
  • 0 Download
AbstractAbstract
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
J. Microbiol. 2024;62(12):1089-1097.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00188-z
  • 64 View
  • 0 Download
AbstractAbstract
Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01(T) and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01(T) and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003(T) and Leuconostoc gasicomitatum LMG 18811(T) with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01(T) and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01(T) and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01(T) (= KACC 23748(T) = JCM 37028(T)) as the type strain.
Characterization and Comparative Genomic Analysis of vB_BceM_CEP1: A Novel Temperate Bacteriophage Infecting Burkholderia cepacia Complex
Momen Askoura, Eslam K Fahmy, Safya E Esmaeel, Wael A H Hegazy, Aliaa Abdelghafar
J. Microbiol. 2024;62(11):1035-1055.   Published online November 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00185-2
  • 81 View
  • 0 Download
AbstractAbstract
The increasing prevalence of multidrug-resistant bacteria imminently threatens public health and jeopardizes nearly all aspects of modern medicine. The Burkholderia cepacia complex (Bcc) comprises Burkholderia cepacia and the related species of Gram-negative bacteria. Members of the Bcc group are opportunistic pathogens responsible for various chronic illnesses, including cystic fibrosis and chronic granulomatous disease. Phage therapy is emerging as a potential solution to combat the antimicrobial resistance crisis. In this study, a temperate phage vB_BceM_CEP1 was isolated from sewage and fully characterized. Transmission electron microscopy indicated that vB_BceM_CEP1 belongs to the family Peduoviridae. The isolated phage demonstrated enhanced environmental stability and antibiofilm potential. One-step growth analysis revealed a latent period of 30 min and an average burst size of 139 plaque-forming units per cell. The genome of vB_BceM_CEP1 consists of 32,486 bp with a GC content of 62.05%. A total of 40 open reading frames were annotated in the phage genome, and none of the predicted genes was annotated as tRNA. Notably, genes associated with antibiotic resistance, host virulence factors, and toxins were absent from the vB_BceM_CEP1 genome. Based on its unique phenotype and phylogeny, the isolated phage vB_BceM_CEP1 is classified as a new temperate phage with lytic activity. The findings of this study enhance our understanding of the diversity of Bcc phages.
Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages
Zhen-Xu Zhuo, Yu-Lian Feng, Xi-Wei Zhang, Hao Liu, Fang-Yin Zeng, Xiao-Yan Li
J. Microbiol. 2024;62(10):859-870.   Published online November 4, 2024
DOI: https://doi.org/10.1007/s12275-024-00170-9
  • 48 View
  • 0 Download
AbstractAbstract
Salmonella Typhimurium is an invasive gastrointestinal pathogen for both humans and animals. To investigate the genetic framework and diversity of S. Typhimurium, a total of 194 S. Typhimurium isolates were collected from patients in a tertiary hospital between 2020 and 2021. Antimicrobial susceptibility testing was used to confirm the resistance phenotype. Whole-genome sequencing and bioinformatics analysis were performed to determine the sequence type, phylogenetic relationships, resistance gene profiles, Salmonella pathogenicity island (SPI) and the diversity of the core and pan genome. The result showed that 57.22% of S. Typhimurium isolates were multidrug resistant and resistance of total isolates to the first-line drug ciprofloxacin was identified in 60.82%. The population structure of S. Typhimurium was categorized into three lineages: ST19 (20.10%, 39/194), ST34-1 (47.42%, 92/194) and ST34-2 (40.65%, 63/194), with the population size exhibiting increasing trends. All lineages harbored variety of fimbrial operons, prophages, SPIs and effectors that contributed to the virulence and long-term infections of S. Typhimurium. Importantly, ST34-1 lineage might potentially be more invasive due to the possession of SPI1-effector gene sopE which was essential for the proliferation, internalization and intracellular presence of S. Typhimurium in hosts. Multiple antimicrobial resistance genes were characteristically distributed across three lineages, especially carbapenem genes only detected in ST34-1&2 lineages. The distinct functional categories of pan genome among three lineages were observed in metabolism, signaling and gene information processing. This study provides a theoretical foundation for the evolved adaptation and genetic diversity of S. Typhimurium ST19 and ST34, among which ST34 lineages with multidrug resistance and potential hypervirulence need to pay more attention to epidemiological surveillance.
Upgrading Isoquercitrin Concentration via Submerge Fermentation of Mulberry Fruit Extract with Edible Probiotics to Suppress Gene Targets for Controlling Kidney Cancer and Inflammation
Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang
J. Microbiol. 2024;62(10):919-927.   Published online October 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00163-8
  • 62 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
In recent years, kidney cancer has become one of the most serious medical issues. Kidney cancer is treated with a variety of active compounds that trigger genes that cause cancer. We identified in our earlier research that isoquercitrin (IQ) can activate PIK3CA, IGF1R, and PTGS2. However, it has a very low bioavailability because of its lower solubility in water. So, we utilized sub-merge fermentation technology with two well-known probiotics, Lactobacillus acidophilus and Bacillus subtilis, as a microbial source and mulberry fruit extract as a substrate, which has a high IQ level to improve IQ yield. Furthermore, we compared the total phenolic, flavonoid, and antioxidant contents of fermented and non-fermented samples, and we found that the fermented samples had greater levels than non-fermented sample. In addition, the high-performance liquid chromatography (HPLC) results showed that the fermented mulberry fruit extract from B. subtilis and L. acidophilus showed higher IQ values (190.73 ± 0.004 μg/ml and 220.54 ± 0.007 μg/ml, respectively), compared to the non-fermented samples, which had IQ values (80.12 ± 0.002 μg/ml). Additionally, at 62.5 µg/ml doses of each sample, a normal kidney cell line (HEK 293) showed higher cell viability for fermented and non-fermented samples. Conversely, at the same doses, the fermented samples of L. acidophilus and B. subtilis in a kidney cancer cell line (A498) showed an inhibition of cell growth around 36% and 31%, respectively. Finally, we performed RT and qRT PCR assay, and we found a significant reduction in the expression of the PTGS2, PIK3CA, and IGF1R genes. We therefore can conclude that the fermented samples have a higher concentration of isoquercitrin, and also can inhibit the expression of the genes PTGS2, PIK3CA, and IGF1R, which in turn regulates kidney cancer and inflammation.

Citations

Citations to this article as recorded by  
  • Recent research on the bioactivity of polyphenols derived from edible fungi and their potential in chronic disease prevention
    Wenbin Yu, Yufei Zhang, Yi Lu, Zhiwei Ouyang, Jiahua Peng, Yayi Tu, Bin He
    Journal of Functional Foods.2025; 124: 106627.     CrossRef
Mammaliicoccus sciuri's Pan-Immune System and the Dynamics of Horizontal Gene Transfer Among Staphylococcaceae: a One-Health CRISPR Tale
Allan de Carvalho, Marcia Giambiagi-deMarval, Ciro César Rossi
J. Microbiol. 2024;62(9):775-784.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00156-7
  • 79 View
  • 0 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract
Recently emancipated from the Staphylococcus genus due to genomic differences, Mammaliicoccus sciuri, previously classified as an occasional pathogen, emerges as a significant player in the landscape of resistance gene dissemination among Staphylococcaceae. Despite its classification, its role remained enigmatic. In this study, we delved into the genomic repertoire of M. sciuri to unravel its contribution to resistance and virulence gene transfer in the context of One Health. Through comprehensive analysis of publicly available genomes, we unveiled a diverse pan-immune system adept at defending against exogenous genetic elements, yet concurrently fostering horizontal gene transfer (HGT). Specifically, exploration of CRISPR-Cas systems, with spacer sequences as molecular signatures, elucidated a global dissemination pattern spanning environmental, animal, and human hosts. Notably, we identified the integration of CRISPR-Cas systems within SCCmecs (Staphylococcal Cassette Chromosome mec), harboring key genes associated with pathogenicity and resistance, especially the methicillin resistance gene mecA, suggesting a strategic adaptation to outcompete other mobile genetic elements. Our findings underscored M. sciuri's active engagement in HGT dynamics and evolutionary trajectories within Staphylococcaceae, emphasizing its central role in shaping microbial communities and highlighting the significance of understanding its implications in the One Health framework, an interdisciplinary approach that recognizes the interconnectedness of human, animal, and environmental health to address global health challenges.

Citations

Citations to this article as recorded by  
  • From Farm to Community: Dispersal of Potentially Pathogenic Staphylococcus and Mammaliicoccus Species and Antimicrobial Resistance Across Shared Environments
    Faizan Ahmad, Samuel Sathler Martuchelle, Ana Luisa Andrade-Oliveira, Vitor Emanuel Lanes Viana, Maria Antônia Silva Melo Sousa, Felipe Sicchierolli da Silveira, Marisa Alves Nogueira-Diaz, Monalessa Fábia Pereira, Marcia Giambiagi-deMarval, Ciro César Ro
    Current Microbiology.2025;[Epub]     CrossRef
  • Genomic insights into multidrug and heavy metal resistance in Chryseobacterium sp. BI5 isolated from sewage sludge
    Mrinmoy Patra, Anand Kumar Pandey, Suresh Kumar Dubey
    Total Environment Microbiology.2025; 1(1): 100005.     CrossRef
Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
Hyeonsu Tak, Miri S Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
J. Microbiol. 2024;62(9):739-748.   Published online July 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00158-5
  • 112 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Two Gram-stain-negative, aerobic, motile by means of flagella, short rod-shaped bacterial strains, designated IMCC43200(T) and IMCC45268(T), were isolated from coastal seawater samples collected from the South Sea of Korea. Strains IMCC43200(T) and IMCC45268(T) shared 98.6% 16S rRNA gene sequence similarity and were closely related to Congregibacter litoralis KT71(T) (98.8% and 98.7%, respectively). Complete whole-genome sequences of IMCC43200(T) and IMCC45268(T) were 3.93 and 3.86 Mb in size with DNA G + C contents of 54.8% and 54.2%, respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 74.5% and 23.4%, respectively, revealing that they are independent species. The two strains showed ANI values of ≤ 75.8% and dDDH values of ≤ 23.0% to the type and only species of the genus Congregibacter (C. litoralis), indicating that each strain represents a novel species. Both strains contained summed feature 3 (comprising C(16:1) ω6c and/or C(16:1) ω7c) and summed feature 8 (comprising C(18:1) ω6c and/or C(18:1) ω7c) as major fatty acid constituents. The predominant isoprenoid quinone detected in both strains was ubiquinone-8 (Q-8). The major polar lipids of the two strains were phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and aminolipids. Based on the phylogenetic, genomic, and phenotypic characterization, strains IMCC43200(T) and IMCC45268(T) were considered to represent two novel species within the genus Congregibacter, for which the names Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. are proposed with IMCC43200(T) (= KCTC 8133(T) = NBRC 116295(T) = CCTCC AB 2023139(T)) and IMCC45268(T) (= KCTC 92921(T) = NBRC 116135(T)) as the type strains, respectively.

Citations

Citations to this article as recorded by  
  • Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
    Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
    Journal of Microbiology.2024; 62(12): 1089.     CrossRef
Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis
Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
J. Microbiol. 2024;62(8):683-693.   Published online June 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00150-z
  • 73 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.

Citations

Citations to this article as recorded by  
  • Size-dependent ecotoxicological impacts of tire wear particles on zebrafish physiology and gut microbiota: Implications for aquatic ecosystem health
    Yun Zhang, Qianqian Song, Qingxuan Meng, Tianyu Zhao, Xiaolong Wang, Xinrui Meng, Jing Cong
    Journal of Hazardous Materials.2025; 487: 137215.     CrossRef
Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast
Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim
J. Microbiol. 2024;62(8):639-648.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00147-8
  • 58 View
  • 0 Download
AbstractAbstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.

Journal of Microbiology : Journal of Microbiology
TOP