Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
33 "oxidative stress"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
The Salmonella enterica EnvE is an Outer Membrane Lipoprotein and Its Gene Expression Leads to Transcriptional Repression of the Virulence Gene msgA
Sinyeon Kim, Yong Heon Lee
J. Microbiol. 2024;62(11):1013-1022.   Published online November 15, 2024
DOI: https://doi.org/10.1007/s12275-024-00183-4
  • 306 View
  • 12 Download
AbstractAbstract PDF
The envE gene of Salmonella enterica serovar Typhimurium is encoded within Salmonella Pathogenicity Island-11 (SPI-11) and is located immediately upstream of the virulence gene msgA (macrophage survival gene A) in the same transcriptional orientation. To date, the characteristics and roles of envE remain largely unexplored. In this study, we show that EnvE, a predicted lipoprotein, is localized on the outer membrane using sucrose gradient ultracentrifugation. Under oxidative stress conditions, envE transcription is suppressed, while msgA transcription is induced, indicating an inverse correlation between the mRNA levels of the two neighboring genes. Importantly, inactivation of envE leads to constitutive transcription of msgA regardless of the presence of oxidative stress. Moreover, trans-complementation of the envE mutant with a plasmid-borne envE fails to prevent the induction of msgA transcription, suggesting that envE functions as a cis-regulatory element rather than a trans-acting factor. We further show that both inactivation and complementation of envE confer wild-type levels of resistance to oxidative stress by ensuring the expression of msgA. Our data suggest that the S. enterica envE gene encodes an outer membrane lipoprotein, and its transcription represses msgA expression in a cis-acting manner, probably by transcriptional interference, although the exact molecular details are yet unclear.
Review
Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems
Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park
J. Microbiol. 2024;62(11):933-950.   Published online October 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00172-7
  • 430 View
  • 9 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.

Citations

Citations to this article as recorded by  
  • Cyanophage Infections in a Sponge Intracellular Cyanobacterial Symbiont
    Tzipora Peretz, Esther Cattan‐Tsaushu, Chiara Conti, Benyamin Rosental, Laura Steindler, Sarit Avrani
    Environmental Microbiology.2025;[Epub]     CrossRef
  • Public goods-mediated bacterial interplay in aquatic ecosystems
    Yerim Park, Wonjae Kim, Jihye Bae, Woojun Park
    Water Research.2025; 287: 124310.     CrossRef
  • Horizontal Gene Transfer and Recombination in Cyanobacteriota
    Devaki Bhaya, Gabriel Birzu, Eduardo P.C. Rocha
    Annual Review of Microbiology .2025; 79(1): 685.     CrossRef
Journal Articles
Comparative Transcriptomic Analysis of Flagellar‑Associated Genes in Salmonella Typhimurium and Its rnc Mutant
Seungmok Han , Ji-Won Byun , Minho Lee
J. Microbiol. 2024;62(1):33-48.   Published online January 5, 2024
DOI: https://doi.org/10.1007/s12275-023-00099-5
  • 483 View
  • 14 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (Δrnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the Δrnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and Δrnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.

Citations

Citations to this article as recorded by  
  • CspA regulates stress resistance, flagellar motility and biofilm formation in Salmonella Enteritidis
    Xiang Li, Yan Cui, Xiaohui Sun, Chunlei Shi, Shoukui He, Xianming Shi
    Food Bioscience.2025; 66: 106237.     CrossRef
  • The dual functions of the GTPase BipA in ribosome assembly and surface structure biogenesis in Salmonella enterica serovar Typhimurium
    Eunsil Choi, Eunwoo Ryu, Donghwee Kim, Ji-Won Byun, Kahyun Kim, Minho Lee, Jihwan Hwang, Samuel Wagner
    PLOS Pathogens.2025; 21(4): e1013047.     CrossRef
  • Influence of Flagella on Salmonella Enteritidis Sedimentation, Biofilm Formation, Disinfectant Resistance, and Interspecies Interactions
    Huixue Hu, Jingguo Xu, Jingyu Chen, Chao Tang, Tianhao Zhou, Jun Wang, Zhuangli Kang
    Foodborne Pathogens and Disease.2024;[Epub]     CrossRef
Lactobacillus rhamnosus KBL2290 Ameliorates Gut Inflammation in a Mouse Model of Dextran Sulfate Sodium‑Induced Colitis
Woon-ki Kim , Sung-gyu Min , Heeun Kwon , SungJun Park , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2023;61(7):673-682.   Published online June 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00061-5
  • 334 View
  • 2 Download
  • 7 Web of Science
  • 8 Crossref
AbstractAbstract PDF
Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.

Citations

Citations to this article as recorded by  
  • Dietary supplementation with proanthocyanidins and rutin alleviates the symptoms of type 2 diabetes mice and regulates gut microbiota
    Yue Gao, Binbin Huang, Yunyi Qin, Bing Qiao, Mengfei Ren, Liqing Cao, Yan Zhang, Maozhen Han
    Frontiers in Microbiology.2025;[Epub]     CrossRef
  • Lacticaseibacillus rhamnosus G7 alleviates DSS-induced ulcerative colitis by regulating the intestinal microbiota
    Jianlong Lao, Man Chen, Shuping Yan, Han Gong, Zhaohai Wen, Yanhong Yong, Dan Jia, Shuting Lv, Wenli Zou, Junmei Li, Huiming Tan, Hong Yin, Xiangying Kong, Zengyuan Liu, Fucheng Guo, Xianghong Ju, Youquan Li
    BMC Microbiology.2025;[Epub]     CrossRef
  • Lactobacillus rhamnosus MP108 alleviates ulcerative colitis in mice by enhancing the intestinal barrier, inhibiting inflammation, and modulating gut microbiota
    Huizhen Li, Yang Chen, Huiting Fang, Xinmei Guo, Xuecong Liu, Jianxin Zhao, Wei Chen, Bo Yang
    Food Science and Human Wellness.2025; 14(6): 9250139.     CrossRef
  • Therapeutic Potential of Short-Chain Fatty Acids in Gastrointestinal Diseases
    Meng Tong Zhu, Jonathan Wei Jie Lee
    Nutraceuticals.2025; 5(3): 19.     CrossRef
  • Probiotics: Shaping the gut immunological responses
    Eirini Filidou, Leonidas Kandilogiannakis, Anne Shrewsbury, George Kolios, Katerina Kotzampassi
    World Journal of Gastroenterology.2024; 30(15): 2096.     CrossRef
  • Synergistic effects of probiotics with soy protein alleviate ulcerative colitis by repairing the intestinal barrier and regulating intestinal flora
    Rentang Zhao, Bingqing Shang, Luyan Sun, Suyuan Lv, Guolong Liu, Qiu Wu, Yue Geng
    Journal of Functional Foods.2024; 122: 106514.     CrossRef
  • Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation
    Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun
    Journal of Microbiology.2024; 62(10): 907.     CrossRef
  • Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide
    Yeji You, Sung-Hwan Kim, Chul-Hong Kim, In-Hwan Kim, YoungSup Shin, Tae-Rahk Kim, Minn Sohn, Jeseong Park
    Microorganisms.2023; 11(9): 2312.     CrossRef
Review
Membrane Proteins as a Regulator for Antibiotic Persistence in Gram‑Negative Bacteria
Jia Xin Yee , Juhyun Kim , Jinki Yeom
J. Microbiol. 2023;61(3):331-341.   Published online February 17, 2023
DOI: https://doi.org/10.1007/s12275-023-00024-w
  • 424 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.

Citations

Citations to this article as recorded by  
  • Cardamom essential oil-loaded zinc oxide nanoparticles: A sustainable antimicrobial strategy against multidrug-resistant foodborne pathogens
    Mabrouk Sobhy, Tamer Elsamahy, Esraa A. Abdelkarim, Ebtihal Khojah, Haiying Cui, Lin Lin
    Microbial Pathogenesis.2025; 205: 107661.     CrossRef
  • Amino Acid and Au(III) Self-Assembled Supramolecular Nanozymes for Antimicrobial Applications
    Yunzhu Xu, Dahai Hou, Min Zhao, Tong Zhao, Yong Ma, Yafeng Zhang, Yang Guo, Weiwei Tao, Hui Wang
    ACS Applied Nano Materials.2024; 7(19): 22505.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Journal Articles
Brachybacterium kimchii sp. nov. and Brachybacterium halotolerans subsp. kimchii subsp. nov., isolated from the Korean fermented vegetables, kimchi, and description of Brachybacterium halotolerans subsp. halotolerans subsp. nov.
Yujin Kim , Yeon Bee Kim , Juseok Kim , Joon Yong Kim , Tae Woong Whon , Won-Hyong Chung , Eun-Ji Song , Young-Do Nam , Se Hee Lee , Seong Woon Roh
J. Microbiol. 2022;60(7):678-688.   Published online July 4, 2022
DOI: https://doi.org/10.1007/s12275-022-1581-6
  • 327 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Two Gram-stain-positive, oxidase-negative, catalase-positive, and coccus-shaped bacterial strains, designated CBA3104T and CBA3105T, were isolated from kimchi. Strain CBA3104T and CBA3105T grew at 10–35°C (optimum, 25°C and 30°C, respectively), at pH 6.0–8.5 (optimum, pH 6.5), and in the presence of 0–15% (w/v) NaCl (optimum, 5%). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CBA3104T formed a distinct phylogenetic lineage within the genus Brachybacterium whereas strain CBA3105T was closely positioned with Brachybacterium halotolerans MASK1Z-5T. The 16S rRNA gene sequence similarity between strains CBA3104T and CBA3105T was 99.9%, but ANI and dDDH values between strains CBA3104T and CBA3105T were 93.61% and 51.5%, respectively. Strain CBA3104T showed lower ANI and dDDH values than species delineation against three closely related strains and type species of the genus Brachybacterium, however, strain CBA3105T showed 96.63% ANI value and 69.6% dDDH value with Brachybacterium halotolerans MASK1Z-5T. Among biochemical analysis results, strain CBA3104T could uniquely utilize bromo-succinic acid whereas only strain CBA3105T was positive for alkaline phosphatase and α-fucosidase among two novel strains, closely related strains, and type species of the genus Brachybacterium. Compared with strain CBA3105T and Brachybacterium halotolerans JCM 34339T, strain CBA3105T was differentially positive for acid production of D-arabinose, D-adonitol, and potassium 5-ketogluconate and enzyme activity of β-glucuronidase. Both strains contained menaquinone-7 as the dominant quinone. The cell-wall peptidoglycan of two novel strains contained meso-diaminopimelic acid. The major fatty acids of strains CBA3104T and CBA3105T were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The major polar lipids of both strains were phosphatidylglycerol and diphosphatidylglycerol. Strain CBA3104T possessed a uniquely higher abundance of tRNA (97 tRNAs) than four Brachybacterium strains used for comparative taxonomic analysis (54–62 tRNAs). Both the CBA3104T and CBA3105T strain harbored various oxidoreductase, transferase, hydrolase, and lyase as strain-specific functional genes compared to closely related strains and Brachybacterium type species. The results of biochemical/physiological, chemotaxonomic, and genomic analyses demonstrated that strains CBA3104T and CBA3105T represent a novel species of the genus Brachybacterium and a novel subspecies of B. halotolerans, respectively, for which the names Brachybacterium kimchii sp. nov. and B. halotolerans subsp. kimchii subsp. nov. are proposed. The type strains of the novel species and the novel subspecies are CBA3104T (= KCCM 43417T = JCM 34759T) and CBA3105T (= KCCM 43418T = JCM 34760T), respectively.

Citations

Citations to this article as recorded by  
  • Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia
    Alexander G. Elcheninov, Kseniya S. Zayulina, Alexandra A. Klyukina, Mariia K. Kremneva, Ilya V. Kublanov, Tatiana V. Kochetkova
    Microorganisms.2023; 12(1): 16.     CrossRef
  • Validation List no. 208. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Complete Genome Sequence of Brachybacterium sp. Strain NBEC-018, Isolated from Nematode-Infected Potatoes
    Ling Chen, Yueying Wang, Nanxi Liu, Lei Zhu, Yong Min, Yimin Qiu, Yuxi Tian, Xiaoyan Liu, David Rasko
    Microbiology Resource Announcements.2022;[Epub]     CrossRef
Availability of polyamines affects virulence and survival of Neisseria meningitidis
Poonam Kanojiya , Riya Joshi , Sunil D. Saroj
J. Microbiol. 2022;60(6):640-648.   Published online April 18, 2022
DOI: https://doi.org/10.1007/s12275-022-1589-y
  • 334 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDF
Neisseria meningitidis is a Gram-negative human-restricted pathogen that asymptomatically resides in the human respiratory tract. Meningococcal meningitis and sepsis both are caused by N. meningitidis. The bacterium must adhere to host epithelial cells in order to colonize effectively. The factors that determine the initial attachment to the host and dispersal, are not well understood. Metabolites released by the host may aid in meningococcal colonization and dissemination. Polyamines are aliphatic polycations that assist in cell survival and proliferation. The virulence properties of N. meningitidis after exposure to polyamines were investigated. Adhesion to nasopharyngeal epithelial cells increased in the presence of spermine. Also, the relative expression of adhesin, pilE increased in the presence of spermine. Further, relative expression of ctrA, ctrB and lipB was upregulated in the presence of spermidine, indicating increased capsule formation. Upregulated capsule synthesis of N. meningitidis in the presence of spermidine allows it to survive in murine macrophages. The study suggests the importance of the extracellular pool of polyamines in promoting virulence in N. meningitidis.

Citations

Citations to this article as recorded by  
  • Environmental desiccation stress induces viable but non culturable state in Neisseria meningitidis
    Poonam Kanojiya, Tiyasa Haldar, Sunil D. Saroj
    Archives of Microbiology.2025;[Epub]     CrossRef
  • Bacterial metabolism in the host and its association with virulence
    Amrita Bhagwat, Tiyasa Haldar, Poonam Kanojiya, Sunil D. Saroj
    Virulence.2025;[Epub]     CrossRef
  • Epsilon-poly-l-lysine inhibits biofilm formation and aids dispersion in Acinetobacter baumannii
    Ujjayni Saha, Sakshi Shinde, Savita Jadhav, Sunil D. Saroj
    Medicine in Microecology.2024; 21: 100110.     CrossRef
  • Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis
    Poonam Kanojiya, Sunil D. Saroj
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Antibiotics modulates the virulence of Neisseria meningitidis by regulating capsule synthesis
    Tiyasa Haldar, Riya Joshi, Sunil D. Saroj
    Microbial Pathogenesis.2023; 179: 106117.     CrossRef
Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei
Weixin Zhang , Ning An , Junqi Guo , Zhixing Wang , Xiangfeng Meng , Weifeng Liu
J. Microbiol. 2021;59(4):426-434.   Published online January 26, 2021
DOI: https://doi.org/10.1007/s12275-021-0433-0
  • 349 View
  • 0 Download
  • 14 Web of Science
  • 15 Crossref
AbstractAbstract PDF
The prominent protein producing workhorse Trichoderma reesei secretes a typical yellow pigment that is synthesized by a gene cluster including two polyketide synthase encoding genes sor1 and sor2. Two transcription factors (YPR1 and YPR2) that are encoded in the same cluster have been shown to regulate the expression of the sor genes. However, the physiological relevance of the yellow pigment synthesis in T. reesei is not completely clear. In this study, a yellow pigment hyper-producer OEypr1 and three yellow pigment non-producers, OEypr1-sor1, Δypr1, and OEypr2, were constructed. Their phenotypic features in mycelial growth, conidiation, cell wall integrity, stress tolerance, and cellulase production were determined. Whereas hyperproduction of the yellow pigment caused significant defects in all the physiological aspects tested, the non-producers showed similar colony growth, but improved conidiation, maintenance of cell wall integrity, and stress tolerance compared to the control strain. Moreover, in contrast to the severely compromised extracellular cellobiohydrolase production in the yellow pigment hyperproducer, loss of the yellow pigment hardly affected induced cellulase gene expression. Our results demonstrate that interfering with the yellow pigment synthesis constitutes an engineering strategy to endow T. reesei with preferred features for industrial application.

Citations

Citations to this article as recorded by  
  • Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens
    Xuwen Hou, Mengyao Xue, Gan Gu, Dan Xu, Daowan Lai, Ligang Zhou
    Molecules.2025; 30(14): 3039.     CrossRef
  • Inhibition of Botritis cinerea mycelial growth and alteration of root development of tomato seeds by soluble and volatile metabolites of Trichoderma afroharzianum (TR04)
    Sarita Jackeline Romani Vasquez, Andrea Zabiák, András Csótó, Erzsébet Sándor
    Acta Phytopathologica et Entomologica Hungarica.2025;[Epub]     CrossRef
  • Co-inoculation of Soybean Seedling with Trichoderma asperellum and Irpex laceratus Promotes the Absorption of Nitrogen and Phosphorus
    Zengyuan Tian, Xiaomin Wang, Yanyi Li, Yu Xi, Mengting He, Yuqi Guo
    Current Microbiology.2024;[Epub]     CrossRef
  • Small GTPase Rab7 is involved in stress adaptation to carbon starvation to ensure the induced cellulase biosynthesis in Trichoderma reesei
    Lin Liu, Zhixing Wang, Yu Fang, Renfei Yang, Yi Pu, Xiangfeng Meng, Weifeng Liu
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei
    Jinling Lan, Lin Zhang, Jie Gao, Ronglin He
    The Journal of General and Applied Microbiology.2023; 69(3): 159.     CrossRef
  • MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei
    Miriam Schalamun, Sabrina Beier, Wolfgang Hinterdobler, Nicole Wanko, Johann Schinnerl, Lothar Brecker, Dorothea Elisa Engl, Monika Schmoll
    Scientific Reports.2023;[Epub]     CrossRef
  • C-terminus of serine–arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus
    Natsumi Kobayashi, Ryohei Katayama, Kentaro Minamoto, Takashi Kawaguchi, Shuji Tani
    International Microbiology.2023; 27(1): 91.     CrossRef
  • Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis
    Jie Yang, Jia-Xiang Li, Fei Zhang, Xin-Qing Zhao
    Engineering Microbiology.2023; 3(2): 100065.     CrossRef
  • Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei
    Yanli Cao, Renfei Yang, Fanglin Zheng, Xiangfeng Meng, Weixin Zhang, Weifeng Liu, Xiaorong Lin
    mBio.2022;[Epub]     CrossRef
  • Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization
    Mary L. Shenouda, Maria Ambilika, Elizabeth Skellam, Russell J. Cox
    Journal of Fungi.2022; 8(4): 355.     CrossRef
  • Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production
    Mukund G. Adsul, Pooja Dixit, Jitendra K. Saini, Ravi P. Gupta, Sankara Sri Venkata Ramakumar, Anshu S. Mathur
    Biotechnology and Bioengineering.2022; 119(8): 2167.     CrossRef
  • Identification of a Bidirectional Promoter from Trichoderma reesei and Its Application in Dual Gene Expression
    Xiaoxiao Wu, Fuzhe Li, Renfei Yang, Xiangfeng Meng, Weixin Zhang, Weifeng Liu
    Journal of Fungi.2022; 8(10): 1059.     CrossRef
  • A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei
    Lei Wang, Jialong Liu, Xiaotong Li, Xinxing Lyu, Zhizhen Liu, Hong Zhao, Xiangying Jiao, Weixin Zhang, Jun Xie, Weifeng Liu
    Microbial Biotechnology.2022; 15(10): 2533.     CrossRef
  • Transcriptome Comparison of Secondary Metabolite Biosynthesis Genes Expressed in Cultured and Lichenized Conditions of Cladonia rangiferina
    Natalia Sveshnikova, Michele D. Piercey-Normore
    Diversity.2021; 13(11): 529.     CrossRef
  • From induction to secretion: a complicated route for cellulase production in Trichoderma reesei
    Su Yan, Yan Xu, Xiao-Wei Yu
    Bioresources and Bioprocessing.2021;[Epub]     CrossRef
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria
Seo-jeong Park , Sangyong Lim , Jong-il Choi
J. Microbiol. 2020;58(2):131-141.   Published online December 23, 2019
DOI: https://doi.org/10.1007/s12275-020-9290-5
  • 337 View
  • 0 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract PDF
Response regulator (RR) is known a protein that mediates cell’s response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.

Citations

Citations to this article as recorded by  
  • Mechanistic and bibliometric insights into RpoS -mediated biofilm regulation and its strategic role in food safety applications
    Shirin Akter, Md. Ashikur Rahman, Md. Ashrafudoulla, A.G.M.Sofi Uddin Mahamud, Md Anamul Hasan Chowdhury, Sang-Do Ha
    Critical Reviews in Food Science and Nutrition.2025; 65(30): 7070.     CrossRef
  • Adaption strategies of extremophiles and the construction of wastewater treatment systems driven by extremophiles
    Zheng Guo, Yong-Guang Li, Zhi-Bin Wang, Xin Zhou, Shou-Qing Ni
    Environmental Research.2025; 282: 121979.     CrossRef
  • Deionococcus proteotlycius Genomic Library Exploration Enhances Oxidative Stress Resistance and Poly-3-hydroxybutyrate Production in Recombinant Escherichia coli
    Seul-Ki Yang, Soyoung Jeong, Inwoo Baek, Jong-il Choi, Sangyong Lim, Jong-Hyun Jung
    Microorganisms.2023; 11(9): 2135.     CrossRef
  • Bacterial redox response factors in the management of environmental oxidative stress
    Sudharsan M, Rajendra Prasad N, Saravanan Rajendrasozhan
    World Journal of Microbiology and Biotechnology.2023;[Epub]     CrossRef
  • Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli
    Sadika Dkhili, Miguel Ribeiro, Salma Ghariani, Houssem Ben Yahia, Mélanie Hillion, Patricia Poeta, Karim Ben Slama, Michel Hébraud, Gilberto Igrejas
    OMICS: A Journal of Integrative Biology.2021; 25(10): 626.     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
The NADP+-dependent glutamate dehydrogenase Gdh1 is subjected to glucose starvation-induced reversible aggregation that affects stress resistance in yeast
Woo Hyun Lee , Ju Yeong Oh , Pil Jae Maeng
J. Microbiol. 2019;57(10):884-892.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-9065-z
  • 324 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
The yeast Saccharomyces cerevisiae has two isoforms of NADP+-dependent glutamate dehydrogenase (Gdh1 and Gdh3) that catalyze the synthesis of glutamate from α-ketoglutarate and NH4 +. In the present study, we confirmed that Gdh3, but not Gdh1, mainly contributes to the oxidative stress resistance of stationary-phase cells and found evidence suggesting that the insignificance of Gdh1 to stress resistance is possibly resulted from conditional and reversible aggregation of Gdh1 into punctuate foci initiated in parallel with postdiauxic growth. Altered localization to the mitochondria or peroxisomes prevented Gdh1, which was originally localized in the cytoplasm, from stationary phase-specific aggregation, suggesting that some cytosolic factors are involved in the process of Gdh1 aggregation. Glucose starvation triggered the transition of the soluble form of Gdh1 into the insoluble aggregate form, which could be redissolved by replenishing glucose, without any requirement for protein synthesis. Mutational analysis showed that the N-terminal proximal region of Gdh1 (NTP1, aa 21-26, TLFEQH) is essential for glucose starvation-induced aggregation. We also found that the substitution of NTP1 with the corresponding region of Gdh3 (NTP3) significantly increased the contribution of the mutant Gdh1 to the stress resistance of stationary-phase cells. Thus, this suggests that NTP1 is responsible for the negligible role of Gdh1 in maintaining the oxidative stress resistance of stationary- phase cells and the stationary phase-specific stresssensitive phenotype of the mutants lacking Gdh3.

Citations

Citations to this article as recorded by  
  • Conformational flexibility associated with remote residues regulates the kinetic properties of glutamate dehydrogenase
    Barsa Kanchan Jyotshna Godsora, Parijat Das, Prasoon Kumar Mishra, Anjali Sairaman, Sandip Kaledhonkar, Narayan S. Punekar, Prasenjit Bhaumik
    Protein Science.2025;[Epub]     CrossRef
  • Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil
    Ashish Kumar Singh, Rakesh Kumar Gupta, Hemant J. Purohit, Anshuman Arun Khardenavis
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism
    Vera A. Borzova, Svetlana G. Roman, Anastasiya V. Pivovarova, Natalia A. Chebotareva
    International Journal of Molecular Sciences.2022; 23(23): 15392.     CrossRef
Review
REVIEW] Antibacterial strategies inspired by the oxidative stress and response networks
So Youn Kim , Chanseop Park , Hye-Jeong Jang , Bi-o Kim , Hee-Won Bae , In-Young Chung , Eun Sook Kim , You-Hee Cho
J. Microbiol. 2019;57(3):203-212.   Published online February 26, 2019
DOI: https://doi.org/10.1007/s12275-019-8711-9
  • 653 View
  • 0 Download
  • 134 Web of Science
  • 118 Crossref
AbstractAbstract PDF
Oxidative stress arises from an imbalance between the excessive accumulation of reactive oxygen species (ROS) and a cell’s capability to readily detoxify them. Although ROS are spontaneously generated during the normal oxygen respiration and metabolism, the ROS generation is usually augmented by redox-cycling agents, membrane disrupters, and bactericidal antibiotics, which contributes their antimicrobial bioactivity. It is noted that all the bacteria deploy an arsenal of inducible antioxidant defense systems to cope with the devastating effect exerted by the oxidative stress: these systems include the antioxidant effectors such as catalases and the master regulators such as OxyR. The oxidative stress response is not essential for normal growth, but critical to survive the oxidative stress conditions that the bacterial pathogens may encounter due to the host immune response and/or the antibiotic treatment. Based on these, we here define the ROS-inspired antibacterial strategies to enhance the oxidative stress of ROS generation and/or to compromise the bacterial response of ROS detoxification, by delineating the ROSgenerating antimicrobials and the core concept of the bacterial response against the oxidative stress.

Citations

Citations to this article as recorded by  
  • H2O2 Self‐Supplying CaO2/POM@MOF Bimodal Nanogeneration Materials for Photothermal and Chemodynamic Synergistic Antimicrobials
    Na Chen, Yuan Li, Yang Pan, Haozhe Wang, Hao Gu, Yuan Sun, Tiedong Sun
    Applied Organometallic Chemistry.2025;[Epub]     CrossRef
  • Harnessing natural antifouling agents for enhancing water and wastewater treatment membranes
    Dharma Raj Kandel, Donggyu Kwak, Somin Lee, Yu Jie Lim, Subhangi Subedi, Jaewoo Lee
    Separation and Purification Technology.2025; 359: 130254.     CrossRef
  • Antimicrobial effects and mechanistic exploration of micronized mgh2 particles against common oral pathogenic bacteria
    Qianqian Zhang, Yuxiao Chen, Qian Jiang, Baiyan Sui, Dingcheng Rao, Jiaxuan Wang, Guangyin Yuan, Xin Liu
    Applied Materials Today.2025; 42: 102567.     CrossRef
  • Chemical Profile, Antioxidant and Antimicrobial Activity of Marine Sponge Species Combined with Multivariate Statistical Analyses: Desmapsamma anchorata, Dysidea etheria and Echinodictyum dendroides
    Geane Gabriele de Oliveira Souza, José Walber Gonçalves Castro, Lariza Leisla Leandro Nascimento, Maria Inácio da Silva, Débora Odília Duarte Leite, George Joaquim Garcia Santos, Cicera Janaine Camilo, Irwin Rose Alencar de Menezes, José Galberto Martins
    Chemistry & Biodiversity.2025;[Epub]     CrossRef
  • Juxtaposing the antibacterial activities of different ZIFs in photodynamic therapy and their oxidative stress approach
    Ruth Antwi-Baah, Mirabel Ewura Esi Acquah, Malcom Frimpong Dapaah, Xiaoqin Chen, Joojo Walker, Heyang Liu
    Colloids and Surfaces B: Biointerfaces.2025; 247: 114397.     CrossRef
  • Understanding the antibacterial effects of incorporating chlorin e6-loaded zeolitic imidazolate framework-8 with cerium and polydopamine
    Ruth Antwi-Baah, Mirabel Ewura Esi Acquah, Malcom Frimpong Dapaah, Yajing Wang, Xiaoqin Chen, Joojo Walker, Heyang Liu
    Colloids and Surfaces A: Physicochemical and Engineering Aspects.2025; 706: 135768.     CrossRef
  • Synthesis of novel α-carboxylate-β-bismethylsulfanyl pyrazolyl Schiff base derivatives: Targeting DNA gyrase in antibacterial activity
    Ankita Garg, Dolar Dureja, Anjali Vijeata, Ganga Ram Chaudhary, Shiwani Berry, Savita Chaudhary, Aman Bhalla
    Journal of Molecular Structure.2025; 1337: 141954.     CrossRef
  • New Advances in Periodontal Functional Materials Based on Antibacterial, Anti‐Inflammatory, and Tissue Regeneration Strategies
    Haoyue Wu, Yuanfeng Li, Linqi Shi, Yong Liu, Jing Shen
    Advanced Healthcare Materials.2025;[Epub]     CrossRef
  • Tetracationic tetraaryltetranaphtho[2,3]porphyrins for photodynamic inactivation against Staphylococcus aureus biofilm
    Le Mi, Tao Xu, Ying-Yuan Peng, Marina G. Strakhovskaya, Yi-Jing Zhang, Gennady A. Meerovich, Tebello Nyokong, Yi-Jia Yan, Zhi-Long Chen
    European Journal of Medicinal Chemistry.2025; 290: 117558.     CrossRef
  • Application of Cold Atmospheric Pressure Plasma Jet Results in Achievement of Universal Antibacterial Properties on Various Plant Seeds
    Jakub Orlowski, Agata Motyka-Pomagruk, Anna Dzimitrowicz, Pawel Pohl, Dominik Terefinko, Ewa Lojkowska, Piotr Jamroz, Wojciech Sledz
    Applied Sciences.2025; 15(3): 1255.     CrossRef
  • Exogenous cystine increases susceptibility of drug-resistant Salmonella to gentamicin by promoting oxidation of glutathione metabolism and imbalance of intracellular redox levels
    Junyuan Du, Zhiyi Wu, Chunyang Zhu, Heng Yang, Feike Zhao, Binghu Fang
    Frontiers in Microbiology.2025;[Epub]     CrossRef
  • A Novel Type I Crustin Isoform from Scylla olivacea and its Antibacterial Potential: Membrane Depolarization, Disruption, and Induction of Reactive Oxygen Species as Modes of Action
    S. Neelima, M. V. Anju, K. Archana, V. V. Anooja, P. P. Athira, M. R. Revathy, M. Dhaneesha, A. Muneer, T. P. Sajeevan, S. Muhammed Musthafa, I. S. Bright Singh, S. Muraleedharan Nair, Rosamma Philip
    Probiotics and Antimicrobial Proteins.2025;[Epub]     CrossRef
  • Piezoelectric Biomaterial with Advanced Design for Tissue Infection Repair
    Siyuan Shang, Fuyuan Zheng, Wen Tan, Zhengyi Xing, Siyu Chen, Fuli Peng, Xiang Lv, Duan Wang, Xiangdong Zhu, Jiagang Wu, Zongke Zhou, Xingdong Zhang, Xiao Yang
    Advanced Science.2025;[Epub]     CrossRef
  • Impacts of Naphthenic Acids (NAs) Exposure on Soil Bacterial Community and Antibiotic Resistance Genes (ARGs) Dissemination
    Qianzhi Zeng, Qiangwei Liu, Yunhong Pu, Ping Gong, Yuxin Li, Yanan Sun, Yiming Hao, Qing Yang, Yaxuan Wu, Bowen Yang, Shengnan Shi, Zheng Gong
    Current Microbiology.2025;[Epub]     CrossRef
  • Green synthesis of multifunctional core/shell nanoparticles using Matricaria chamomilla extract as promising agents for combating microbial infections and oxidative stress
    Hajer S. Alorfi, Nahed O. Bawakid
    Journal of Molecular Structure.2025; 1338: 142336.     CrossRef
  • Recent advances in sugar-fatty acid esters and their analogs: antimicrobial properties, structural-functional relationships and potential mechanisms
    Ziyi Zhang, Qinlu Lin, Zhengyu Huang, Dong Xu, Kangzi Ren
    Critical Reviews in Food Science and Nutrition.2025; : 1.     CrossRef
  • Synthesis, characterization, and in‐depth molecular docking studies of 2‐naphthol derivatives with Escherichia coli receptors, coupled with comprehensive evaluation of antibacterial and antioxidant activities
    Vivekanandan P, Daniel Aroquiaraj A, Satheeshkumar K. S, Gassoumi Bouzid, Paularokiadoss Francisxavier, Ayachi Sahbi
    Vietnam Journal of Chemistry.2025;[Epub]     CrossRef
  • Evaluation of Antimicrobial Activity of Novel Chimeric M-PEX12 Peptide Against Acinetobacter baumannii
    Yasin Rakhshani, Hamideh Mahmoodzadeh Hosseini, Seyed Ali Mirhosseini, Fatah Sotoodehnejadnematalahi, Jafar Amani
    Iranian Journal of Pharmaceutical Research.2025;[Epub]     CrossRef
  • Polyester/cotton blended fabrics coated with natural rubber latex containing lignin nanoparticles and molybdenum disulfide nanosheets for medical and protective applications
    A.S. Sethulekshmi, Selvakumar Gopalsamy, B.D.S. Deeraj, Kuruvilla Joseph, Abi Santhosh Aprem, Suja Bhargavan Sisupal, Febin P. Jacob, Vinay Deep Punetha, Rakshit Pathak, Appukuttan Saritha
    International Journal of Biological Macromolecules.2025; 318: 144878.     CrossRef
  • Sustainable Nanotechnology Strategies for Modulating the Human Gut Microbiota
    Gréta Törős, Gabriella Gulyás, Hassan El-Ramady, Walaa Alibrahem, Arjun Muthu, Prasad Gangakhedkar, Reina Atieh, József Prokisch
    International Journal of Molecular Sciences.2025; 26(12): 5433.     CrossRef
  • GC-MS Analysis and Antimicrobial Properties of Defensive Secretions from the Millipede Coxobolellus saratani (Diplopoda: Spirobolida: Pseudospirobolellidae)
    Piyatida Pimvichai, Warinthan Jumpajan, Phikun Buaboon, Waraporn Sutthisa, Nattawadee Nantarat, Thierry Backeljau
    Journal of Chemical Ecology.2025;[Epub]     CrossRef
  • Self-assembled electrocatalytic TiO2 nanowire membrane for multifunctional water purification
    Naresh Mameda, Hyeona Park, Jinwoo Kim, Syed Salman Ali Shah, Saifur Rahman, Prajwal Sherugar, Hosung Lee, Kwang-Ho Choo
    Journal of Membrane Science.2025; 734: 124422.     CrossRef
  • Pse-T2-Based Short Peptides with Broad-Spectrum Antimicrobial Activity, Stability, and Safety Combat MDR Staphylococcus aureus In Vitro and in Mouse Infection Model
    Hee Kyoung Kang, Yoonkyung Park
    ACS Infectious Diseases.2025;[Epub]     CrossRef
  • Unveiling the potential of novel Metschnikowia yeast biosurfactants: triggering oxidative stress for promising antifungal and anticancer activity
    Sumeeta Kumari, Alka Kumari, Asmita Dhiman, Kanti Nandan Mihooliya, Manoj Raje, G. S. Prasad, Anil Kumar Pinnaka
    Microbial Cell Factories.2024;[Epub]     CrossRef
  • Iron‐doped nanozymes with spontaneous peroxidase‐mimic activity as a promising antibacterial therapy for bacterial keratitis
    Xiwen Geng, Nan Zhang, Zhanrong Li, Mengyang Zhao, Hongbo Zhang, Jingguo Li
    Smart Medicine.2024;[Epub]     CrossRef
  • N-acetylcysteine promotes doxycycline resistance in the bacterial pathogen Edwardsiella tarda
    Juan Guo, Qingqiang Xu, Yilin Zhong, Yubin Su
    Virulence.2024;[Epub]     CrossRef
  • The ability in managing reactive oxygen species affects Escherichia coli persistence to ampicillin after nutrient shifts
    Ruixue Zhang, Christopher Hartline, Fuzhong Zhang, Danielle Tullman-Ercek
    mSystems.2024;[Epub]     CrossRef
  • Morphological diversity of actinobacteria isolated from oil palm compost (Elaeis guineensis)
    Juliana Hiromi Emin Uesugi, Daniel dos Santos Caldas, Brunna Beatrys Farias Coelho, Maria Clara Coelho Prazes, Lucas Yukio Emin Omura, José Alyson Rocha Pismel, Nilson Veloso Bezerra
    Brazilian Journal of Microbiology.2024; 55(1): 455.     CrossRef
  • Expression of Rhodococcus erythropolis stress genes in planctonic culture supplemented with various hydrocabons
    Ivan Sazykin, Alla Litsevich, Ludmila Khmelevtsova, Tatiana Azhogina, Maria Klimova, Shorena Karchava, Margarita Khammami, Elena Chernyshenko, Ekaterina Naumova, Marina Sazykina
    Microbiological Research.2024; 289: 127920.     CrossRef
  • Green Synthesis of Cerium Oxide Nanoparticles, Characterization, and Their Neuroprotective Effect on Hydrogen Peroxide-Induced Oxidative Injury in Human Neuroblastoma (SH-SY5Y) Cell Line
    Madhugiri Gopinath Mamatha, Mohammad Azam Ansari, M Yasmin Begum, Daruka Prasad B., Adel Al Fatease, Umme Hani, Mohammad N. Alomary, Sumreen Sultana, Shital Manohar Punekar, Nivedika M.B., Thimappa Ramachandrappa Lakshmeesha, Tekupalli Ravikiran
    ACS Omega.2024; 9(2): 2639.     CrossRef
  • Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity
    Agustín Luna-Bulbarela, María Teresa Romero-Gutiérrez, Raunel Tinoco-Valencia, Ernesto Ortiz, María Esperanza Martínez-Romero, Enrique Galindo, Leobardo Serrano-Carreón
    Microbiological Research.2024; 280: 127592.     CrossRef
  • FRET‐Amplified Singlet Oxygen Generation by Nanocomposites Comprising Ternary AgInS2/ZnS Quantum Dots and Molecular Photosensitizers
    Tatiana O. Oskolkova, Anna A. Matiushkina, Lyubov' N. Borodina, Ekaterina S. Smirnova, Antonina I. Dadadzhanova, Fayza A. Sewid, Andrey V. Veniaminov, Ekaterina O. Moiseeva, Anna O. Orlova
    ChemNanoMat.2024;[Epub]     CrossRef
  • Antioxidant and Pro-Oxidant Properties of Selected Clinically Applied Antibiotics: Therapeutic Insights
    Tibor Maliar, Marcela Blažková, Jaroslav Polák, Mária Maliarová, Eva Ürgeová, Jana Viskupičová
    Pharmaceuticals.2024; 17(10): 1257.     CrossRef
  • Fe3O4 NPs-encapsulated metal-organic framework/enzyme hybrid nanoreactor for drug-resistant bacterial elimination via enhanced chemodynamictherapy
    Xinyu Song, Qiufan Jiang, Junyang Ma, Yang Liu, Liangliang Zhang, Tingting Jiang, Jie Zhang, Qing Li, Jie Sun
    Ceramics International.2024; 50(5): 7486.     CrossRef
  • Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal
    Silvana Alfei, Gian Carlo Schito, Anna Maria Schito, Guendalina Zuccari
    International Journal of Molecular Sciences.2024; 25(13): 7182.     CrossRef
  • Recent advances in micro/nanomotors for antibacterial applications
    Wenxia Wang, Hangyu Luo, Han Wang
    Journal of Materials Chemistry B.2024; 12(21): 5000.     CrossRef
  • Design, synthesis, and evaluation of N1,N3-dialkyldioxonaphthoimidazoliums as antibacterial agents against methicillin-resistant Staphylococcus aureus
    Taewoo Kim, Shin-Yae Choi, Hee-Won Bae, Hyun Su Kim, Hoon Jeon, Haejun Oh, Sung-Hoon Ahn, Jongkook Lee, Young-Ger Suh, You-Hee Cho, Seok-Ho Kim
    European Journal of Medicinal Chemistry.2024; 272: 116454.     CrossRef
  • Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides
    Zifan Ye, Lei Fu, Shuangyu Li, Ziying Chen, Jianhong Ouyang, Xinci Shang, Yanli Liu, Lianghui Gao, Yipeng Wang
    Nature Communications.2024;[Epub]     CrossRef
  • Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels
    Sharmistha Chatterjee, Parames C. Sil
    Chemical Research in Toxicology.2024; 37(10): 1612.     CrossRef
  • In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881
    Albert O. Ikhane, Siphesihle Z. Sithole, Nkosinathi D. Cele, Foluso O. Osunsanmi, Rebamang A. Mosa, Andrew R. Opoku
    Antioxidants.2024; 13(5): 608.     CrossRef
  • Isolation and Characterization of Biosurfactant-Producing Bacteria from Garlic Farmland Soil and Evaluation of Antimicrobial Activity
    S. Ren, Y. Wu, Y. Wang, C. Yuan, Z. Liu, F. Zhao
    Applied Biochemistry and Microbiology.2024; 60(4): 640.     CrossRef
  • Enhancing wound healing through sonodynamic silver/barium titanate heterostructures-loading gelatin/PCL nanodressings
    Yu-Sen Zhang, Shuai Ke, Xiao Hu, Shuang-Ying Wang, Wan-Qi Peng, Xin-Hang Qian, Ling-Hui Tian, Hui-Jun Wu, Bing-Hui Li, Xian-Tao Zeng, Ling-Ling Zhang
    International Journal of Biological Macromolecules.2024; 283: 137648.     CrossRef
  • From growth inhibition to ultrastructural changes: Toxicological assessment of lambda cyhalothrin and fosetyl aluminium against Bacillus subtilis and Pseudomonas aeruginosa
    Asma Rabbani Sodhozai, Safia Bibi, Mahwish Rabia, Muneeba Jadoon, Hafsah Akhtar, Naeem Ali
    Environmental Research.2024; 252: 118958.     CrossRef
  • Nanomedicine Advancements: Vanadium Oxide Nanoparticles as a Game-Changer in Antimicrobial and Anticancer Therapies
    Adebayo Efunnuga, Adeyemi Efunnuga, Asishana Paul Onivefu, Ikhazuagbe H. Ifijen, Muniratu Maliki, Stanley O. Omorogbe, Akinola David Olugbemide
    BioNanoScience.2024; 14(3): 3715.     CrossRef
  • Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa
    Ali Pormohammad, Andrea Firrincieli, Daniel A. Salazar-Alemán, Mehdi Mohammadi, Dave Hansen, Martina Cappelletti, Davide Zannoni, Mohammad Zarei, Raymond J. Turner, Paolo Visca, Jennifer Goff
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • In Silico-Based Design of a Hybrid Peptide with Antimicrobial Activity against Multidrug-Resistant Pseudomonas aeruginosa Using a Spider Toxin Peptide
    Min Kyoung Shin, Hye-Ran Park, In-Wook Hwang, Kyung-Bin Bu, Bo-Young Jang, Seung-Ho Lee, Jin Wook Oh, Jung Sun Yoo, Jung-Suk Sung
    Toxins.2023; 15(12): 668.     CrossRef
  • Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing
    Sadat Shafi, Sonal Gupta, Ravi Jain, Rumaisha Shoaib, Akshay Munjal, Preeti Maurya, Purnendu Kumar, Abul Kalam Najmi, Shailja Singh
    Biochemical Pharmacology.2023; 215: 115756.     CrossRef
  • Differential Cellular Sensing of Fusion from within and Fusion from without during Virus Infection
    David N. Hare, Tetyana Murdza, Susan Collins, Katharina Schulz, Subhendu Mukherjee, Roberto de Antueno, Luke Janssen, Roy Duncan, Karen L. Mossman
    Viruses.2023; 15(2): 301.     CrossRef
  • Nanomaterials-based photothermal therapies for antibacterial applications
    Hao Liu, Fei Xing, Yuxi Zhou, Peiyun Yu, Jiawei Xu, Rong Luo, Zhou Xiang, Pol Maria Rommens, Ming Liu, Ulrike Ritz
    Materials & Design.2023; 233: 112231.     CrossRef
  • Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels
    Jinhua Ye, Fangpeng Hou, Guanyu Chen, Tianyu Zhong, Junxia Xue, Fangyou Yu, Yi Lai, Yingjie Yang, Dedong Liu, Yuantong Tian, Junyun Huang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Metallogels from Silver Nanoparticles and Peptide Nanofibers as Antimicrobial Surfaces
    Dipayan Bairagi, Purnadas Ghosh, Priyanka Roy, Arindam Banerjee
    ACS Applied Nano Materials.2023; 6(4): 2299.     CrossRef
  • Protective effect of 13-methylberberine against mouse enteritis caused by MRSA
    Wei-Mei Wang, Zhen Zhang, Liang Sun, Chao Ma, Zhi-Hai Liu, Shuai-Cheng Wu
    Journal of Ethnopharmacology.2023; 304: 115994.     CrossRef
  • Fabrication, spectroscopic properties, antioxidant and antimicrobial activities of Chitosan-CaLi@Flumox nanocomposites
    A. M. Mansour, Mohamed S. Abdel-Aziz, Abdul Aziz M. Gad, Ali B. Abou Hammad, Amany M. El Nahrawy
    SN Applied Sciences.2023;[Epub]     CrossRef
  • Exploring the Antimicrobial and Antitumoral Activities of Naphthoquinone-Grafted Chitosans
    Fernanda Petzold Pauli, Cyntia Silva Freitas, Patricia Ribeiro Pereira, Alviclér Magalhães, Fernando de Carvalho da Silva, Vania M. F. Paschoalin, Vitor Francisco Ferreira
    Polymers.2023; 15(6): 1430.     CrossRef
  • MXenes Antibacterial Properties and Applications: A Review and Perspective
    Farzad Seidi, Ahmad Arabi Shamsabadi, Mostafa Dadashi Firouzjaei, Mark Elliott, Mohammad Reza Saeb, Yang Huang, Chengcheng Li, Huining Xiao, Babak Anasori
    Small.2023;[Epub]     CrossRef
  • Surfactant-Mediated Ultrasonic-Assisted Extraction and Purification of Antioxidants from Chaenomeles speciosa (Sweet) Nakai for Chemical- and Cell-Based Antioxidant Capacity Evaluation
    Fuxia Hu, Feng Li, Zhenjia Zheng, Dongxiao Sun-Waterhouse, Zhaosheng Wang
    Molecules.2022; 27(22): 7970.     CrossRef
  • Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin
    Ali Pormohammad, Dave Hansen, Raymond J. Turner
    Antibiotics.2022; 11(8): 1099.     CrossRef
  • Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage
    Zequn Zhang, Jianran Qin, Zhe Wang, Fang Chen, Xiaojun Liao, Xiaosong Hu, Li Dong
    Food Research International.2022; 157: 111472.     CrossRef
  • Oxidative Stress-Mediated Antibacterial Activity of the Total Flavonoid Extracted from the Agrimonia pilosa Ledeb. in Methicillin-Resistant Staphylococcusaureus (MRSA)
    Liren He, Han Cheng, Fuxin Chen, Suquan Song, Hang Zhang, Weidong Sun, Xiaowei Bao, Haibin Zhang, Chenghua He
    Veterinary Sciences.2022; 9(2): 71.     CrossRef
  • Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics
    Jiale Liu, Mengyao Huang, Xinyu Zhang, Zhongyu Hua, Zeran Feng, Yi Dong, Tiedong Sun, Xiao Sun, Chunxia Chen
    Coordination Chemistry Reviews.2022; 472: 214785.     CrossRef
  • Anti- and Pro-Oxidant Properties of Essential Oils against Antimicrobial Resistance
    Amanda Shen-Yee Kong, Sathiya Maran, Polly Soo-Xi Yap, Swee-Hua Erin Lim, Shun-Kai Yang, Wan-Hee Cheng, Yong-Hui Tan, Kok-Song Lai
    Antioxidants.2022; 11(9): 1819.     CrossRef
  • Catalase regulates the homeostasis of hemolymph microbiota and autophagy of the hemocytes in mud crab (Scylla paramamosain)
    Ming Zhang, Peina Ji, Zhongzhen Li, Zaiqiao Sun, Ngoc Tuan Tran, Shengkang Li
    Aquaculture Reports.2022; 25: 101237.     CrossRef
  • Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action
    Mithun Rudrapal, Shubham J. Khairnar, Johra Khan, Abdulaziz Bin Dukhyil, Mohammad Azam Ansari, Mohammad N. Alomary, Fahad M. Alshabrmi, Santwana Palai, Prashanta Kumar Deb, Rajlakshmi Devi
    Frontiers in Pharmacology.2022;[Epub]     CrossRef
  • Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates
    Irina V. Gladysheva, Sergey V. Cherkasov, Yuriy A. Khlopko, Andrey O. Plotnikov
    Microorganisms.2022; 10(2): 249.     CrossRef
  • The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates
    Leilei Zhang, Maha M. Ismail, Gabriele Rocchetti, Nesrin M. Fayek, Luigi Lucini, Fatema R. Saber
    Molecules.2022; 27(2): 435.     CrossRef
  • MoS2 based nanomaterials: Advanced antibacterial agents for future
    A.S. Sethulekshmi, Appukuttan Saritha, Kuruvilla Joseph, Abi Santhosh Aprem, Suja Bhargavan Sisupal
    Journal of Controlled Release.2022; 348: 158.     CrossRef
  • Polyphenols as Potent Epigenetics Agents for Cancer
    Peramaiyan Rajendran, Salaheldin Abdelraouf Abdelsalam, Kaviyarasi Renu, Vishnupriya Veeraraghavan, Rebai Ben Ammar, Emad A. Ahmed
    International Journal of Molecular Sciences.2022; 23(19): 11712.     CrossRef
  • Advancements in antimicrobial nanoscale materials and self-assembling systems
    Jack A. Doolan, George T. Williams, Kira L. F. Hilton, Rajas Chaudhari, John S. Fossey, Benjamin T. Goult, Jennifer R. Hiscock
    Chemical Society Reviews.2022; 51(20): 8696.     CrossRef
  • Biodegradable peptide polymers as alternatives to antibiotics used in aquaculture
    Pengcheng Ma, Yueming Wu, Weinan Jiang, Ning Shao, Min Zhou, Yuan Chen, Jiayang Xie, Zhongqian Qiao, Runhui Liu
    Biomaterials Science.2022; 10(15): 4193.     CrossRef
  • Photoinactivation of Salmonella enterica exposed to 5-aminolevulinic acid: Impact of sensitization conditions and irradiation time
    Evelina Polmickaitė-Smirnova, Irina Buchovec, Saulius Bagdonas, Edita Sužiedėlienė, Arūnas Ramanavičius, Žilvinas Anusevičius
    Journal of Photochemistry and Photobiology B: Biology.2022; 231: 112446.     CrossRef
  • Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications
    Feng Zhao, Bingxin Wang, Menglin Yuan, Sijia Ren
    Microbial Cell Factories.2022;[Epub]     CrossRef
  • Redox Impact on Bacterial Macromolecule: A Promising Avenue for Discovery and Development of Novel Antibacterials
    Jamiu Olaseni Aribisala, Saheed Sabiu
    Biomolecules.2022; 12(11): 1545.     CrossRef
  • Novel Antimicrobial Peptide “Octoprohibitin” against Multidrug Resistant Acinetobacter baumannii
    E. H. T. Thulshan Jayathilaka, Dinusha C. Rajapaksha, Chamilani Nikapitiya, Joeun Lee, Mahanama De Zoysa, Ilson Whang
    Pharmaceuticals.2022; 15(8): 928.     CrossRef
  • Green synthesis of silver nanoparticles from Mahonia fortunei extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen
    Zhenlin Wei, Shuoqi Xu, Haoran Jia, Hongmei Zhang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Artemisinin displays bactericidal activity via copper-mediated DNA damage
    In-Young Chung, Hye-Jeong Jang, Yeon-Ji Yoo, Joonseong Hur, Hyo-Young Oh, Seok-Ho Kim, You-Hee Cho
    Virulence.2022; 13(1): 149.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Cu–Ce oxide Co-loaded silicon nanocapsules for hydrogen peroxide self-supplied Fenton-like catalysis and synergistically antibacterial therapy
    Yuxin Zhu, Yue Zhao, Xun Sun, Fuhao An, Lanya Jiao, Xuan Sun
    Environmental Research.2022; 212: 113444.     CrossRef
  • Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles
    Nour Mammari, Emmanuel Lamouroux, Ariane Boudier, Raphaël E. Duval
    Microorganisms.2022; 10(2): 437.     CrossRef
  • Effective Antibacterial Activity of Degradable Copper-Doped Phosphate-Based Glass Nanozymes
    Yifan Liu, Ning Nie, Huanfeng Tang, Congrou Zhang, Kezheng Chen, Wei Wang, Jianfeng Liu
    ACS Applied Materials & Interfaces.2021; 13(10): 11631.     CrossRef
  • Stress response in Rhodococcus strains
    Miroslav Pátek, Michal Grulich, Jan Nešvera
    Biotechnology Advances.2021; 53: 107698.     CrossRef
  • Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR)
    Najwan Jubair, Mogana Rajagopal, Sasikala Chinnappan, Norhayati Binti Abdullah, Ayesha Fatima, Armando Zarrelli
    Evidence-Based Complementary and Alternative Medicine.2021; 2021: 1.     CrossRef
  • Visible light-induced antibacterial effect of MoS2: Effect of the synthesis methods
    Manman Zhang, Kun Wang, Shaohua Zeng, Ying Xu, Wangyan Nie, Pengpeng Chen, Yifeng Zhou
    Chemical Engineering Journal.2021; 411: 128517.     CrossRef
  • Electrified Membranes for Water Treatment Applications
    Meng Sun, Xiaoxiong Wang, Lea R. Winter, Yumeng Zhao, Wen Ma, Tayler Hedtke, Jae-Hong Kim, Menachem Elimelech
    ACS ES&T Engineering.2021; 1(4): 725.     CrossRef
  • Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities
    Yongchao Mei, Haiqin Chen, Bo Yang, Jianxin Zhao, Hao Zhang, Wei Chen
    Journal of Agricultural and Food Chemistry.2021; 69(38): 11311.     CrossRef
  • In vitro and in silico protocols for the assessment of microbicidal compounds from Plumbago zeylanica L
    V. Vanitha, S. Vijayakumar, S. Prabhu, M. Nilavukkarasi, V.N. Punitha, E. Vidhya, P.K. Praseetha
    Gene Reports.2021; 25: 101393.     CrossRef
  • Qiangji Jianli Decoction Alleviates Hydrogen Peroxide‐Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts
    Jingwei Song, Qing Li, Lingling Ke, Jian Liang, Wei Jiao, Huafeng Pan, Yanwu Li, Qun Du, Yafang Song, Aidong Ji, Zhiwei Chen, Jinqiu Li, Lanqi Li, Jos L. Quiles
    Oxidative Medicine and Cellular Longevity.2021;[Epub]     CrossRef
  • The Richness and Diversity of Catalases in Bacteria
    Fang Yuan, Shouliang Yin, Yang Xu, Lijun Xiang, Haiyan Wang, Zilong Li, Keqiang Fan, Guohui Pan
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Redox Active Antimicrobial Peptides in Controlling Growth of Microorganisms at Body Barriers
    Piotr Brzoza, Urszula Godlewska, Arkadiusz Borek, Agnieszka Morytko, Aneta Zegar, Patrycja Kwiecinska, Brian A. Zabel, Artur Osyczka, Mateusz Kwitniewski, Joanna Cichy
    Antioxidants.2021; 10(3): 446.     CrossRef
  • Sprayed copper peroxide nanodots for accelerating wound healing in a multidrug-resistant bacteria infected diabetic ulcer
    Ran Zhang, Guhua Jiang, Qianqian Gao, Xiaona Wang, Yilin Wang, Xin Xu, Wenjing Yan, Haijun Shen
    Nanoscale.2021; 13(37): 15937.     CrossRef
  • Bimetallic palladium@copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa
    Xue Huang, Ting Li, Xiaochun Zhang, Jun Deng, Xuntao Yin
    Materials Science and Engineering: C.2021; 129: 112392.     CrossRef
  • Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights
    Ankita Vaishampayan, Elisabeth Grohmann
    Microorganisms.2021; 10(1): 61.     CrossRef
  • OxyR-Like Improves Cell Hydrogen Peroxide Tolerance by Participating in Monocyte Chemotaxis and Oxidative Phosphorylation Regulation in Magnetospirillum Gryphiswaldense MSR-1
    Yong Ma, Fangfang Guo, Yunpeng Zhang, Xiuyu Sun, Tong Wen, Wei Jiang
    Journal of Biomedical Nanotechnology.2021; 17(12): 2466.     CrossRef
  • Short-term effects of ciprofloxacin on enhanced biological phosphorus removal based on anaerobic and aerobic metabolism
    Yiwen Lin, Ruyi Wang, Juqing Lou, Jing Cai, Peide Sun
    Desalination and Water Treatment.2021; 236: 203.     CrossRef
  • Nanostructured Surfaces with Multimodal Antimicrobial Action
    Siti Nurhanna Riduan, Yugen Zhang
    Accounts of Chemical Research.2021; 54(24): 4508.     CrossRef
  • Silver nanoparticles-induced H2O2 triggers apoptosis-like death and is associated with dinF in Escherichia coli
    Suhyun Kim, Dong Gun Lee
    Free Radical Research.2021; 55(2): 107.     CrossRef
  • Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review
    Qin Shu, Hanghang Lou, Tianyu Wei, Xiayu Liu, Qihe Chen
    Pharmaceutics.2021; 13(2): 227.     CrossRef
  • Pomegranate-Like CuO2@SiO2 Nanospheres as H2O2 Self-Supplying and Robust Oxygen Generators for Enhanced Antibacterial Activity
    Xiang Li, Manman Liang, Shulong Jiang, Shiya Cao, Siheng Li, Yubo Gao, Jing Liu, Qiang Bai, Ning Sui, Zhiling Zhu
    ACS Applied Materials & Interfaces.2021; 13(19): 22169.     CrossRef
  • The membrane-targeting mechanism of host defense peptides inspiring the design of polypeptide-conjugated gold nanoparticles exhibiting effective antibacterial activity against methicillin-resistant Staphylococcus aureus
    Weiwei Zhang, Yueming Wu, Longqiang Liu, Ximian Xiao, Zihao Cong, Ning Shao, Zhongqian Qiao, Kang Chen, Shiqi Liu, Haodong Zhang, Zhemin Ji, Xiaoyan Shao, Yidong Dai, Hongyan He, Jiang Xia, Jian Fei, Runhui Liu
    Journal of Materials Chemistry B.2021; 9(25): 5092.     CrossRef
  • Tafenoquine: A Step toward Malaria Elimination
    Kuan-Yi Lu, Emily R. Derbyshire
    Biochemistry.2020; 59(8): 911.     CrossRef
  • Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging
    Megumi Inomata, Shuying Xu, Pallavi Chandra, Simin N. Meydani, Genzou Takemura, Jennifer A. Philips, John M. Leong
    Proceedings of the National Academy of Sciences.2020; 117(52): 33561.     CrossRef
  • Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy
    S. M. Vostrikova, A. B. Grinev, V. G. Gogvadze
    Biochemistry (Moscow).2020; 85(10): 1254.     CrossRef
  • Dialog between skin and its microbiota: Emergence of “Cutaneous Bacterial Endocrinology”
    Pierre‐Jean Racine, Xavier Janvier, Maximilien Clabaut, Chloe Catovic, Djouhar Souak, Amine M. Boukerb, Anne Groboillot, Yoan Konto‐Ghiorghi, Cécile Duclairoir‐Poc, Olivier Lesouhaitier, Nicole Orange, Sylvie Chevalier, Marc G. J. Feuilloley
    Experimental Dermatology.2020; 29(9): 790.     CrossRef
  • Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis
    Shuangfang Hu, Yigang Yu, Ziquan Lv, Jianzhong Shen, Yuebin Ke, Xinglong Xiao
    Food Microbiology.2020; 92: 103585.     CrossRef
  • Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system
    Qian Lei, Junjian Zheng, Jinxing Ma, Xueye Wang, Zhichao Wu, Zhiwei Wang
    Environmental Research.2020; 180: 108861.     CrossRef
  • Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection
    Rui Wang, Miusi Shi, Feiyan Xu, Yun Qiu, Peng Zhang, Kailun Shen, Qin Zhao, Jiaguo Yu, Yufeng Zhang
    Nature Communications.2020;[Epub]     CrossRef
  • Antibacterial action of lactoferricin B like peptide against Escherichia coli : reactive oxygen species‐induced apoptosis‐like death
    B. Lee, J.S. Hwang, D.G. Lee
    Journal of Applied Microbiology.2020; 129(2): 287.     CrossRef
  • Antibiotic resistance mitigation: the development of alternative general strategies
    Siti Nurhanna Riduan, Arunmozhiarasi Armugam, Yugen Zhang
    Journal of Materials Chemistry B.2020; 8(30): 6317.     CrossRef
  • Nanocopper-loaded Black phosphorus nanocomposites for efficient synergistic antibacterial application
    Dandan Zhang, Hui Ming Liu, XiuLin Shu, Jin Feng, Ping Yang, Peng Dong, XiaoBao Xie, QingShan Shi
    Journal of Hazardous Materials.2020; 393: 122317.     CrossRef
  • The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity
    Sílvio Terra Stefanello, Caren Rigon Mizdal, Débora Farina Gonçalves, Diane Duarte Hartmann, Fernando Dobrachinski, Nélson Rodrigues de Carvalho, Syed Muhammad Salman, André C. Sauer, Luciano Dornelles, Marli Matiko Anraku de Campos, Félix Alexandre Antun
    Bioorganic Chemistry.2020; 98: 103727.     CrossRef
  • Oxidative Stress: Concept and Some Practical Aspects
    Helmut Sies
    Antioxidants.2020; 9(9): 852.     CrossRef
  • Pseudomonas aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent
    Ozgun O. Ozdemir, Ferda Soyer
    ACS Omega.2020; 5(32): 19938.     CrossRef
  • Oxidative Stress Transcriptional Responses of Escherichia coli at GaN Interfaces
    Sara Gleco, Theophraste Noussi, Akamu Jude, Pramod Reddy, Ronny Kirste, Ramón Collazo, Dennis LaJeunesse, Albena Ivanisevic
    ACS Applied Bio Materials.2020; 3(12): 9073.     CrossRef
  • Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance
    Álvaro Mourenza, José A. Gil, Luís M. Mateos, Michal Letek
    Antioxidants.2020; 9(5): 361.     CrossRef
  • A Novel Screening Strategy Reveals ROS-Generating Antimicrobials That Act Synergistically against the Intracellular Veterinary Pathogen Rhodococcus equi
    Álvaro Mourenza, José A. Gil, Luís M. Mateos, Michal Letek
    Antioxidants.2020; 9(2): 114.     CrossRef
  • Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy
    Juqun Xi, Gen Wei, Lanfang An, Zhuobin Xu, Zhilong Xu, Lei Fan, Lizeng Gao
    Nano Letters.2019; 19(11): 7645.     CrossRef
  • Perspectives towards antibiotic resistance: from molecules to population
    Joon-Hee Lee
    Journal of Microbiology.2019; 57(3): 181.     CrossRef
  • Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins
    Maria Barbara Pisano, Amit Kumar, Rosaria Medda, Gianluca Gatto, Rajesh Pal, Antonella Fais, Benedetta Era, Sofia Cosentino, Eugenio Uriarte, Lourdes Santana, Francesca Pintus, Maria João Matos
    Molecules.2019; 24(15): 2815.     CrossRef
  • PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence
    Michał Śmiga, Teresa Olczak
    Microorganisms.2019; 7(12): 623.     CrossRef
Journal Articles
Astragaloside IV reversed the autophagy and oxidative stress induced by the intestinal microbiota of AIS in mice
Nan Xu , Pengcheng Kan , Xiuhua Yao , Ping Yang , Jiwei Wang , Lei Xiang , Yu Zhu
J. Microbiol. 2018;56(11):838-846.   Published online October 24, 2018
DOI: https://doi.org/10.1007/s12275-018-8327-5
  • 410 View
  • 0 Download
  • 49 Crossref
AbstractAbstract PDF
Acute ischaemic stroke (AIS) seriously affects patient quality of life. We explored the role of the intestinal microbiota on oxidative stress and autophagy in stroke, and Astragaloside IV (AS-IV) reversed the changes induced by intestinal microbiota. We determined the characteristics of the intestinal microbiota of AIS and transient ischaemic attack (TIA) patients by 16S sequencing and found that the structure and diversity of the intestinal microbiota in patients with AIS and TIA were significantly different from those in healthy subjects. Specifically, the abundance of genus Bifidobacterium, Megamonas, Blautia, Holdemanella, and Clostridium, content of homocysteine and triglyceride was increased significantly, thus it may be as a potential mechanism of AIS and TIA. Furthermore, germ-free mice were infused intracolonically with fecal supernatants of TIA and AIS with/without feed AS-IV for 12 weeks, and we found that the feces of AIS up-regulated the autophagy markers Beclin-1, light chain 3 (LC3)-II and autophagy-related gene (Atg)12, and the expression of reactive oxygen species (ROS) and NADPH oxidase 2/4 (NOX2/4), malondialdehyde (MDA), however, the expression of total antioxidant capacity (T-AOC) and activity of superoxide dismutase (SOD) and glutathione (GSH) was down-regulated in brain tissue, the content of homocysteine and free fatty acids (FFA) in serum of the mice. Meanwhile, AS-IV could reverse the above phenomenon, however, it does not affect the motor function of mice. AS-IV reversed these changes and it may be a potential drug for AIS therapeutics.

Citations

Citations to this article as recorded by  
  • Neuroprotective effects of phytochemicals through autophagy modulation in ischemic stroke
    Amir Mahmoud Ahmadzadeh, Ali Mohammad Pourbagher-Shahri, Fatemeh Forouzanfar
    Inflammopharmacology.2025; 33(2): 729.     CrossRef
  • Novel Insight into the Modulatory Effect of Traditional Chinese Medicine on Cerebral Ischemia-Reperfusion Injury by Targeting Gut Microbiota: A Review
    Yisong Ren, Gang Chen, Ying Hong, Qianying Wang, Bo Lan, Zhaozhao Huang
    Drug Design, Development and Therapy.2025; Volume 19: 185.     CrossRef
  • Benefits of equilibrium between microbiota- and host-derived ligands of the aryl hydrocarbon receptor after stroke in aged male mice
    Pedram Peesh, Maria P. Blasco-Conesa, Ahmad El Hamamy, Romeesa Khan, Gary U. Guzman, Parisa Honarpisheh, Eric C. Mohan, Grant W. Goodman, Justin N. Nguyen, Anik Banerjee, Bryce E. West, Kyung Ae Ko, Janelle M. Korf, Chunfeng Tan, Huihui Fan, Gabriela D. C
    Nature Communications.2025;[Epub]     CrossRef
  • Astragaloside IV Attenuates Angiotensin II-Induced Inflammatory Responses in Endothelial Cells: Involvement of Mitochondria
    Shiyu Zhang, Shijie Li, Lin Cui, Shiyang Xie, Youping Wang
    Journal of Inflammation Research.2025; Volume 18: 3951.     CrossRef
  • A Comprehensive Review of the Role of the Microbiota–Gut–Brain Axis via Neuroinflammation: Advances and Therapeutic Implications for Ischemic Stroke
    Hui Guo, Xiang Tang, Xinyi He, Yizhen Weng, Quanquan Zhang, Qi Fang, Lulu Zhang
    Biomolecules.2025; 15(7): 920.     CrossRef
  • Neuroprotective mechanisms of Buyang Huanwu decoction in ischemic stroke
    Yuanyuan Qin, Shiliang Hu, Shiman Mawen, Shanyao Pan, Yaping Huai, Guoqiang Liang, Ting Chen, Feiyan Zhao, Hongli Dong, Xuyi Yao, Xue Wu, Zhigang Lv, Jiao Deng, Fei Huang, Li Luo
    Frontiers in Pharmacology.2025;[Epub]     CrossRef
  • Astragaloside IV-PESV inhibits prostate cancer tumor growth by restoring gut microbiota and microbial metabolic homeostasis via the AGE-RAGE pathway
    Xujun You, Junfeng Qiu, Qixin Li, Qing Zhang, Wen Sheng, Yiguo Cao, Wei Fu
    BMC Cancer.2024;[Epub]     CrossRef
  • The impact of dysbiosis in oropharyngeal and gut microbiota on systemic inflammatory response and short-term prognosis in acute ischemic stroke with preceding infection
    Qiuxing He, Guoshun Li, Jiasheng Zhao, Huishan Zhu, Huanhao Mo, Zhanshi Xiong, Zhan Zhao, Jingyi Chen, Weimin Ning
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Role of gut microbiota in ischemic stroke: A narrative review of human and animal studies
    Guangtang Chen, Xiaolin Du, Junshuan Cui, Jiaquan Song, Mingsong Xiong, Xi Zeng, Hua Yang, Kaya Xu
    Neuroprotection.2024; 2(2): 120.     CrossRef
  • Research progress in the treatment of an immune system disease—type 1 diabetes—by regulating the intestinal flora with Chinese medicine and food homologous drugs
    Yang PING, Jianing LIU, Huilin WANG, Yan WANG, Hongbin QIU, Yu ZHANG
    Bioscience of Microbiota, Food and Health.2024; 43(3): 150.     CrossRef
  • The relationship between oxidative balance scores and chronic diarrhea and constipation: a population-based study
    Jiayan Hu, Hede Zou, Xiyun Qiao, Yuxi Wang, Mi Lv, Kunli Zhang, Fengyun Wang
    BMC Public Health.2024;[Epub]     CrossRef
  • Astragaloside IV Mitigated Diabetic Nephropathy by Restructuring Intestinal Microflora and Ferroptosis
    Xin Lyu, Ting‐ting Zhang, Zhen Ye, Ce Chen
    Molecular Nutrition & Food Research.2024;[Epub]     CrossRef
  • Dietary flavonoids: Role in preventing neurodegenerative diseases caused by brain aging by modulating the gut microbiota
    Siyu Liu, Haochen Dai, Rui Wang, Xin Zhang
    Food Bioscience.2024; 61: 104965.     CrossRef
  • Notoginsenoside R1 alleviates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway through microbiota-gut-brain axis
    Shuxia Zhang, Qiuyan Chen, Meiqi Jin, Jiahui Ren, Xiao Sun, Zhixiu Zhang, Yun Luo, Xiaobo Sun
    Phytomedicine.2024; 128: 155530.     CrossRef
  • Astragaloside IV ameliorate acute alcohol-induced liver injury in mice via modulating gut microbiota and regulating NLRP3/caspase-1 signaling pathway
    Shan Wu, Fei Wen, Xiangbin Zhong, Wenjing Du, Manlian Chen, Junyi Wang
    Annals of Medicine.2023;[Epub]     CrossRef
  • Clinical evidence and mechanisms of traditional Chinese medicine in major diseases
    Binyu Luo, Yiwen Li, Wenting Wang, Yanfei Liu, Yanfang Xian, Yue Liu, Keji Chen
    Science of Traditional Chinese Medicine.2023; 1(1): 3.     CrossRef
  • New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target
    Shuxia Zhang, Meiqi Jin, Jiahui Ren, Xiao Sun, Zhixiu Zhang, Yun Luo, Xiaobo Sun
    Biomedicine & Pharmacotherapy.2023; 162: 114559.     CrossRef
  • Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity‐associated—N6‐methyladenosine—acyl‐CoA synthetase long‐chain family member 4 axis
    Zhenglong Jin, Wenying Gao, Fu Guo, Shaojun Liao, Mingzhe Hu, Tao Yu, Shangzhen Yu, Qing Shi
    Journal of Neurochemistry.2023; 166(2): 328.     CrossRef
  • Dissecting Causal Relationships Between Gut Microbiota, Blood Metabolites, and Stroke: A Mendelian Randomization Study
    Qi Wang, Huajie Dai, Tianzhichao Hou, Yanan Hou, Tiange Wang, Hong Lin, Zhiyun Zhao, Mian Li, Ruizhi Zheng, Shuangyuan Wang, Jieli Lu, Yu Xu, Ruixin Liu, Guang Ning, Weiqing Wang, Yufang Bi, Jie Zheng, Min Xu
    Journal of Stroke.2023; 25(3): 350.     CrossRef
  • Progress on traditional Chinese medicine in treatment of ischemic stroke via the gut-brain axis
    Zhe Zhai, Pei-Wei Su, Lan-ying Ma, Hui Yang, Tong Wang, Zheng-Gen Fei, Ya-Nan Zhang, Yuan Wang, Ke Ma, Bing-Bing Han, Zhi-Chun Wu, Hua-Yun Yu, Hai-Jun Zhao
    Biomedicine & Pharmacotherapy.2023; 157: 114056.     CrossRef
  • Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke
    Lin Gao, Xiuwen Xia, Yinqi Shuai, Hong Zhang, Wei Jin, Xiaoyun Zhang, Yi Zhang
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • The mechanism of intestinal microbiota regulating immunity and inflammation in ischemic stroke and the role of natural botanical active ingredients in regulating intestinal microbiota: A review
    Jinsong Zeng, Kailin Yang, Huifang Nie, Le Yuan, Shanshan Wang, Liuting Zeng, Anqi Ge, Jinwen Ge
    Biomedicine & Pharmacotherapy.2023; 157: 114026.     CrossRef
  • Astragaloside IV: A promising natural neuroprotective agent for neurological disorders
    Min Yao, Lijuan Zhang, Lin Wang
    Biomedicine & Pharmacotherapy.2023; 159: 114229.     CrossRef
  • The effects of astragaloside IV on gut microbiota and serum metabolism in a mice model of intracerebral hemorrhage
    Zhilin Li, En Hu, Fei Zheng, Song Wang, Wei Zhang, Jiekun Luo, Tao Tang, Qing Huang, Yang Wang
    Phytomedicine.2023; 121: 155086.     CrossRef
  • CONSORT-Characteristics and metabolic phenotype of gut microbiota in NAFLD patients
    Haize Ge, Wei Wei, Liang Tang, Yaqiong Tian, Yu Zhu, Yan Luo, Shuye Liu
    Medicine.2022; 101(25): e29347.     CrossRef
  • Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases
    Man Li, Bing Han, Huan Zhao, Chongyi Xu, Daokun Xu, Elwira Sieniawska, Xianming Lin, Guoyin Kai
    Phytomedicine.2022; 98: 153918.     CrossRef
  • Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies
    Xuelun Zou, Leiyun Wang, Linxiao Xiao, Sai Wang, Le Zhang
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Role of Endogenous Lipopolysaccharides in Neurological Disorders
    Manjunath Kalyan, Ahmed Hediyal Tousif, Sharma Sonali, Chandrasekaran Vichitra, Tuladhar Sunanda, Sankar Simla Praveenraj, Bipul Ray, Vasavi Rakesh Gorantla, Wiramon Rungratanawanich, Arehally M. Mahalakshmi, M. Walid Qoronfleh, Tanya M. Monaghan, Byoung-
    Cells.2022; 11(24): 4038.     CrossRef
  • Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation
    Ying Yang, Meng Hong, Wen-Wen Lian, Zhi Chen
    World Journal of Clinical Cases.2022; 10(28): 10004.     CrossRef
  • The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke
    Saravana Babu Chidambaram, Annan Gopinath Rathipriya, Arehally M. Mahalakshmi, Sonali Sharma, Tousif Ahmed Hediyal, Bipul Ray, Tuladhar Sunanda, Wiramon Rungratanawanich, Rajpal Singh Kashyap, M. Walid Qoronfleh, Musthafa Mohamed Essa, Byoung-Joon Song, T
    Cells.2022; 11(7): 1239.     CrossRef
  • Astragaloside IV ameliorates cerebral ischemia-reperfusion injury via upregulation of PKA and Cx36
    Li Yu, Yuting Wang, Jingxue Tang, Zhaorui Shu, Xian Han
    NeuroReport.2022; 33(15): 656.     CrossRef
  • Astragaloside IV ameliorates diet-induced hepatic steatosis in obese mice by inhibiting intestinal FXR via intestinal flora remodeling
    Yuanyuan Zhai, Wenling Zhou, Xu Yan, Yuan Qiao, Lingling Guan, Zhichun Zhang, Hao Liu, Jizhi Jiang, Jiang Liu, Liang Peng
    Phytomedicine.2022; 107: 154444.     CrossRef
  • Could the Gut Microbiota Serve as a Therapeutic Target in Ischemic Stroke?
    Jiyao Zhang, Qiang Tang, Luwen Zhu, San Jun Shi
    Evidence-Based Complementary and Alternative Medicine.2021; 2021: 1.     CrossRef
  • Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats
    Penghui Liu, Ran Li, Xiaolin Tian, Yannan Zhao, Meng Li, Meng Wang, Xiaodong Ying, Jiyu Yuan, Jiaxin Xie, Xiaoting Yan, Yi Lyu, Cailing Wei, Yulan Qiu, Fengjie Tian, Qian Zhao, Xiaoyan Yan
    Ecotoxicology and Environmental Safety.2021; 222: 112506.     CrossRef
  • Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine
    Xiao Li, Dan Wu, Jingjie Niu, Yanping Sun, Qiuhong Wang, Bingyou Yang, Haixue Kuang
    The American Journal of Chinese Medicine.2021; 49(02): 237.     CrossRef
  • Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke
    Yuan Zhou, Shanshan Zhang, Xiang Fan, Wen-Jun Tu
    Oxidative Medicine and Cellular Longevity.2021;[Epub]     CrossRef
  • RETRACTED: Hypoglycemic effect of astragaloside IV via modulating gut microbiota and regulating AMPK/SIRT1 and PI3K/AKT pathway
    Pin Gong, Xuyang Xiao, Shuang Wang, Fuxiong Shi, Ni Liu, Xuefeng Chen, Wenjuan Yang, Lan Wang, Fuxin Chen
    Journal of Ethnopharmacology.2021; 281: 114558.     CrossRef
  • Reciprocal interactions between gut microbiota and autophagy
    Pierre Lapaquette, Jean-Baptiste Bizeau, Niyazi Acar, Marie-Agnès Bringer
    World Journal of Gastroenterology.2021; 27(48): 8283.     CrossRef
  • Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated With Intestinal Microbiota
    Chengjun Hu, Yingli Yan, Fengjie Ji, Hanlin Zhou
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota
    Qiujin Jia, Lirong Wang, Xiaonan Zhang, Yuejia Ding, Hao Li, Yingxi Yang, Ao Zhang, Yanyang Li, Shichao Lv, Junping Zhang
    Pharmacological Research.2020; 151: 104552.     CrossRef
  • Astragaloside IV as Potential Antioxidant Against Diabetic Ketoacidosis in Juvenile Mice Through Activating JNK/Nrf2 Signaling Pathway
    Li-li Deng
    Archives of Medical Research.2020; 51(7): 654.     CrossRef
  • Morroniside Inhibits H2O2-Induced Podocyte Apoptosis by Down-Regulating NOX4 Expression Controlled by Autophagy In Vitro
    Xue Gao, Yi Liu, Lin Wang, Na Sai, Yixiu Liu, Jian Ni
    Frontiers in Pharmacology.2020;[Epub]     CrossRef
  • Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation
    Qiulan He, Changpeng Han, Liang Huang, Haojie Yang, Jiancong Hu, Huaxian Chen, Ruoxu Dou, Donglin Ren, Hongcheng Lin
    Journal of Cellular and Molecular Medicine.2020; 24(16): 9349.     CrossRef
  • Cross‐Talk between Gut Microbiota and the Heart: A New Target for the Herbal Medicine Treatment of Heart Failure?
    Lin Li, Senjie Zhong, Bin Cheng, Hong Qiu, Zhixi Hu, Deborah A. Kennedy
    Evidence-Based Complementary and Alternative Medicine.2020;[Epub]     CrossRef
  • Role and significance of traditional Chinese medicine in regulating gastrointestinal microecology to prevent and treat gastrointestinal cancer
    Guang-Hui Zhu, Yi-Ting Sang, Jie Li
    World Chinese Journal of Digestology.2020; 28(1): 1.     CrossRef
  • Astragaloside IV Protects Against Oxidative Stress in Calf Small Intestine Epithelial Cells via NFE2L2-Antioxidant Response Element Signaling
    Yafang Wang, Fugui Jiang, Haijian Cheng, Xiuwen Tan, Yifan Liu, Chen Wei, Enliang Song
    International Journal of Molecular Sciences.2019; 20(24): 6131.     CrossRef
  • Astragaloside IV Protects Ethanol-Induced Gastric Mucosal Injury by Preventing Mitochondrial Oxidative Stress and the Activation of Mitochondrial Pathway Apoptosis in Rats
    Shumin Qin, Jinjin Yin, Shaogang Huang, Jingyu Lin, Zhigang Fang, Yunsong Zhou, Keer Huang
    Frontiers in Pharmacology.2019;[Epub]     CrossRef
  • Astragaloside IV alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo
    Suxiao Wu, Zilan Chen
    Experimental and Therapeutic Medicine.2019;[Epub]     CrossRef
  • Carboxamide derivatives induce apoptosis in the U251 glioma cell line
    Tao Yan, Junxue Zhuang, Lu He
    Oncology Letters.2019;[Epub]     CrossRef
Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage
Liu-Hui Fu , Zeng-Zheng Wei , Kang-Di Hu , Lan-Ying Hu , Yan-Hong Li , Xiao-Yan Chen , Zhuo Han , Gai-Fang Yao , Hua Zhang
J. Microbiol. 2018;56(4):238-245.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7537-1
  • 428 View
  • 0 Download
  • 62 Crossref
AbstractAbstract PDF
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.

Citations

Citations to this article as recorded by  
  • Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    Current Microbiology.2025;[Epub]     CrossRef
  • Metagenomics and metatranscriptomics insights into microbial enhancement of H2S removal and CO2 assimilation
    Junjie Wang, Zhuowei Cheng, Yunfei Su, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Xiaoming Wu, Aobo Chen, Zhenyu Gu
    Journal of Environmental Management.2025; 373: 123714.     CrossRef
  • Transcriptional memories mediate the plasticity of sulfide stress responses to enable acclimation in Urechis unicinctus
    Wenqing Zhang, Danwen Liu, Heran Yang, Tianya Yang, Zhifeng Zhang, Yubin Ma
    Ecotoxicology and Environmental Safety.2025; 293: 118020.     CrossRef
  • Harnessing high-level hydrogen sulfide stress for enhanced biogas utilization: Adaptive resilience of a mixed-culture system
    Baorui Zhang, Jianbo Liu, Chen Cai, Yan Zhou
    Chemical Engineering Journal.2025; 506: 160300.     CrossRef
  • Deep-sea in situ and laboratory multi-omics provide insights into the sulfur assimilation of a deep-sea Chloroflexota bacterium
    Rikuan Zheng, Chong Wang, Chaomin Sun, Christa M. Schleper
    mBio.2024;[Epub]     CrossRef
  • Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    International Microbiology.2024; 28(S1): 111.     CrossRef
  • Nanomaterials‐Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy
    Xumeng Wu, Ziqi Zhou, Kai Li, Shaoqin Liu
    Advanced Science.2024;[Epub]     CrossRef
  • pH-Responsive nanoplatform synergistic gas/photothermal therapy to eliminate biofilms in poly(l-lactic acid) scaffolds
    Guowen Qian, Yuqian Mao, Huihui Zhao, Lemin Zhang, Long Xiong, Zhisheng Long
    Journal of Materials Chemistry B.2024; 12(5): 1379.     CrossRef
  • Enhancing cancer treatment via “Zn2+ interference” with Zn-based nanomaterials
    Yandong Wang, Fucheng Gao, Li Zhao, Yanqiu Wu, Can Li, Hui Li, Yanyan Jiang
    Coordination Chemistry Reviews.2024; 500: 215535.     CrossRef
  • Effect of H2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium
    Galina Smirnova, Aleksey Tyulenev, Lyubov Sutormina, Tatyana Kalashnikova, Zoya Samoilova, Nadezda Muzyka, Vadim Ushakov, Oleg Oktyabrsky
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Identification of the organic peroxide scavenging system of Yersinia pseudotuberculosis and its regulation by OxyR
    Junfeng Fan, Xiaofen Mo, Hui Zhang, Linna Xu, Jianhua Yin, Fen Wan, Nicole R. Buan
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Microenvironment Responsive Biomineralization Nanofirework Employing H2S-Assisted Photothermal Therapy to Prompt Bacterial Wound Healing
    Xianan Li, Hairui Deng, Lingfeng Pan, Ziyue Xu, Mengcheng Tang, Zhimin He, Yachen Xu, Hao Fu, Ruibo Zhao, Shibo Wang, Xiangdong Kong
    ACS Applied Nano Materials.2024; 7(17): 20678.     CrossRef
  • H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization
    Jiekai Sun, Xu Wang, Ye Gao, Shuangyu Li, Ziwei Hu, Yan Huang, Baoqiang Fan, Xia Wang, Miao Liu, Chunhua Qiao, Wei Zhang, Yipeng Wang, Xingyue Ji
    Nature Communications.2024;[Epub]     CrossRef
  • Fabricating a PDA-NOate@CuS coated NIR-activatable titanium implant to realize simultaneous antiinfection and osseointegration
    Jiahuan Liu, Xiaowan Li, Shangyu Xie, Ruirui Ma, Hongfei Wang, Shurong Ban, Chengwu Zhang, Lixia Guo
    New Journal of Chemistry.2024; 48(25): 11465.     CrossRef
  • Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review
    Siloni Singh Bhadwal, Shagun Verma, Shahnawaz Hassan, Satwinderjeet Kaur
    Plant Physiology and Biochemistry.2024; 212: 108730.     CrossRef
  • Gas Therapy: Generating, Delivery, and Biomedical Applications
    Pejman Ghaffari‐Bohlouli, Hafez Jafari, Oseweuba Valentine Okoro, Houman Alimoradi, Lei Nie, Guohua Jiang, Ashok Kakkar, Amin Shavandi
    Small Methods.2024;[Epub]     CrossRef
  • Methylosinus trichosporium OB3b drives composition-independent application of biogas in poly(3-hydroxybutyrate) synthesis
    Sunho Park, Shinhyeong Choe, Hyejeong Lee, Jaewook Myung
    Fuel.2024; 378: 132730.     CrossRef
  • Ahp deficiency-induced redox imbalance leads to metabolic alterations in E. coli
    Feng Liu, Penggang Han, Nuomin Li, Yongqian Zhang
    Redox Biology.2023; 67: 102888.     CrossRef
  • Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action
    Xiaojing Yan, Wenwen Liu, Shengfang Wen, Lanjun Wang, Lusheng Zhu, Jun Wang, Young Mo Kim, Jinhua Wang
    Journal of Environmental Sciences.2023; 127: 399.     CrossRef
  • D-cysteine desulfhydrase DCD1 participates in tomato resistance against Botrytis cinerea by modulating ROS homeostasis
    Yuqi Zhao, Kangdi Hu, Gaifang Yao, Siyue Wang, Xiangjun Peng, Conghe Zhang, Dexin Zeng, Kai Zong, Yaning Lyu, Hua Zhang
    Vegetable Research.2023;[Epub]     CrossRef
  • Bacteria‐Targeted Combined with Photothermal/NO Nanoparticles for the Treatment and Diagnosis of MRSA Infection In Vivo
    Kai Lv, Guowei Li, Xiangjun Pan, Luxuan Liu, Ziheng Chen, Yu Zhang, Hao Xu, Dong Ma
    Advanced Healthcare Materials.2023;[Epub]     CrossRef
  • Antibiotic Resistance: Challenges and Strategies in Combating Infections
    Jay Chavada, Komal N Muneshwar, Yash Ghulaxe, Mohit Wani, Prayas P Sarda, Shreyash Huse
    Cureus.2023;[Epub]     CrossRef
  • Enhancement of bio-S0 recovery and revealing the inhibitory effect on microorganisms under high sulfide loading
    Junjie Wang, Zhuowei Cheng, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Jianming Yu, Songkai Qiu, Dionysios D. Dionysiou
    Environmental Research.2023; 238: 117214.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie.2023;[Epub]     CrossRef
  • Antibacterial gas therapy: Strategies, advances, and prospects
    Tian-Yu Wang, Xiao-Yu Zhu, Fu-Gen Wu
    Bioactive Materials.2023; 23: 129.     CrossRef
  • Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy
    Yuanyuan Ding, Qingqing Pan, Wenxia Gao, Yuji Pu, Kui Luo, Bin He
    Biomaterials Science.2023; 11(4): 1182.     CrossRef
  • Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation
    Jingqi Sun, Yiming Feng, Ru Zheng, Lingrui Kong, Xiaogang Wu, Kuo Zhang, Jianhang Zhou, Sitong Liu
    Environmental Science & Technology.2023; 57(40): 15087.     CrossRef
  • The Triple Crown: NO, CO, and H2S in cancer cell biology
    Palak P. Oza, Khosrow Kashfi
    Pharmacology & Therapeutics.2023; 249: 108502.     CrossRef
  • Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light
    Su-Fang Xing, Hui-Fang Tian, Zhen Yan, Chao Song, Shu-Guang Wang
    Journal of Hazardous Materials.2023; 458: 131937.     CrossRef
  • Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications
    Fan Rong, Tengjiao Wang, Qian Zhou, Haowei Peng, Jingtian Yang, Quli Fan, Peng Li
    Bioactive Materials.2023; 19: 198.     CrossRef
  • Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation
    Meifang Wang, Ping'an Ma, Jun Lin
    Chinese Chemical Letters.2023; 34(9): 108300.     CrossRef
  • In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds
    Zhuobin Xu, Ze Xu, Jiake Gu, Juan Zhou, Gengyu Sha, Ying Huang, Tong Wang, Lei Fan, Yanfeng Zhang, Juqun Xi
    Journal of Colloid and Interface Science.2023; 650: 1918.     CrossRef
  • The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time
    Olga V. Zakharova, Valeria V. Belova, Peter A. Baranchikov, Anna A. Kostyakova, Dmitry S. Muratov, Gregory V. Grigoriev, Svetlana P. Chebotaryova, Denis V. Kuznetsov, Alexander A. Gusev
    International Journal of Molecular Sciences.2023; 24(9): 8299.     CrossRef
  • Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies
    Min Zhang, Jing Xiong, Lei Zhou, Jingjing Li, Jianqiang Fan, Xing Li, Teng Zhang, Zhuzhong Yin, Huaqun Yin, Xueduan Liu, Delong Meng
    Journal of Hazardous Materials.2023; 459: 132256.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie International Edition.2023;[Epub]     CrossRef
  • Enhancement of dissimilatory nitrate/nitrite reduction to ammonium of Escherichia coli sp. SZQ1 by ascorbic acid: Mechanism and performance
    Zhiqiang Su, Yu Zhang, Ruizhi Zhao, Jiti Zhou
    Science of The Total Environment.2022; 853: 158423.     CrossRef
  • Mitochondria-targeting Type I AIE photosensitizer combined with H2S therapy: Uninterrupted hydroxyl radical generation for enhancing tumor therapy
    Tianfu Zhang, Zeming Liu, Wenxue Tang, Daoming Zhu, Meng Lyu, Jacky Wing Yip Lam, Qinqin Huang, Ben Zhong Tang
    Nano Today.2022; 46: 101620.     CrossRef
  • Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria
    Sirui Han, Yingxi Li, Haichun Gao
    Antioxidants.2022; 11(12): 2487.     CrossRef
  • Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor
    Adrian Hidalgo-Ulloa, Cees Buisman, Jan Weijma
    Hydrometallurgy.2022; 213: 105950.     CrossRef
  • Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe)2 exposure
    F.C. Pinheiro, V.C. Bortolotto, S.M. Araujo, S.F. Couto, M.M.M. Dahleh, M. Cancela, J. Neto, G. Zeni, A. Zaha, M. Prigol
    Toxicology in Vitro.2022; 83: 105404.     CrossRef
  • On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules
    Yuxuan Ge, Fan Rong, Wei Li, Yin Wang
    Journal of Controlled Release.2022; 352: 586.     CrossRef
  • Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace
    David Chinemerem Nwobodo, Malachy Chigozie Ugwu, Clement Oliseloke Anie, Mushtak T. S. Al‐Ouqaili, Joseph Chinedu Ikem, Uchenna Victor Chigozie, Morteza Saki
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene
    Akihiro Kaidow, Noriko Ishii, Shingo Suzuki, Takashi Shiina, Hirokazu Kasahara
    International Journal of Molecular Sciences.2022; 23(21): 12786.     CrossRef
  • Cysteine Biosynthesis in Campylobacter jejuni: Substrate Specificity of CysM and the Dualism of Sulfide
    Noah Hitchcock, David J. Kelly, Andrew Hitchcock, Aidan J. Taylor
    Biomolecules.2022; 13(1): 86.     CrossRef
  • Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl
    Javier Rivera-Araya, Thomas Heine, Renato Chávez, Michael Schlömann, Gloria Levicán, Benjamin J. Koestler
    PLOS ONE.2022; 17(4): e0267316.     CrossRef
  • Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms
    Yuxin Li, Jiayin Ling, Jinghao Xue, Junwei Huang, Xiao Zhou, Fei Wang, Waner Hou, Jianbin Zhao, Yanbin Xu
    Water Research.2022; 227: 119342.     CrossRef
  • Sulfide Treatment Alters Antioxidant Response and Related Genes Expressions in Rice Field Eel (Monopterus albus)
    Liqiao Zhong, Fan Yao, He Zhang, Huaxiao Xie, Huijun Ru, Nian Wei, Zhaohui Ni, Zhong Li, Yunfeng Li
    Water.2022; 14(20): 3230.     CrossRef
  • Development of Polycaprolactone–Zeolite Nanoporous Composite Films for Topical Therapeutic Release of Different Gasotransmitters
    Rosana V. Pinto, Sílvia Carvalho, Fernando Antunes, João Pires, Moisés L. Pinto
    ACS Applied Nano Materials.2022; 5(7): 9230.     CrossRef
  • Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing
    Zhuoying Liang, Wenkang Liu, Ziqiang Wang, Peilian Zheng, Wei Liu, Jianfu Zhao, Yunlong Zhong, Yan Zhang, Jing Lin, Wei Xue, Siming Yu
    Acta Biomaterialia.2022; 143: 428.     CrossRef
  • Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production
    Xiongying Yan, Xia Wang, Yongfu Yang, Zhen Wang, Haoyu Zhang, Yang Li, Qiaoning He, Mian Li, Shihui Yang
    Bioresource Technology.2022; 349: 126878.     CrossRef
  • Natural inactivation of MS2, poliovirus type 1 and Cryptosporidium parvum in an anaerobic and reduced aquifer
    John T. Lisle, George Lukasik
    Journal of Applied Microbiology.2022; 132(3): 2464.     CrossRef
  • Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous
    Alexander S. Sokolov, Pavel V. Nekrasov, Mikhail V. Shaposhnikov, Alexey A. Moskalev
    Ageing Research Reviews.2021; 67: 101262.     CrossRef
  • Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria
    Sofia S. Mendes, Vanessa Miranda, Lígia M. Saraiva
    Antioxidants.2021; 10(5): 729.     CrossRef
  • CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB
    Yao Ma, Xiaoman Yang, Hongou Wang, Zixin Qin, Chunrong Yi, Changping Shi, Mei Luo, Guozhong Chen, Jin Yan, Xiaoyun Liu, Zhi Liu, William Navarre
    PLOS Pathogens.2021; 17(7): e1009763.     CrossRef
  • Hydrogen sulfide (H2S) signaling in plant development and stress responses
    Hai Liu, Jicheng Wang, Jianhao Liu, Tong Liu, Shaowu Xue
    aBIOTECH.2021; 2(1): 32.     CrossRef
  • Hydrogen sulfide: An endogenous regulator of the immune system
    Nahzli Dilek, Andreas Papapetropoulos, Tracy Toliver-Kinsky, Csaba Szabo
    Pharmacological Research.2020; 161: 105119.     CrossRef
  • Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress
    Chulwoo Park, Bora Shin, Woojun Park, Maia Kivisaar
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics
    Say Yong Ng, Kai Xun Ong, Smitha Thamarath Surendran, Ameya Sinha, Joey Jia Hui Lai, Jacqueline Chen, Jiaqi Liang, Leona Kwan Sing Tay, Liang Cui, Hooi Linn Loo, Peiying Ho, Jongyoon Han, Wilfried Moreira
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • FeS@BSA Nanoclusters to Enable H2S‐Amplified ROS‐Based Therapy with MRI Guidance
    Congkun Xie, Dong Cen, Zhaohui Ren, Yifan Wang, Yongjun Wu, Xiang Li, Gaorong Han, Xiujun Cai
    Advanced Science.2020;[Epub]     CrossRef
  • Hydrogen sulfide and environmental stresses
    John T. Hancock
    Environmental and Experimental Botany.2019; 161: 50.     CrossRef
  • The H2S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide
    Milica Lazarević, Emanuela Mazzon, Miljana Momčilović, Maria Sofia Basile, Giuseppe Colletti, Maria Cristina Petralia, Placido Bramanti, Ferdinando Nicoletti, Đorđe Miljković
    Molecules.2018; 23(11): 2966.     CrossRef
  • Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria?
    Lauren K. Wareham, Hannah M. Southam, Robert K. Poole
    Biochemical Society Transactions.2018; 46(5): 1107.     CrossRef
ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis
Tietao Wang , Keqi Chen , Fen Gao , Yiwen Kang , Muhammad Tausif Chaudhry , Zhuo Wang , Yao Wang , Xihui Shen
J. Microbiol. 2017;55(6):448-456.   Published online March 10, 2017
DOI: https://doi.org/10.1007/s12275-017-6540-2
  • 341 View
  • 0 Download
  • 21 Crossref
AbstractAbstract PDF
The type VI secretion system (T6SS) is a widespread and versatile protein secretion system found in most Gram- negative bacteria. Studies of T6SS have mainly focused on its role in virulence toward host cells and inter-bacterial inter-actions, but studies have also shown that T6SS4 in Yersinia pseudotuberculosis participates in the acquisition of zinc ions to alleviate the accumulation of hydroxyl radicals induced by multiple stressors. Here, by comparing the gene expression patterns of wild-type and zntR mutant Y. pseudotubercu-losis cells using RNA-seq analysis, T6SS4 and 17 other bio-logical processes were found to be regulated by ZntR. T6SS4 was positively regulated by ZntR in Y. pseudotuberculosis, and further investigation demonstrated that ZntR regulates T6SS4 by directly binding to its promoter region. T6SS4 ex-pression is regulated by zinc via ZntR, which maintains in-tracellular zinc homeostasis and controls the concentration of reactive oxygen species to prevent bacterial death under oxidative stress. This study provides new insights into the regulation of T6SS4 by a zinc-dependent transcriptional regu-lator, and it provides a foundation for further investigation of the mechanism of zinc transport by T6SS.

Citations

Citations to this article as recorded by  
  • Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus
    Dayoung Sung, Garam Choi, Minji Ahn, Hokyung Byun, Tae Young Kim, Hojun Lee, Zee-Won Lee, Ji Yong Park, Young Hyun Jung, Ho Jae Han, Sang Ho Choi
    Nucleic Acids Research.2025;[Epub]     CrossRef
  • Regulation of the H1 Type VI Secretion System by the Transcriptional Regulator NfxB in Pseudomonas aeruginosa
    Shuhui Liu, Ziyuan Wu, Wenbo Yan, Qian Liu, Yuanli Zhao, Tingting Gao, Yiming Yang, Linke Cao, Ruixue Tao, Meng Li, Lijun Liu, Yani Zhang, Tietao Wang
    International Journal of Molecular Sciences.2025; 26(4): 1472.     CrossRef
  • ZntR is a critical regulator for zinc homeostasis and involved in pathogenicity in Riemerella anatipestifer
    Hongmeng Ma, Mengying Wang, Yizhou Yao, Shutong Zhang, Mingshu Wang, Dekang Zhu, Renyong Jia, Shun Chen, Xinxin Zhao, Qiao Yang, Ying Wu, Shaqiu Zhang, Juan Huang, Bin Tian, Xumin Ou, Di Sun, Yu He, Zhen Wu, Ling Zhang, Yanling Yu, Anchun Cheng, Mafeng Li
    Microbiology Spectrum.2025;[Epub]     CrossRef
  • Two-Component Signaling System RegAB Represses Pseudomonas syringae pv. actinidiae T3SS by Directly Binding to the promoter of hrpRS1
    Mengsi Zhang, Mingming Yang, Xiaoxue Zhang, Shuying Li, Shuaiwu Wang, Alex Muremi Fulano, Yongting Meng, Xihui Shen, Li-li Huang, Yao Wang
    Journal of Integrative Agriculture.2024;[Epub]     CrossRef
  • Pb2+ biosorption by Serratia marcescens CCMA 1010 and its relation with zntR gene expression and ZntA efflux pump regulation
    Jorge Dias Carlier, Gustavo Magno dos Reis Ferreira, Rosane Freitas Schwan, Cristina Ferreira da Silva, Maria Clara Costa
    Environmental Advances.2024; 15: 100479.     CrossRef
  • OxyR-regulated T6SS functions in coordination with siderophore to resist oxidative stress
    Changfu Li, Zhiyan Wei, Xinquan He, Haiyang He, Yuqi Liu, Yuxin Zuo, He Xiao, Yao Wang, Xihui Shen, Lingfang Zhu, Olaya Rendueles
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida
    Yibei Zhang, Yuping Huang, Haoyuan Ding, Jiabao Ma, Xinyu Tong, Yuanxing Zhang, Zhen Tao, Qiyao Wang
    Microbiological Research.2023; 266: 127220.     CrossRef
  • Impact of lead (Pb2+) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene—a metal efflux regulator
    Gustavo Magno dos Reis Ferreira, Josiane Ferreira Pires, Luciana Silva Ribeiro, Jorge Dias Carlier, Maria Clara Costa, Rosane Freitas Schwan, Cristina Ferreira Silva
    World Journal of Microbiology and Biotechnology.2023;[Epub]     CrossRef
  • MlrA, a MerR family regulator in Vibrio cholerae , senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization
    Jialin Wu, Yutao Liu, Wendi Li, Fan Li, Ruiying Liu, Hao Sun, Jingliang Qin, Xiaohui Feng, Di Huang, Bin Liu
    Gut Microbes.2022;[Epub]     CrossRef
  • Nutritional immunity: the battle for nutrient metals at the host–pathogen interface
    Caitlin C. Murdoch, Eric P. Skaar
    Nature Reviews Microbiology.2022; 20(11): 657.     CrossRef
  • The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis
    Ran Cai, Fen Gao, Junfeng Pan, Xinwei Hao, Zonglan Yu, Yichen Qu, Jialin Li, Dandan Wang, Yao Wang, Xihui Shen, Xingyu Liu, Yantao Yang
    Microbiological Research.2021; 249: 126787.     CrossRef
  • T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation
    Kai-Wei Yu, Peng Xue, Yang Fu, Liang Yang
    International Journal of Molecular Sciences.2021; 22(2): 478.     CrossRef
  • Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts
    Sarah L. Price, Viveka Vadyvaloo, Jennifer K. DeMarco, Amanda Brady, Phoenix A. Gray, Thomas E. Kehl-Fie, Sylvie Garneau-Tsodikova, Robert D. Perry, Matthew B. Lawrenz
    Proceedings of the National Academy of Sciences.2021;[Epub]     CrossRef
  • Roles of Type VI Secretion System in Transport of Metal Ions
    Xiaobing Yang, Hai Liu, Yanxiong Zhang, Xihui Shen
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance
    Jinshui Lin, Lei Xu, Jianshe Yang, Zhuo Wang, Xihui Shen
    Stress Biology.2021;[Epub]     CrossRef
  • Coordinated regulation of anthranilate metabolism and bacterial virulence by the GntR family regulator MpaR in Pseudomonas aeruginosa
    Tietao Wang, Yihang Qi, Zhihan Wang, Jingru Zhao, Linxuan Ji, Jun Li, Zhao Cai, Liang Yang, Min Wu, Haihua Liang
    Molecular Microbiology.2020; 114(5): 857.     CrossRef
  • RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression
    Vanessa Knittel, Pooja Sadana, Stephanie Seekircher, Anne-Sophie Stolle, Britta Körner, Marcel Volk, Cy M. Jeffries, Dmitri I. Svergun, Ann Kathrin Heroven, Andrea Scrima, Petra Dersch, Joan Mecsas
    PLOS Pathogens.2020; 16(9): e1008552.     CrossRef
  • The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly
    Lei Li, Yi-Nuo Wang, Hong-Bing Jia, Ping Wang, Jun-Fang Dong, Juan Deng, Feng-Min Lu, Qing-Hua Zou
    Scientific Reports.2019;[Epub]     CrossRef
  • Confirmed and Potential Roles of Bacterial T6SSs in the Intestinal Ecosystem
    Can Chen, Xiaobing Yang, Xihui Shen
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • The stringent response factor, RelA, positively regulates T6SS4 expression through the RovM/RovA pathway in Yersinia pseudotuberculosis
    Xiaobing Yang, Yunhong Song, Qingyun Dai, Hongyun Zhang, Li Song, Zhuo Wang, Junfeng Pan, Yao Wang
    Microbiological Research.2019; 220: 32.     CrossRef
  • Type VI Secretion Systems Present New Insights on Pathogenic Yersinia
    Xiaobing Yang, Junfeng Pan, Yao Wang, Xihui Shen
    Frontiers in Cellular and Infection Microbiology.2018;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism
Shuo Tan , Xiaoli Hu , Pinghe Yin , Ling Zhao
J. Microbiol. 2016;54(5):364-375.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-6012-0
  • 362 View
  • 0 Download
  • 46 Crossref
AbstractAbstract PDF
Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine- 1,4-dione, cyclo-(Pro-Gly), by GC-MS and 1H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide.

Citations

Citations to this article as recorded by  
  • Flagellimonas algicida sp. Nov.: A Novel Broad-Spectrum Algicidal Bacterium Targeting Harmful Algal Bloom Species and Genomic Insights into Its Secondary Metabolites
    Ning Wang, Yiling Liang, Hui Zhou, Yutian Chi, Lizhu Chen, Qiliang Lai, Hong Xu
    Microorganisms.2025; 13(9): 2062.     CrossRef
  • Toxic effects of eight azole fungicides on the growth, photosynthetic activity, and oxidative stress of Raphidocelis subcapitata
    Yongxiang Huang, Dijie Guo, Litang Qin, Lingyun Mo, Yuqing Zhao
    Environmental Toxicology and Chemistry.2025; 44(5): 1259.     CrossRef
  • Transcriptome analysis of Ipomoea cairica algicidal mechanism against Phaeocystis globosa
    Dayong Liang, Huanxin Li, Yuxuan Pan, Zihan Liu, Hua Xiang
    Frontiers in Marine Science.2025;[Epub]     CrossRef
  • Warfare under the waves: a review of bacteria-derived algaecidal natural products
    Shuxin Yang, Spencer J. Williams, Myles Courtney, Laura Burchill
    Natural Product Reports.2025; 42(4): 681.     CrossRef
  • Salinity-dependent top-down effect of rotifer Brachionus plicatilis on removing harmful alga Phaeocystis globosa
    Yunfei Sun, Xiaoru Qian, Hang Wu, Gongyuan Wang, Yannan Li, Qingqing Yu, Zhou Yang
    Marine Pollution Bulletin.2024; 199: 116044.     CrossRef
  • Natural algicidal compounds: Strategies for controlling harmful algae and application
    Huili Li, Ronglian Xing, Xingyu Ji, Yi Liu, Xinran Chu, Jiaxin Gu, Shengnan Wang, Gexuan Wang, Shijun Zhao, Xuebin Cao
    Plant Physiology and Biochemistry.2024; 215: 108981.     CrossRef
  • Characterization of a novel algicidal bacteria Arenibacter sp. strain 6A1 and its application to eliminate harmful algal blooms
    Sha Wu, Jing Tong, Jiahuan Chen, Minchun Chen, Liyan Wang, Shuangfei Li, Zhangli Hu, Huirong Chen
    Frontiers in Marine Science.2024;[Epub]     CrossRef
  • Proteomic insights of interaction between ichthyotoxic dinoflagellate Karenia mikimotoi and algicidal bacteria Maribacter dokdonensis
    Thomas Chun-Hung Lee, Winnie Lam, Nora Fung-Yee Tam, Steven Jing-Liang Xu, Chak-Lam Lee, Fred Wang-Fat Lee
    Marine Pollution Bulletin.2024; 209: 117227.     CrossRef
  • Inhibitory effect and mechanism of algicidal bacteria on Chaetomorpha valida
    Yaqi Geng, Ronglian Xing, Hongxia Zhang, Guoning Nan, Lihong Chen, Zhen Yu, Chuyao Liu, Huili Li
    Science of The Total Environment.2024; 914: 169850.     CrossRef
  • Investigating the molecular mechanisms of Pseudalteromonas sp. LD-B1's algicidal effects on the harmful alga Heterosigma akashiwo
    Mingyang Xu, Yujiao Chen, Lei Chen, Yifan Chen, Xueyao Yin, Nanjing Ji, Yuefeng Cai, Song Sun, Xin Shen
    Ecotoxicology and Environmental Safety.2024; 282: 116690.     CrossRef
  • Influence of perfluoroalkyl substances, with focus on perfluorobutanoic acid on the responding characteristics and molecular mechanisms of Thalassiosira pseudonana
    Jiayi Shi, Mengyang Hu, Zhilin Xia, Jirong Zhang, Ziniu Wang, Luying Li, Yan Zhao
    Ecotoxicology and Environmental Safety.2024; 285: 117048.     CrossRef
  • Effects of polystyrene microplastics on the extracellular and intracellular dissolved organic matter released by Skeletonema costatum using a novel in situ method
    Xixue Chen, Yaxian Zhu, Yong Zhang
    Environmental Pollution.2024; 359: 124604.     CrossRef
  • Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound
    So-Ra Ko, Ve Van Le, Ankita Srivastava, Mingyeong Kang, Hee-Mock Oh, Chi-Yong Ahn
    Marine Pollution Bulletin.2023; 186: 114397.     CrossRef
  • Eutrophic water remediation efficiency of algicidal bacteria, Cellvibrio sp. G1 and Chitinimonas sp. G2, and their influence on microbial community structure
    Tianyu Zhuo, Qiong Wan, Beibei Chai, Dajun Ren, Xiaohui Lei, Lixin He, Bin Chen
    Algal Research.2023; 71: 103034.     CrossRef
  • An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species
    Xiping Hou, Yaoyao Yan, Yuqin Wang, Tao Jiang, Xiaohui Zhang, Xianzhu Dai, Yasuo Igarashi, Feng Luo, Caiyun Yang
    Chemosphere.2023; 310: 136767.     CrossRef
  • Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella
    So-Ra Ko, Yujin Jeong, Sang-Hyeok Cho, Eunju Lee, Bo-Seong Jeong, Seung Ho Baek, Byung-Ha Oh, Chi-Yong Ahn, Hee-Mock Oh, Byung-Kwan Cho, Suhyung Cho
    Chemosphere.2022; 300: 134535.     CrossRef
  • Algicidal Effects of a High-Efficiency Algicidal Bacterium Shewanella Y1 on the Toxic Bloom-Causing Dinoflagellate Alexandrium pacificum
    Xi Chen, Dengyu Wang, Yanqun Wang, Pengfei Sun, Shuanghui Ma, Tiantian Chen
    Marine Drugs.2022; 20(4): 239.     CrossRef
  • Bacteria Associated With Phaeocystis globosa and Their Influence on Colony Formation
    Shuaishuai Xu, Xiaodong Wang, Jie Liu, Fengli Zhou, Kangli Guo, Songze Chen, Zhao-hui Wang, Yan Wang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The ecological responses of bacterioplankton during a Phaeocystis globosa bloom in Beibu Gulf, China highlighted by integrated metagenomics and metatranscriptomics
    Sha Xu, Cheng He, Zhenjun Kang, Shuqun Song, Caiwen Li
    Marine Biology.2022;[Epub]     CrossRef
  • A Novel Algicidal Bacterium, Microbulbifer sp. YX04, Triggered Oxidative Damage and Autophagic Cell Death in Phaeocystis globosa , Which Causes Harmful Algal Blooms
    Xiaoying Zhu, Shuangshuang Chen, Guiying Luo, Wei Zheng, Yun Tian, Xueqian Lei, Luming Yao, Caiming Wu, Hong Xu, Vincent J. Denef
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Toxicity of triphenyl phosphate toward the marine rotifer Brachionus plicatilis: Changes in key life-history traits, rotifer-algae population dynamics and the metabolomic response
    Zijie Sun, Wenqian Ma, Xuexi Tang, Xin Zhang, Yingying Yang, Xinxin Zhang
    Ecotoxicology and Environmental Safety.2022; 241: 113731.     CrossRef
  • Applying Surfactin in the Removal of Blooms of Karlodinium veneficum Increases the Toxic Potential
    Xiaoyu Tian, Ran Meng, Chengxu Zhou, Yuanbo Pan, Xiaojun Yan
    Journal of Marine Science and Engineering.2022; 10(2): 196.     CrossRef
  • Methods to control harmful algal blooms: a review
    Barathan Balaji-Prasath, Ying Wang, Yu Ping Su, David P. Hamilton, Hong Lin, Luwei Zheng, Yong Zhang
    Environmental Chemistry Letters.2022; 20(5): 3133.     CrossRef
  • Removal of harmful algae by Shigella sp. H3 and Alcaligenes sp. H5: algicidal pathways and characteristics
    Gang Xue, Xiaonuan Wang, Chenlan Xu, Binxue Song, Hong Chen
    Environmental Technology.2022; 43(27): 4341.     CrossRef
  • Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms
    Kathryn J. Coyne, Yanfei Wang, Gretchen Johnson
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Spatiotemporal dynamics of marine microbial communities following a Phaeocystis bloom: biogeography and co‐occurrence patterns
    Sha Xu, Cheng He, Shuqun Song, Caiwen Li
    Environmental Microbiology Reports.2021; 13(3): 294.     CrossRef
  • Toxicological effects of hypoxanthine on Heterosigmaakashiwo: Mechanism of growth inhibition and change in hemolytic toxin content
    Binbin Chen, Ling Zhao, Qiming Jimmy Yu
    Ecotoxicology and Environmental Safety.2021; 226: 112797.     CrossRef
  • Altering the Sex Pheromone Cyclo(l-Pro-l-Pro) of the Diatom Seminavis robusta towards a Chemical Probe
    Eli Bonneure, Amber De Baets, Sam De Decker, Koen Van den Berge, Lieven Clement, Wim Vyverman, Sven Mangelinckx
    International Journal of Molecular Sciences.2021; 22(3): 1037.     CrossRef
  • Effect of algicidal compound Nω-acetylhistamine on physiological response and algal toxins in Heterosigma akashiwo
    Qiuyin Zhu, Biyu Wu, Ling Zhao
    Ecotoxicology and Environmental Safety.2021; 208: 111423.     CrossRef
  • The potential of prodigiosin for control of Prorocentrum donghaiense blooms: Algicidal properties and acute toxicity to other marine organisms at various trophic levels
    Yingjie Chen, Guiying Luo, Shuangshuang Chen, Danyang Zhang, Wanxin Xie, Zengge Wang, Wei Zheng, Hong Xu
    Ecotoxicology and Environmental Safety.2021; 228: 112913.     CrossRef
  • The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability
    Sheng-Jie Zhang, Xiao-Peng Du, Jian-Ming Zhu, Chen-Xu Meng, Jin Zhou, Ping Zuo
    Biotechnology Reports.2020; 25: e00421.     CrossRef
  • Allelopathic Inhibition by the Bacteria Bacillus cereus BE23 on Growth and Photosynthesis of the Macroalga Ulva prolifera
    Naicheng Li, Jingyao Zhang, Xinyu Zhao, Pengbin Wang, Mengmeng Tong, Patricia M. Glibert
    Journal of Marine Science and Engineering.2020; 8(9): 718.     CrossRef
  • Continuous production of algicidal compounds against Akashiwo sanguinea via a Vibrio sp. co-culture
    Yue Wang, Shuangfei Li, Guozhu Liu, Xiaoqiang Li, Qixia Yang, Ying Xu, Zhangli Hu, Chun-Yen Chen, Jo-Shu Chang
    Bioresource Technology.2020; 295: 122246.     CrossRef
  • The Antialgal Mechanism of Luteolin-7-O-Glucuronide on Phaeocystis globosa by Metabolomics Analysis
    Jingyi Zhu, Yeyin Yang, Shunshan Duan, Dong Sun
    International Journal of Environmental Research and Public Health.2019; 16(17): 3222.     CrossRef
  • Effects of Lanthanum on the Photosystem II Energy Fluxes and Antioxidant System of Chlorella Vulgaris and Phaeodactylum Tricornutum
    Dong Sun, Ning He, Qi Chen, Shunshan Duan
    International Journal of Environmental Research and Public Health.2019; 16(12): 2242.     CrossRef
  • Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake
    Jinyu Liu, Caiyun Yang, Yuxin Chi, Donghao Wu, Xianzhu Dai, Xiaohui Zhang, Yasuo Igarashi, Feng Luo
    Journal of Basic Microbiology.2019; 59(11): 1112.     CrossRef
  • Small-Sized Microplastics Negatively Affect Rotifers: Changes in the Key Life-History Traits and Rotifer–Phaeocystis Population Dynamics
    Yunfei Sun, Wenjie Xu, Qiujin Gu, Yitong Chen, Qiming Zhou, Lu Zhang, Lei Gu, Yuan Huang, Kai Lyu, Zhou Yang
    Environmental Science & Technology.2019; 53(15): 9241.     CrossRef
  • Nutritional strategy for the preferential uptake of $${{text{NO}}_{3}}^{ - } {text{{-}N}}$$ by Phaeocystis globosa
    Xuning Lv, Zaixing Wu, Xiuxian Song, Yongquan Yuan, Xihua Cao, Zhiming Yu
    Hydrobiologia.2019; 846(1): 109.     CrossRef
  • Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-glucuronide from Seagrass Enhalus acoroides
    Jingyi Zhu, Han Xiao, Qi Chen, Min Zhao, Dong Sun, Shunshan Duan
    International Journal of Environmental Research and Public Health.2019; 16(14): 2615.     CrossRef
  • Isolation of an algicidal bacterium and its effects against the harmful-algal- bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae)
    Xinguo Shi, Lemian Liu, Yue Li, Yuchun Xiao, Guangmao Ding, Senjie Lin, Jianfeng Chen
    Harmful Algae.2018; 80: 72.     CrossRef
  • Combined algicidal effect of urocanic acid,N-acetylhistamine andl-histidine to harmful algaPhaeocystis globosa
    Luer Zhuang, Ling Zhao, Pinghe Yin
    RSC Advances.2018; 8(23): 12760.     CrossRef
  • Study on the metabolites of DH-e, a Halomonas marine bacterium, against three toxic dinoflagellate species
    Di Wang, Liling Xie, Xingbiao Zhu, Xiao Bi, Yuzhong Zheng, Yankun Zhu
    Water Science and Technology.2018; 78(7): 1535.     CrossRef
  • Investigation of the Inhibitory Effects of Mangrove Leaves and Analysis of Their Active Components on Phaeocystis globosa during Different Stages of Leaf Age
    Min Zhao, Han Xiao, Dong Sun, Shunshan Duan
    International Journal of Environmental Research and Public Health.2018; 15(11): 2434.     CrossRef
  • NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa
    Lishuang Wu, Xingliang Guo, Xianglong Liu, Hong Yang
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Strategies and ecological roles of algicidal bacteria
    Nils Meyer, Arite Bigalke, Anett Kaulfuß, Georg Pohnert
    FEMS Microbiology Reviews.2017; 41(6): 880.     CrossRef
  • Trade-off between reproduction and lifespan of the rotifer Brachionus plicatilis under different food conditions
    Yunfei Sun, Xinying Hou, Xiaofeng Xue, Lu Zhang, Xuexia Zhu, Yuan Huang, Yafen Chen, Zhou Yang
    Scientific Reports.2017;[Epub]     CrossRef
Reviews
REVIEW] The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance
Neil A. Brown , Gustavo H. Goldman
J. Microbiol. 2016;54(3):243-253.   Published online February 27, 2016
DOI: https://doi.org/10.1007/s12275-016-5510-4
  • 306 View
  • 0 Download
  • 53 Crossref
AbstractAbstract PDF
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.

Citations

Citations to this article as recorded by  
  • The Expanding Mycovirome of Aspergilli
    Josephine L. Battersby, David A. Stevens, Robert H. A. Coutts, Vladimír Havlíček, Joe L. Hsu, Gabriele Sass, Ioly Kotta-Loizou
    Journal of Fungi.2024; 10(8): 585.     CrossRef
  • Synergistic effects of putative Ca2+-binding sites of calmodulin in fungal development, temperature stress and virulence ofAspergillus fumigatus
    Xingyue Li, Ruoyun Feng, Pan Luo, Yuanwei Zhang, Ling Lu
    Virulence.2024;[Epub]     CrossRef
  • MicroRNA (miRNA) profiling of maize genotypes with differential response to Aspergillus flavus implies zma-miR156–squamosa promoter binding protein (SBP) and zma-miR398/zma-miR394–F -box combinations involved in resistance mechanisms
    Prasad Gandham, Kanniah Rajasekaran, Christine Sickler, Harikrishnan Mohan, Matthew Gilbert, Niranjan Baisakh
    Stress Biology.2024;[Epub]     CrossRef
  • Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus
    Ye-Eun Son, Jiwoo Han, Kyung-Tae Lee, Hee-Soo Park
    Mycology.2024; 15(2): 238.     CrossRef
  • The Oxidative Stress Response Highly Depends on Glucose and Iron Availability in Aspergillus fumigatus
    Tamás Emri, Károly Antal, Kinga Varga, Barnabás Csaba Gila, István Pócsi
    Journal of Fungi.2024; 10(3): 221.     CrossRef
  • Response of Fusarium oxysporum soil isolate to amphotericin B and fluconazole at the proteomic level
    I. V. da S. Amatto, F. A. de O. Simões, N. G. da R. Garzon, C. L. Marciano, R. R. da Silva, H. Cabral
    Brazilian Journal of Microbiology.2024; 55(3): 2557.     CrossRef
  • tRNA hypomodification facilitates 5-fluorocytosine resistance via cross-pathway control system activation in Aspergillus fumigatus
    Alexander Bruch, Valentina Lazarova, Maximilian Berg, Thomas Krüger, Sascha Schäuble, Abdulrahman A Kelani, Birte Mertens, Pamela Lehenberger, Olaf Kniemeyer, Stefanie Kaiser, Gianni Panagiotou, Fabio Gsaller, Matthew G Blango
    Nucleic Acids Research.2024;[Epub]     CrossRef
  • A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi
    Thaila Fernanda dos Reis, Patrícia Alves de Castro, Rafael Wesley Bastos, Camila Figueiredo Pinzan, Pedro F. N. Souza, Suzanne Ackloo, Mohammad Anwar Hossain, David Harold Drewry, Sondus Alkhazraji, Ashraf S. Ibrahim, Hyunil Jo, Jorge D. Lightfoot, Emily
    Nature Communications.2023;[Epub]     CrossRef
  • Pathogenicity and virulence of Aspergillus fumigatus
    Kayleigh Earle, Clara Valero, Daniel P. Conn, George Vere, Peter C. Cook, Michael J. Bromley, Paul Bowyer, Sara Gago
    Virulence.2023;[Epub]     CrossRef
  • Putative Core Transcription Factors Affecting Virulence in Aspergillus flavus during Infection of Maize
    Matthew K. Gilbert, Brian M. Mack, Matthew D. Lebar, Perng-Kuang Chang, Stephanie R. Gross, Rebecca R. Sweany, Jeffrey W. Cary, Kanniah Rajasekaran
    Journal of Fungi.2023; 9(1): 118.     CrossRef
  • Fungi’s Swiss Army Knife: Pleiotropic Effect of Melanin in Fungal Pathogenesis during Cattle Mycosis
    Víctor Romero, Carolina Kalinhoff, Luis Rodrigo Saa, Aminael Sánchez
    Journal of Fungi.2023; 9(9): 929.     CrossRef
  • Afu-Emi1 Contributes to Stress Adaptation and Voriconazole Susceptibility in Aspergillus fumigatus
    Jufang Tan, Heng Zhang, Yi Sun, Lujuan Gao, Cezar M. Khursigara
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • COVID-19-Associated Pulmonary Aspergillosis Isolates Are Genomically Diverse but Similar to Each Other in Their Responses to Infection-Relevant Stresses
    Matthew E. Mead, Patrícia Alves de Castro, Jacob L. Steenwyk, Jean-Pierre Gangneux, Martin Hoenigl, Juergen Prattes, Riina Rautemaa-Richardson, Hélène Guegan, Caroline B. Moore, Cornelia Lass-Flörl, Florian Reizine, Clara Valero, Norman Van Rhijn, Michael
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Host-derived reactive oxygen species trigger activation of the Candida albicans transcription regulator Rtg1/3
    Mazen Oneissi, Melissa R. Cruz, Bernardo Ramírez-Zavala, Elena Lindemann-Perez, Joachim Morschhäuser, Danielle A. Garsin, J. Christian Perez, Aaron P. Mitchell
    PLOS Pathogens.2023; 19(9): e1011692.     CrossRef
  • The high osmolarity glycerol (HOG) pathway in fungi†
    Hajar Yaakoub, Norma Silvia Sanchez, Laura Ongay-Larios, Vincent Courdavault, Alphonse Calenda, Jean-Philippe Bouchara, Roberto Coria, Nicolas Papon
    Critical Reviews in Microbiology.2022; 48(6): 657.     CrossRef
  • Stress Responses Elicited by Glucose Withdrawal in Aspergillus fumigatus
    Tamás Emri, Károly Antal, Barnabás Gila, Andrea P. Jónás, István Pócsi
    Journal of Fungi.2022; 8(11): 1226.     CrossRef
  • PHYTONICIDIC PROPERTIES OF PLANTS REGARDING FUNGI OF THE ASPERGILLUS GENUS
    A. Karasenko, S. Peredera
    Sučasne ptahìvnictvo.2022;[Epub]     CrossRef
  • Strategies Shaping the Transcription of Carbohydrate-Active Enzyme Genes in Aspergillus nidulans
    Barnabás Cs. Gila, Károly Antal, Zsuzsanna Birkó, Judit Sz. Keserű, István Pócsi, Tamás Emri
    Journal of Fungi.2022; 8(1): 79.     CrossRef
  • An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi
    Matthew E Mead, Jacob L Steenwyk, Lilian P Silva, Patrícia A de Castro, Nauman Saeed, Falk Hillmann, Gustavo H Goldman, Antonis Rokas, A Mitchell
    Genetics.2021;[Epub]     CrossRef
  • Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels
    Lina Castano-Duque, Matthew K. Gilbert, Brian M. Mack, Matthew D. Lebar, Carol H. Carter-Wientjes, Christine M. Sickler, Jeffrey W. Cary, Kanniah Rajasekaran
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus
    Patrícia Alves de Castro, Clara Valero, Jéssica Chiaratto, Ana Cristina Colabardini, Lakhansing Pardeshi, Lilian Pereira Silva, Fausto Almeida, Marina Campos Rocha, Roberto Nascimento Silva, Iran Malavazi, Wenyue Du, Paul S. Dyer, Matthias Brock, Flávio V
    mBio.2021;[Epub]     CrossRef
  • Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A
    Jing Gao, Xinge Xu, Kunlun Huang, Zhihong Liang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • The Essential Thioredoxin Reductase of the Human Pathogenic Mold Aspergillus fumigatus Is a Promising Antifungal Target
    Jasmin Binder, Yana Shadkchan, Nir Osherov, Sven Krappmann
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources
    Lilian Pereira Silva, Dean Frawley, Leandro José de Assis, Ciara Tierney, Alastair B. Fleming, Ozgur Bayram, Gustavo Henrique Goldman, Aaron P. Mitchell
    mSphere.2020;[Epub]     CrossRef
  • Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity
    Antonis Rokas, Matthew E. Mead, Jacob L. Steenwyk, Nicholas H. Oberlies, Gustavo H. Goldman, Donald C. Sheppard
    PLOS Pathogens.2020; 16(2): e1008315.     CrossRef
  • Aspergillus fumigatus G-Protein Coupled Receptors GprM and GprJ Are Important for the Regulation of the Cell Wall Integrity Pathway, Secondary Metabolite Production, and Virulence
    Aílton Pereira da Costa Filho, Guilherme Thomaz Pereira Brancini, Patrícia Alves de Castro, Clara Valero, Jaire Alves Ferreira Filho, Lilian Pereira Silva, Marina Campos Rocha, Iran Malavazi, João Guilherme de Moraes Pontes, Taícia Fill, Roberto Nasciment
    mBio.2020;[Epub]     CrossRef
  • Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole
    Margriet W. J. Hokken, Jan Zoll, Jordy P. M. Coolen, Bas J. Zwaan, Paul E. Verweij, Willem J. G. Melchers
    BMC Genomics.2019;[Epub]     CrossRef
  • Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
    Patrícia Alves de Castro, Ana Cristina Colabardini, Adriana Oliveira Manfiolli, Jéssica Chiaratto, Lilian Pereira Silva, Eliciane Cevolani Mattos, Giuseppe Palmisano, Fausto Almeida, Gabriela Felix Persinoti, Laure Nicolas Annick Ries, Laura Mellado, Mari
    PLOS Genetics.2019; 15(12): e1008551.     CrossRef
  • How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts
    Steven T. Denham, Morgan A. Wambaugh, Jessica C.S. Brown
    Journal of Molecular Biology.2019; 431(16): 2982.     CrossRef
  • Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses
    Adriana Oliveira Manfiolli, Eliciane Cevolani Mattos, Leandro José de Assis, Lilian Pereira Silva, Mevlüt Ulaş, Neil Andrew Brown, Rafael Silva-Rocha, Özgür Bayram, Gustavo H. Goldman
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri , a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus
    Matthew E. Mead, Sonja L. Knowles, Huzefa A. Raja, Sarah R. Beattie, Caitlin H. Kowalski, Jacob L. Steenwyk, Lilian P. Silva, Jessica Chiaratto, Laure N. A. Ries, Gustavo H. Goldman, Robert A. Cramer, Nicholas H. Oberlies, Antonis Rokas, Aaron P. Mitchell
    mSphere.2019;[Epub]     CrossRef
  • Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth
    Haomiao Ouyang, Ting Du, Hui Zhou, Iain B. H. Wilson, Jinghua Yang, Jean-Paul Latgé, Cheng Jin
    Scientific Reports.2019;[Epub]     CrossRef
  • Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis
    Hazal Boral, Banu Metin, Aylin Döğen, Seyedmojtaba Seyedmousavi, Macit Ilkit
    Fungal Genetics and Biology.2018; 111: 92.     CrossRef
  • Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model
    Fruzsina Bakti, Christoph Sasse, Thorsten Heinekamp, István Pócsi, Gerhard H. Braus
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Predicted Glycerol 3-Phosphate Dehydrogenase Homologs and the Glycerol Kinase GlcA Coordinately Adapt to Various Carbon Sources and Osmotic Stress in Aspergillus fumigatus
    Chi Zhang, Xiuhua Meng, Huiyu Gu, Zhihua Ma, Ling Lu
    G3 Genes|Genomes|Genetics.2018; 8(7): 2291.     CrossRef
  • Heterogeneity in Pathogenicity-related Properties and Stress Tolerance in Aspergillus fumigatus Clinical Isolates
    Daisuke Hagiwara, Hiroki Takahashi, Hiroshi Takagi, Akira Watanabe, Katsuhiko Kamei
    Medical Mycology Journal.2018; 59(4): E63.     CrossRef
  • Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion
    Vivien Kurucz, Thomas Krüger, Károly Antal, Anna-Maria Dietl, Hubertus Haas, István Pócsi, Olaf Kniemeyer, Tamás Emri
    BMC Genomics.2018;[Epub]     CrossRef
  • Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control
    Neil Andrew Brown, Sanne Schrevens, Patrick van Dijck, Gustavo Henrique Goldman
    Nature Microbiology.2018; 3(4): 402.     CrossRef
  • Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion
    Alex Hopke, Alistair J.P. Brown, Rebecca A. Hall, Robert T. Wheeler
    Trends in Microbiology.2018; 26(4): 284.     CrossRef
  • A cytosine methyltransferase ortholog dmtA is involved in the sensitivity of Aspergillus flavus to environmental stresses
    Qing-Qing Zhi, Jie-Ying Li, Qiu-Yun Liu, Zhu-Mei He
    Fungal Biology.2017; 121(5): 501.     CrossRef
  • Global gene expression reveals stress-responsive genes in Aspergillus fumigatus mycelia
    Hiroki Takahashi, Yoko Kusuya, Daisuke Hagiwara, Azusa Takahashi-Nakaguchi, Kanae Sakai, Tohru Gonoi
    BMC Genomics.2017;[Epub]     CrossRef
  • The putative flavin carrier family FlcA-C is important forAspergillus fumigatusvirulence
    Patrícia A. de Castro, Jéssica Chiaratto, Enyara Rezende Morais, Thaila Fernanda dos Reis, Thomas K. Mitchell, Neil A. Brown, Gustavo H. Goldman
    Virulence.2017; 8(6): 797.     CrossRef
  • Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks inAspergillus nidulans
    Erzsébet Orosz, Károly Antal, Zoltán Gazdag, Zsuzsa Szabó, Kap-Hoon Han, Jae-Hyuk Yu, István Pócsi, Tamás Emri
    International Journal of Genomics.2017; 2017: 1.     CrossRef
  • Genome-wide transcriptome analysis ofAspergillus fumigatusexposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakAHOG1and MpkC dependent
    Lilian Pereira Silva, Patrícia Alves de Castro, Thaila Fernanda dos Reis, Mario Henrique Paziani, Márcia Regina Von Zeska Kress, Diego M. Riaño-Pachón, Daisuke Hagiwara, Laure N. A. Ries, Neil Andrew Brown, Gustavo H. Goldman
    Cellular Microbiology.2017; 19(4): e12681.     CrossRef
  • Aspergillus fumigatus morphology and dynamic host interactions
    Frank L. van de Veerdonk, Mark S. Gresnigt, Luigina Romani, Mihai G. Netea, Jean-Paul Latgé
    Nature Reviews Microbiology.2017; 15(11): 661.     CrossRef
  • Human fungal pathogens: Why should we learn?
    Jeong-Yoon Kim
    Journal of Microbiology.2016; 54(3): 145.     CrossRef
  • Mitogen activated protein kinases SakAHOG1 and MpkC collaborate for Aspergillus fumigatus virulence
    Ariane Cristina Mendes de Oliveira Bruder Nascimento, Thaila Fernanda dos Reis, Patrícia Alves de Castro, Juliana I. Hori, Vinícius Leite Pedro Bom, Leandro José de Assis, Leandra Naira Zambelli Ramalho, Marina Campos Rocha, Iran Malavazi, Neil Andrew Bro
    Molecular Microbiology.2016; 100(5): 841.     CrossRef
  • Proteomic analysis of Aspergillus fumigatus – clinical implications
    Nicola M. Moloney, Rebecca A. Owens, Sean Doyle
    Expert Review of Proteomics.2016; 13(7): 635.     CrossRef
  • Aspergillus fumigatusMADS-Box Transcription FactorrlmAIs Required for Regulation of the Cell Wall Integrity and Virulence
    Marina Campos Rocha, João Henrique Tadini Marilhano Fabri, Krissia Franco de Godoy, Patrícia Alves de Castro, Juliana Issa Hori, Anderson Ferreira da Cunha, Mark Arentshorst, Arthur F J Ram, Cees A M J J van den Hondel, Gustavo Henrique Goldman, Iran Mala
    G3 Genes|Genomes|Genetics.2016; 6(9): 2983.     CrossRef
  • Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison
    Pedro Pais, Catarina Costa, Mafalda Cavalheiro, Daniela Romão, Miguel C. Teixeira
    Frontiers in Cellular and Infection Microbiology.2016;[Epub]     CrossRef
  • How to invade a susceptible host: cellular aspects of aspergillosis
    Sven Krappmann
    Current Opinion in Microbiology.2016; 34: 136.     CrossRef
  • Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi
    Daisuke Hagiwara, Akira Watanabe, Katsuhiko Kamei, Gustavo H. Goldman
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies
    Nadia Al-Bader, Donald C. Sheppard
    Virulence.2016; 7(8): 950.     CrossRef
MINIREVIEW] Stress responses in Streptococcus species and their effects on the host
Cuong Thach Nguyen , Sang-Sang Park , Dong-Kwon Rhee
J. Microbiol. 2015;53(11):741-749.   Published online October 28, 2015
DOI: https://doi.org/10.1007/s12275-015-5432-6
  • 316 View
  • 0 Download
  • 31 Crossref
AbstractAbstract
Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host’s defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

Citations

Citations to this article as recorded by  
  • A MXene‐Based Nanothermal Knife Inhibits Aggresome‐Mediated Persister Formation for Preventing Dental Caries
    Yinyin Zhang, Leilei Yang, Jing jiao, Wenshuai Li, Sen Lin, Xianlong Zong, Haoyang Qin, Danfeng Liu, Rui Li
    Advanced Science.2025;[Epub]     CrossRef
  • MoxR effects as an ATPase on anti-stress and pathogenicity of Riemerella anatipestifer
    Yang Zhang, Yanhao Zhang, Yushan He, Yarong Hou, Xuedi Li, Xueying Yang, Zutao Zhou, Zili Li
    Veterinary Research.2025;[Epub]     CrossRef
  • Skin microbiota in atopic dermatitis: victim or executioner?
    Chiara Maria Teresa Boggio, Federica Veronese, Marta Armari, Elisa Zavattaro, Elia Esposto, Paola Savoia, Barbara Azzimonti, Christopher Staley, Eman Adel Elmansoury, Yunhua Tu
    Clinical Microbiology Reviews.2025;[Epub]     CrossRef
  • Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review
    Ernesto García
    Microorganisms.2025; 13(4): 827.     CrossRef
  • Structural analysis of extracellular ATP-independent chaperones of streptococcal species and protein substrate interactions
    Charles Agbavor, Madeline Torres, Nicole L. Inniss, Sarah Latimer, George Minasov, Ludmilla Shuvalova, Zdzislaw Wawrzak, Dominika Borek, Zbyszek Otwinowski, Peter J. Stogios, Alexei Savchenko, Wayne F. Anderson, Karla J. F. Satchell, Laty A. Cahoon, Craig
    mSphere.2025;[Epub]     CrossRef
  • Bile acid synthesis dysregulation in liver diseases promotes ectopic expansion of oral streptococci in the intestine
    Yugui Wang, Wenjie Mu, Jian Guan, Pingping Ma, Yaqi Li, Ying Zhang, Wenjun Zhu, Yu Zhou, Yang Zou, Tongxu Zeng, Jian Zhou, Xiaoqi Lin, Xuehua Yan, Wenjuan Shi, Xiaola Guo, Xing-Quan Zhu, Xuepeng Cai, Yan Sun, Aijiang Guo, Shuai Wang
    Cell Reports.2025; 44(10): 116374.     CrossRef
  • Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae
    Lan Yang, Zhihao Wu, Tian-Yu Ma, Hui Zeng, Ming Chen, Yong-An Zhang, Yang Zhou
    Veterinary Research.2024;[Epub]     CrossRef
  • Effect of β-lactam antibiotics on the gut microbiota of term neonates
    Hongdan Gu, Enfu Tao, Yijia Fan, Gao Long, Xinyi Jia, Tianming Yuan, Lihua Chen, Xiaoli Shu, Wei Zheng, Mizu Jiang
    Annals of Clinical Microbiology and Antimicrobials.2024;[Epub]     CrossRef
  • Insights into the microbiota of raw milk from seven breeds animals distributing in Xinjiang China
    Baolong Luo, Fujin Dong, Yuyang Liu, Jie Du, Hailong Sun, Yongqing Ni, Yan Zhang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Heat Shock Protein Inhibitors Show Synergistic Antibacterial Effects with Photodynamic Therapy on Caries-Related Streptococci In Vitro and In Vivo
    Zichen Zhang, Yaoting Ji, Danfeng Liu, Shuhui Zhou, Zijun Wang, Rourong Chen, Ting Li, Boxuan Zhao, Hantao Yao, Minquan Du, Patricia A. Bradford
    mSphere.2023;[Epub]     CrossRef
  • Glucose levels affect MgaSpn regulation on the virulence and adaptability of Streptococcus pneumoniae
    Weicai Suo, Xinlin Guo, Xuemei Zhang, Shengnan Xiao, Shuhui Wang, Yibing Yin, Yuqiang Zheng
    Microbial Pathogenesis.2023; 174: 105896.     CrossRef
  • Tongue coating microbiome composition reflects disease severity in patients with COVID-19 in Nanjing, China
    Zongdan Jiang, Lu Yang, Xuetian Qian, Kunhan Su, Yuzhen Huang, Yi Qu, Zhenyu Zhang, Wanli Liu
    Journal of Oral Microbiology.2023;[Epub]     CrossRef
  • The involvement of CiaR and the CiaR-regulated serine protease HtrA in thermal adaptation of Streptococcus pneumoniae
    Ozcan Gazioglu, Medhanie Habtom, Peter W. Andrew, Hasan Yesilkaya
    Microbiology .2023;[Epub]     CrossRef
  • Normal bacterial flora of the oral cavity in healthy pet rabbits (Oryctolagus cuniculus)
    Lucas Flenghi, Maeva Mazouffre, Aurélie Le Loc'h, Guillaume Le Loc'h, Christophe Bulliot
    Veterinary Medicine and Science.2023; 9(4): 1621.     CrossRef
  • A Perilous Combination: Streptococcus Coinfection with Human Plague—Report of Two Cases and Review of the Literature, 1937–2022
    Brian Erly, Shannon Fleck-Derderian, Katharine M. Cooley, Kim Meyer-Lee, Jennifer House, Elizabeth VinHatton, Christina A. Nelson
    Vector-Borne and Zoonotic Diseases.2023; 23(7): 371.     CrossRef
  • sRNA23, a novel small RNA, regulates to the pathogenesis ofStreptococcus suisserotype 2
    Quanming Xu, Hong Chen, Wen Sun, Yongyi Zhang, Dewen Zhu, Kul Raj Rai, Ji-Long Chen, Ye Chen
    Virulence.2021; 12(1): 3045.     CrossRef
  • Genome-wide association study identifies the virulence-associated marker in Streptococcus suis serotype 2
    Genglin Guo, Xuewei Kong, Dechao Du, Dan Wei, Yanfei Yu, Wei Zhang
    Infection, Genetics and Evolution.2021; 92: 104894.     CrossRef
  • Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum
    Yoonhang Lee, Nameun Kim, HyeongJin Roh, Ahran Kim, Hyun-Ja Han, Miyoung Cho, Do-Hyung Kim, Günther Koraimann
    PLOS ONE.2021; 16(5): e0252200.     CrossRef
  • Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome
    Dong-Wook Hyun, Jae-Yun Lee, Min-Soo Kim, Na-Ri Shin, Tae Woong Whon, Kyung Hyun Kim, Pil Soo Kim, Euon Jung Tak, Mi-Ja Jung, June Young Lee, Hyun Sik Kim, Woorim Kang, Hojun Sung, Che Ok Jeon, Jin-Woo Bae
    Journal of Microbiology.2021; 59(8): 792.     CrossRef
  • Oral bacteria affect the gut microbiome and intestinal immunity
    Ryoki Kobayashi, Yasuhiro Ogawa, Tomomi Hashizume-Takizawa, Tomoko Kurita-Ochiai
    Pathogens and Disease.2020;[Epub]     CrossRef
  • Survival of Group A Streptococcus (GAS) is Enhanced Under Desiccated Culture Conditions
    Leonhard Menschner, Uta Falke, Peter Konrad, Nicole Toepfner, Reinhard Berner
    Current Microbiology.2020; 77(8): 1518.     CrossRef
  • Oral Probiotics Alleviate Intestinal Dysbacteriosis for People Receiving Bowel Preparation
    Xiaorong Deng, Huakai Tian, Rong Yang, Yiwen Han, Kehong Wei, Cihua Zheng, Zhaoxia Liu, Tingtao Chen
    Frontiers in Medicine.2020;[Epub]     CrossRef
  • Identification of an Autorepressing Two-Component Signaling System That Modulates Virulence in Streptococcus suis Serotype 2
    Xiaojun Zhong, Yue Zhang, Yinchu Zhu, Wenyang Dong, Jiale Ma, Zihao Pan, Huochun Yao, Shelley M. Payne
    Infection and Immunity.2019;[Epub]     CrossRef
  • Galleria mellonella as an experimental model to study human oral pathogens
    Rodnei Dennis Rossoni, Felipe de Camargo Ribeiro, Hanna Flávia Santana dos Santos, Jéssica Diane dos Santos, Nicássia de Sousa Oliveira, Marignês Theotonio dos Santos Dutra, Simone Aparecida Biazzi de Lapena, Juliana Campos Junqueira
    Archives of Oral Biology.2019; 101: 13.     CrossRef
  • Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers
    Ramachandran Chelliah, Shuai Wei, Byung-Jae Park, Momna Rubab, Eric Banan-Mwine Dalirii, Kaliyan Barathikannan, Yong-Guo Jin, Deog-Hwan Oh
    Microbial Pathogenesis.2019; 129: 284.     CrossRef
  • Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment
    Alejandro Gómez-Mejia, Gustavo Gámez, Sven Hammerschmidt
    International Journal of Medical Microbiology.2018; 308(6): 722.     CrossRef
  • The Two-Component Signaling System VraSR ss Is Critical for Multidrug Resistance and Full Virulence in Streptococcus suis Serotype 2
    Xiaojun Zhong, Yue Zhang, Yinchu Zhu, Wenyang Dong, Jiale Ma, Zihao Pan, Shipra Roy, Chengping Lu, Huochun Yao, Nancy E. Freitag
    Infection and Immunity.2018;[Epub]     CrossRef
  • Stress Suppressor Screening Leads to Detection of Regulation of Cyclic di-AMP Homeostasis by a Trk Family Effector Protein in Streptococcus pneumoniae
    Tiffany M. Zarrella, Dennis W. Metzger, Guangchun Bai, Ann M. Stock
    Journal of Bacteriology.2018;[Epub]     CrossRef
  • Measuring the microbiome of chronic wounds with use of a topical antimicrobial dressing – A feasibility study
    Lindsay Kalan, Mi Zhou, Michele Labbie, Benjamin Willing, Alan Landay
    PLOS ONE.2017; 12(11): e0187728.     CrossRef
  • Relationship between dental caries and metabolic syndrome among 13 998 middle‐aged urban Chinese
    Xia Cao, Dongliang Wang, Jiansong Zhou, Hong Yuan, Zhiheng Chen
    Journal of Diabetes.2017; 9(4): 378.     CrossRef
  • Effects of One-Week Empirical Antibiotic Therapy on the Early Development of Gut Microbiota and Metabolites in Preterm Infants
    Danping Zhu, Sa Xiao, Jialin Yu, Qing Ai, Yu He, Chen Cheng, Yunhui Zhang, Yun Pan
    Scientific Reports.2017;[Epub]     CrossRef
Research Support, Non-U.S. Gov'ts
Role of the extracytoplasmic function sigma factor CarQ in oxidative response of Bradyrhizobium japonicum
Anchana Thaweethawakorn , Dylan Parks , Jae-Seong So , Woo-Suk Chang
J. Microbiol. 2015;53(8):526-534.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5308-9
  • 302 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
As a nitrogen-fixing bacterium, Bradyrhizobium japonicum can establish a symbiotic relationship with the soybean plant (Glycine max). To be a successful symbiont, B. japonicum must deal with plant defense responses, such as an oxidative burst. Our previous functional genomics study showed that carQ (bll1028) encoding extracytoplasmic function (ECF) sigma factor was highly expressed (107.8-fold induction) under oxidative stress. Little is known about the underlying mechanisms of how CarQ responds to oxidative stress. In this study, a carQ knock-out mutant was constructed using site-specific mutagenesis to identify the role of carQ in the oxidative response of B. japonicum. The carQ mutant showed a longer generation time than the wild type and exhibited significantly decreased survival at 10 mM H2O2 for 10 min of exposure. Surprisingly, there was no significant difference in expression of oxidative stress-responsive genes such as katG and sod between the wild type and carQ mutant. The mutant also showed a significant increase in susceptibility to H2O2 compared to the wild type in the zone inhibition assay. Nodulation phenotypes of the carQ mutant were distinguishable compared to those of the wild type, including lower numbers of nodules, decreased nodule dry weight, decreased plant dry weight, and a lower nitrogen fixation capability. Moreover, desiccation of mutant cells also resulted in significantly lower percent of survival in both early (after 4 h) and late (after 24 h) desiccation periods. Taken together, this information will provide an insight into the role of the ECF sigma factor in B. japonicum to deal with a plant-derived oxidative burst.

Citations

Citations to this article as recorded by  
  • Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA 299–356 -Mediated Decrease of Oxidative Stress Tolerance in St
    Ren-Hsuan Ku, Li-Hua Li, Yi-Fu Liu, En-Wei Hu, Yi-Tsung Lin, Hsu-Feng Lu, Tsuey-Ching Yang, Silvia T. Cardona
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Identification and Validation of Reference Genes for Expression Analysis in Nitrogen-Fixing Bacteria under Environmental Stress
    Dylan Parks, Christian Peterson, Woo-Suk Chang
    Life.2022; 12(9): 1379.     CrossRef
  • MostSinorhizobium melilotiExtracytoplasmic Function Sigma Factors Control Accessory Functions
    Claus Lang, Melanie J. Barnett, Robert F. Fisher, Lucinda S. Smith, Michelle E. Diodati, Sharon R. Long, Craig D. Ellermeier, Claude Bruand, Sarah Ades, Hans-Martin Fischer
    mSphere.2018;[Epub]     CrossRef
Deletion analysis of LSm, FDF, and YjeF domains of Candida albicans Edc3 in hyphal growth and oxidative-stress response
Eung-Chul Kim , Jinmi Kim
J. Microbiol. 2015;53(2):111-115.   Published online January 28, 2015
DOI: https://doi.org/10.1007/s12275-015-4727-y
  • 326 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
Candida albicans is an opportunistic fungal pathogen whose responses to environmental changes are associated with the virulence attributes. Edc3 is known to be an enhancer of the mRNA decapping reactions and a scaffold protein of cytoplasmic processing bodies (P-bodies). Recent studies of C. albicans Edc3 suggested its critical roles in filamentous growth and stress-induced apoptotic cell death. The edc3/edc3 deletion mutant strain showed increased cell survival and less ROS accumulation upon treatment with hydrogen peroxide. To investigate the diverse involvement of Edc3 in the cellular processes, deletion mutations of LSm, FDF, or YjeF domain of Edc3 were constructed. The edc3-LSmΔ or edc3-YjeFΔ mutation showed the filamentation defect, resistance to oxidative stress, and decreased ROS accumulation. In contrast, the edc3-FDFΔ mutation exhibited a wild-type level of filamentous growth and a mild defect in ROS accumulation. These results suggest that Lsm and YjeF domains of Edc3 are critical in hyphal growth and oxidative stress response.

Citations

Citations to this article as recorded by  
  • The FomYjeF Protein Influences the Sporulation and Virulence of Fusarium oxysporum f. sp. momordicae
    Chenxing Wei, Caiyi Wen, Yuanyuan Zhang, Hongyan Du, Rongrong Zhong, Zhengzhe Guan, Mengjiao Wang, Yanhong Qin, Fei Wang, Luyang Song, Ying Zhao
    International Journal of Molecular Sciences.2023; 24(8): 7260.     CrossRef
  • Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence
    Ning-Ning Liu, Priya Uppuluri, Achille Broggi, Angelique Besold, Kicki Ryman, Hiroto Kambara, Norma Solis, Viola Lorenz, Wanjun Qi, Maikel Acosta-Zaldívar, S. Noushin Emami, Bin Bao, Dingding An, Francisco A. Bonilla, Martha Sola-Visner, Scott G. Filler,
    PLOS Pathogens.2018; 14(7): e1007076.     CrossRef
  • Mutational analysis of metacaspase CaMca1 and decapping activator Edc3 in the pathogenicity of Candida albicans
    Jeong-Hoon Jeong, Seok-Eui Lee, Jinmi Kim
    Fungal Genetics and Biology.2016; 97: 18.     CrossRef
Growth Phase-dependent Roles of Sir2 in Oxidative Stress Resistance and Chronological Lifespan in Yeast
Woo Kyu Kang , Yeong Hyeock Kim , Byoung-Soo Kim , Jeong-Yoon Kim
J. Microbiol. 2014;52(8):652-658.   Published online July 5, 2014
DOI: https://doi.org/10.1007/s12275-014-4173-2
  • 357 View
  • 1 Download
  • 10 Crossref
AbstractAbstract PDF
Silent Information Regulator 2 (Sir2), a conserved NAD+- dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.

Citations

Citations to this article as recorded by  
  • Alleviating Effects of Ethanol Extract from Acremonium terricola Culture on Patulin Toxicity
    Haiyan Lin, Savindi Kaushalya Edirisinghe, Ijeoma Esther Okolo, Zhen Chen, Juan Sun, Wei Hong, Ruiyu Zhu
    Antioxidants.2025; 14(5): 509.     CrossRef
  • RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells
    Manisekaran Hemagirri, Yeng Chen, Subash C. B. Gopinath, Mohd Adnan, Mitesh Patel, Sreenivasan Sasidharan
    Biogerontology.2024; 25(4): 705.     CrossRef
  • The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae
    Yeong Hyeock Kim, Ji-In Ryu, Mayur Nimbadas Devare, Juhye Jung, Jeong-Yoon Kim
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Inactivation of MrSir2 in Monascus ruber Influenced the Developmental Process and the Production of Monascus Azaphilone Pigments
    Jing Zhang, Yudan Yang, Zejing Mao, Qingqing Yan, Qi Chen, Ming Yi, Yanchun Shao
    Applied Biochemistry and Biotechnology.2022; 194(12): 5702.     CrossRef
  • Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus
    Meifang Wen, Huahui Lan, Ruilin Sun, Xuan Chen, Xin Zhang, Zhuo Zhu, Can Tan, Jun Yuan, Shihua Wang
    Environmental Microbiology.2022; 24(11): 5596.     CrossRef
  • Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis
    Samantha J Emery, Louise Baker, Brendan R E Ansell, Mehdi Mirzaei, Paul A Haynes, Malcom J McConville, Staffan G Svärd, Aaron R Jex
    GigaScience.2018;[Epub]     CrossRef
  • HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae
    Woo Kyu Kang, Mayur Devare, Jeong-Yoon Kim
    Journal of Microbiology.2017; 55(2): 123.     CrossRef
  • Sirt1: Role Under the Condition of Ischemia/Hypoxia
    Xiaofei Meng, Jin Tan, Mengmeng Li, Shuling Song, Yuyang Miao, Qiang Zhang
    Cellular and Molecular Neurobiology.2017; 37(1): 17.     CrossRef
  • A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance
    Steve Michel, Markus A Keller, Mirjam MC Wamelink, Markus Ralser
    BMC Genetics.2015;[Epub]     CrossRef
  • Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast
    Woo Kyu Kang, Yeong Hyeock Kim, Hyun Ah Kang, Ki-Sun Kwon, Jeong-Yoon Kim
    eLife.2015;[Epub]     CrossRef
Involvement of Alternative Oxidase in the Regulation of Growth, Development, and Resistance to Oxidative Stress of Sclerotinia sclerotiorum
Ting Xu , Fei Yao , Wu-Sheng Liang , Yong-Hong Li , Dian-Rong Li , Hao Wang , Zheng-Yi Wang
J. Microbiol. 2012;50(4):594-602.   Published online August 25, 2012
DOI: https://doi.org/10.1007/s12275-012-2015-7
  • 297 View
  • 0 Download
  • 31 Crossref
AbstractAbstract PDF
Sclerotinia sclerotiorum is a cosmopolitan, filamentous, fungal pathogen that can cause serious disease in many kinds of crops. Alternative oxidase is the terminal oxidase of the alternative mitochondrial respiratory pathway in fungi and higher plants. We report the presence of this alternative pathway respiration and demonstrate its expression in two isolates of S. sclerotiorum under unstressed, normal culture conditions. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, severely inhibited the mycelial growth of S. sclerotiorum both on potato dextrose agar plates and in liquid culture media. Inhibition of alternative oxidase could influence the growth pattern of S. sclerotiorum, as salicylhydroxamic acid treatment induced obvious aerial mycelia growing on potato dextrose agar plates. Under the treatment with salicylhydroxamic acid, S. sclerotiorum formed sclerotia much more slowly than the control. Treatment with hydrogen peroxide in millimolar concentrations greatly decreased the growth rate of mycelia and delayed the formation of sclerotia in both tested S. sclerotiorum isolates. As well, this treatment obviously increased their alternative pathway respiration and the levels of both mRNA and protein of the alternative oxidase. These results indicate that alternative oxidase is involved in the regulation of growth, development, and resistance to oxidative stress of S. sclerotiorum.

Citations

Citations to this article as recorded by  
  • Molecular, physiological, and biochemical properties of sclerotia metamorphosis in Rhizoctonia solani
    Zohreh Nasimi, Jorge Barriuso, Tajalli Keshavarz, Aiping Zheng
    Fungal Biology Reviews.2024; 48: 100351.     CrossRef
  • Short-term artificial adaptation of Rhizoglomus irregulare to high phosphate levels and its implications for fungal-plant interactions: phenotypic and transcriptomic insights
    Eva Lucic-Mercy, Louis Mercy, Andrea Jeschke, Carolin Schneider, Philipp Franken
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Alternative Oxidase: From Molecule and Function to Future Inhibitors
    Jiye Li, Shiyun Yang, Yujie Wu, Ruina Wang, Yu Liu, Jiacun Liu, Zi Ye, Renjie Tang, Malcolm Whiteway, Quanzhen Lv, Lan Yan
    ACS Omega.2024;[Epub]     CrossRef
  • The 2′,4′-Dichloro-chalcone Inhibits the In Vitro Growth and Pathogenicity of Fusarium tricinctum and Trichothecium roseum by Activating Cyanide-Resistant Respiration
    Fupeng Zhu, Yan Zhu, Yuanshou Zhao, Fu Chen, Wenjun Sheng, Wei Zhang, Pengqing Wang, Jiangwen Deng, Yunyu Sun, Weibing Zhang, Yongcai Li
    Coatings.2023; 13(10): 1789.     CrossRef
  • Endophytic Bacterium Serratia plymuthica From Chinese Leek Suppressed Apple Ring Rot on Postharvest Apple Fruit
    Meng Sun, Junping Liu, Jinghui Li, Yonghong Huang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Alternative oxidase is involved in oxidative stress resistance and melanin synthesis in Annulohypoxylon stygium, a companion fungus of Tremella fuciformis
    Dongmei Liu, Xueyan Sun, Biyun Yan, Aimin Ma
    Antonie van Leeuwenhoek.2022; 115(3): 365.     CrossRef
  • The Toxicity of Salicylhydroxamic Acid and Its Effect on the Sensitivity of Ustilaginoidea virens to Azoxystrobin and Pyraclostrobin
    Jiehui Song, Zhiying Wang, Sijie Zhang, Yan Wang, You Liang, Qigen Dai, Zhongyang Huo, Ke Xu
    Journal of Fungi.2022; 8(11): 1231.     CrossRef
  • Selenium Improved Phenylacetic Acid Content in Oilseed Rape and Thus Enhanced the Prevention of Sclerotinia sclerotiorum by Dimethachlon
    Huan Zhang, Qin Cheng, Xu Wang, Wei Jia, Jiatao Xie, Guocheng Fan, Chuang Han, Xiaohu Zhao
    Journal of Fungi.2022; 8(11): 1193.     CrossRef
  • Baseline Sensitivity and Control Efficacy of Two Quinone Outside Inhibitor Fungicides, Azoxystrobin and Pyraclostrobin, AgainstUstilaginoidea virens
    Jie-Hui Song, Si-Jie Zhang, Yan Wang, Yun-Tong Chen, Jun-Fei Luo, You Liang, Hong-Cheng Zhang, Qi-Gen Dai, Ke Xu, Zhong-Yang Huo
    Plant Disease.2022; 106(11): 2967.     CrossRef
  • Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism?
    Marten Szibor, Christina Schenkl, Mario R. O. Barsottini, Luke Young, Anthony L. Moore
    Biochemical Journal.2022; 479(12): 1337.     CrossRef
  • The Mitochondrial Alternative Oxidase in Ustilago maydis Is Not Involved in Response to Oxidative Stress Induced by Paraquat
    Lucero Romero-Aguilar, Héctor Vázquez-Meza, Guadalupe Guerra-Sánchez, Oscar Ivan Luqueño-Bocardo, Juan Pablo Pardo
    Journal of Fungi.2022; 8(11): 1221.     CrossRef
  • Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China
    Niu-Niu Shi, Hong-Chun Ruan, Yu-Lin Jie, Fu-Ru Chen, Yi-Xin Du
    Crop Protection.2021; 143: 105572.     CrossRef
  • Effect of plant-based compounds on the antifungal and antiaflatoxigenic efficiency of strobilurins against Aspergillus flavus
    Fei Tian, Sang Yoo Lee, So Young Woo, Hwa Young Choi, Su Been Park, Hyang Sook Chun
    Journal of Hazardous Materials.2021; 415: 125663.     CrossRef
  • Functional Analysis and Genome Mining Reveal High Potential of Biocontrol and Plant Growth Promotion in Nodule-Inhabiting Bacteria Within Paenibacillus polymyxa Complex
    Md. Arshad Ali, Yang Lou, Rahila Hafeez, Xuqing Li, Afsana Hossain, Ting Xie, Li Lin, Bin Li, Yanni Yin, Jianli Yan, Qianli An
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Evaluating the Sensitivities and Efficacies of Fungicides with Different Modes of Action Against Phomopsis asparagi
    Niuniu Shi, Hongchun Ruan, Lin Gan, Yuli Dai, Xiujuan Yang, Yixin Du, Furu Chen
    Plant Disease.2020; 104(2): 448.     CrossRef
  • Nitric Oxide Improves the Tolerance of Pleurotus ostreatus to Heat Stress by Inhibiting Mitochondrial Aconitase
    Ludan Hou, Mengran Zhao, Chenyang Huang, Xiangli Wu, Jinxia Zhang, Edward G. Dudley
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role
    Lucero Romero-Aguilar, Christian Cárdenas-Monroy, Verónica Garrido-Bazán, Jesus Aguirre, Guadalupe Guerra-Sánchez, Juan Pablo Pardo
    Archives of Biochemistry and Biophysics.2020; 694: 108603.     CrossRef
  • Alternative Oxidase: A Potential Target for Controlling Aflatoxin Contamination and Propagation of Aspergillus flavus
    Fei Tian, Sang Yoo Lee, So Young Woo, Hyang Sook Chun
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Effects of SHAM on the Sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI Fungicides
    Hongjie Liang, Jinli Li, Chaoxi Luo, Jianhong Li, Fu-Xing Zhu
    Plant Disease.2019; 103(8): 1884.     CrossRef
  • Alternative Oxidase Is Involved in the Pathogenicity, Development, and Oxygen Stress Response ofBotrytis cinerea
    Zesong Lin, Jianyan Wu, Pierce A. Jamieson, Chuanqing Zhang
    Phytopathology®.2019; 109(10): 1679.     CrossRef
  • ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA
    Chenjiaozi Wang, Lei Pi, Shaofeng Jiang, Mei Yang, Canwei Shu, Erxun Zhou
    Fungal Biology.2018; 122(5): 322.     CrossRef
  • A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis
    Louis Mercy, Eva Lucic-Mercy, Amaia Nogales, Areg Poghosyan, Carolin Schneider, Birgit Arnholdt-Schmitt
    Frontiers in Plant Science.2017;[Epub]     CrossRef
  • Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum
    Deng-Ke Shi, Jing Zhu, Ze-Hua Sun, Guang Zhang, Rui Liu, Tian-Jun Zhang, Sheng-Li Wang, Ang Ren, Ming-Wen Zhao
    Microbiology.2017; 163(10): 1466.     CrossRef
  • Improved application of tribenuron-methyl as a chemical hybridizing agent with forchlorfenuron for rapeseed hybrid breeding
    Yong-Hong Li, Dian-Rong Li, Wu-Sheng Liang, Jian-Hua Tian, Jian-Chang Li, Hao Wang, Mao-Teng Li, Xu-Peng Guo, Wen-Jie Chen, Zhen-Lan Zhang, Fei Mao, Wei-Guo Zhao
    Euphytica.2017;[Epub]     CrossRef
  • The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis
    Christian A. Cárdenas-Monroy, Thomas Pohlmann, Gabriela Piñón-Zárate, Genaro Matus-Ortega, Guadalupe Guerra, Michael Feldbrügge, Juan Pablo Pardo, Wagner L. Araujo
    PLOS ONE.2017; 12(3): e0173389.     CrossRef
  • The impacts of natural antioxidants on sclerotial differentiation and development in Rhizoctonia solani AG-1 IA
    Lu Lu, Canwei Shu, Chen Liu, Chenjiaozi Wang, Erxun Zhou
    European Journal of Plant Pathology.2016; 146(4): 729.     CrossRef
  • Baseline Sensitivity of Pyraclostrobin and Toxicity of SHAM to Sclerotinia sclerotiorum
    Hong-Jie Liang, Ya-Li Di, Jin-Li Li, Hong You, Fu-Xing Zhu
    Plant Disease.2015; 99(2): 267.     CrossRef
  • Involvement of an alternative oxidase in the regulation of hyphal growth and microsclerotial formation in Nomuraea rileyi CQNr01
    Guilin Zhou, Zhangyong Song, Youping Yin, Wei Jiang, Zhongkang Wang
    World Journal of Microbiology and Biotechnology.2015; 31(9): 1343.     CrossRef
  • Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene
    Catarina Campos, Hélia Cardoso, Amaia Nogales, Jan Svensson, Juan Antonio Lopez-Ráez, María José Pozo, Tânia Nobre, Carolin Schneider, Birgit Arnholdt-Schmitt, Jae-Hyuk Yu
    PLOS ONE.2015; 10(11): e0142339.     CrossRef
  • Evidence of an Alternative Oxidase Pathway for Mitochondrial Respiration in the Scuticociliate Philasterides dicentrarchi
    Natalia Mallo, Jesús Lamas, José Manuel Leiro
    Protist.2013; 164(6): 824.     CrossRef
  • Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone
    Ting Xu, Ya-Ting Wang, Wu-Sheng Liang, Fei Yao, Yong-Hong Li, Dian-Rong Li, Hao Wang, Zheng-Yi Wang
    Journal of Microbiology.2013; 51(3): 352.     CrossRef
Tularemia Progression Accompanied with Oxidative Stress and Antioxidant Alteration in Spleen and Liver of BALB/c Mice
Miroslav Pohanka , Oto Pavlis , Branislav Ruttkay-Nedecky , Jiri Sochor , Jakub Sobotka , Jiri Pikula , Vojtech Adam , Rene Kizek
J. Microbiol. 2012;50(3):401-408.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-1621-8
  • 218 View
  • 0 Download
  • 9 Crossref
AbstractAbstract PDF
Francisella tularensis is the causative agent of tularemia. It is an intracellular pathogen with the ability to survive within phagosomes and induce pyroptotic cell death. In this study, we attempted to prove whether oxidative imbalance plays a significant role in tularemia pathogenesis. In our experimental model, we subcutaneously infected female BALB/c mice (dose 105 CFU of F. tularensis LVS). Liver, spleen, and blood were collected from mice at regular intervals from days 1–15 after infection. The bacterial burden was assessed by a cultivation test. The burden was unchanging from the 2nd to 6th day after infection. The bacterial burden corresponded to the plasmatic level of IFN-γ, IL-6, and liver malondialdehyde. After the phase of acute bacteraemia and the innate immunity reaction, the levels of reduced glutathione and total low molecular weight antioxidants decreased significantly and the activity of caspase-3 increased in the liver. The level of reduced glutathione decreased to 25% of the original level, and the total level of low molecular weight antioxidants was less than 50% of the initial amount. The demonstrated effects of tularemia-induced pathology had a more extensive impact on the liver than on the spleen.

Citations

Citations to this article as recorded by  
  • The Group A Streptococcus (GAS) and Oxidative Stress Interaction
    Charles Emene, Irina E. Kravchenko, Maxim V. Zamergrad, Albert A. Rizvanov
    BioNanoScience.2017; 7(1): 233.     CrossRef
  • Organs of BALB/c mice can be injured in course of tularemia
    Oto Pavlis, Eva Kusakova, Ladislav Novotny, Miroslav Pohanka
    Biomedical Papers.2014; 158(4): 557.     CrossRef
  • Are Reactive Oxygen Species Always Detrimental to Pathogens?
    Claudia N. Paiva, Marcelo T. Bozza
    Antioxidants & Redox Signaling.2014; 20(6): 1000.     CrossRef
  • Investigating the influence of taurine on thiol antioxidant status in Wistar rats with a multi-analytical approach
    Jiri Sochor, Lukas Nejdl, Branislav Ruttkay-Nedecky, Andrea Bezdekova, Katerina Lukesova, Ondrej Zitka, Natalia Cernei, Petr Mares, Miroslav Pohanka, Vojtech Adam, Petr Babula, Miroslava Beklova, Ladislav Zeman, Rene Kizek
    Journal of Applied Biomedicine.2014; 12(2): 97.     CrossRef
  • Tacrine can suppress immune response to tularemia in BALB/c mouse model
    Miroslav Pohanka, Oto Pavlis
    Journal of Applied Biomedicine.2013; 11(3): 187.     CrossRef
  • Estimation of Thiol Compounds Cysteine and Homocysteine in Sources of Protein by Means of Electrochemical Techniques
    Mojmir Baron, Jiri Sochor
    International Journal of Electrochemical Science.2013; 8(9): 11072.     CrossRef
  • Role of oxidative stress in infectious diseases. A review
    Miroslav Pohanka
    Folia Microbiologica.2013; 58(6): 503.     CrossRef
  • Electrochemistry as a Tool for Studying Antioxidant Properties
    Jiri Sochor, Jiri Dobes, Olga Krystofova, Branislav Ruttkay-Nedecky, Petr Babula, Miroslav Pohanka, Tunde Jurikova, Ondrej Zitka, Vojtech Adam, Borivoj Klejdus, Rene Kizek
    International Journal of Electrochemical Science.2013; 8(6): 8464.     CrossRef
  • Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE) Fruits
    Tunde Jurikova, Jiri Sochor, Otakar Rop, Jiri Mlcek, Stefan Balla, Ladislav Szekeres, Vojtech Adam, Rene Kizek
    Molecules.2012; 17(12): 14490.     CrossRef
Food-Borne Enterococci and Their Resistance to Oxidative Stress
Barbora Vlková , Tomá&# , Gabriel Minárik , Lubomíra Tóthová , Hana Drahovská , Ján Tur&# , Peter Celec
J. Microbiol. 2011;49(4):657-662.   Published online September 2, 2011
DOI: https://doi.org/10.1007/s12275-011-0296-x
  • 229 View
  • 0 Download
  • 4 Crossref
AbstractAbstract PDF
Enterococci are important food-borne pathogens that cause serious infections. Several virulence factors have been described including aggregation substance, gelatinase, cytolysin, and enterococcal surface protein. The ability to cause infections is mainly dependent on the response to oxidative stress due to the production of reactive oxygen species by immune cells. The aim of our study was to analyze the resistance of enterococcal strains from food to clinically relevant antiseptic agents with regard to the presence of selected virulence factors, and to uncover potential mechanisms of the antioxidative resistance. Eighty-two enterococcal isolates from Bryndza cheese were tested using in vitro growth assays to study the ability of these isolates to survive exposure to antiseptic agents – hydrogen peroxide, hypochlorite, and chlorhexidine. Virulence genotypes of the isolates were determined by PCR, and RT real time PCR was used for gene expression under oxidative stress. Resistance against antiseptic agents depends on the concentration of applied chemicals, on the time of exposure, but also on virulence factors of the enterococcal strains. Oxidative stress induces the expression of antioxidative enzymes and down-regulates the expression of prooxidative enzymes. These effects are dependent on the virulence genotype of the enterococcal strains. These findings are important for future research, especially concerning the role of enterococci in oral diseases.

Citations

Citations to this article as recorded by  
  • Current Knowledge of Enterococcal Endocarditis: A Disease Lurking in Plain Sight of Health Providers
    Francesco Nappi
    Pathogens.2024; 13(3): 235.     CrossRef
  • Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents
    Shriti Singh, Santosh Kumar Singh, Indrajit Chowdhury, Rajesh Singh
    The Open Microbiology Journal.2017; 11(1): 53.     CrossRef
  • Species distribution, antibiotic resistance and virulence traits in enterococci from meat in Tunisia
    Naouel Klibi, Leila Ben Said, Ahlem Jouini, Karim Ben Slama, Maria López, Rym Ben Sallem, Abdellatif Boudabous, Carmen Torres
    Meat Science.2013; 93(3): 675.     CrossRef
  • Antibacterial activity of CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) generating reactive oxygen species
    Hana Culakova, Vladimira Dzugasova, Yvetta Gbelska, Julius Subik
    Microbiological Research.2013; 168(3): 147.     CrossRef
Iron Homeostasis in Brucella abortus: the Role of Bacterioferritin
Marta A. Almirón , Rodolfo A. Ugalde
J. Microbiol. 2010;48(5):668-673.   Published online November 3, 2010
DOI: https://doi.org/10.1007/s12275-010-0145-3
  • 205 View
  • 0 Download
  • 9 Crossref
AbstractAbstract PDF
Brucella abortus is the etiological agent of bovine brucellosis, an infectious disease of humans and cattle. Its pathogenesis is mainly based on its ability to survive and multiply inside macrophages. It has been demonstrated that if B. abortus ferrochelatase cannot incorporate iron into protoporphyrin IX to synthesize heme, the intracellular replication and virulence in mice is highly attenuated. Therefore, it can be hypothesized that the unavailability of iron could lead to the same attenuation in B. abortus pathogenicity. Thus, the purpose of this work was to obtain a B. abortus derivative unable to keep an internal iron pool and test its ability to replicate under iron limitation. To achieve this, we searched for iron-storage proteins in the genome of brucellae and found bacterioferritin (Bfr) as the sole ferritin encoded. Then, a B. abortus bfr mutant was built up and its capacity to store iron and replicate under iron limitation was investigated. Results indicated that B. abortus Bfr accounts for 70% of the intracellular iron content. Under iron limitation, the bfr mutant suffered from enhanced iron restriction with respect to wild type according to its growth retardation pattern, enhanced sensitivity to oxidative stress, accelerated production of siderophores, and altered expression of membrane proteins. Nonetheless, the bfr mutant was able to adapt and replicate even inside eukaryotic cells, indicating that B. abortus responds to internal iron starvation before sensing external iron availability. This suggests an active role of Bfr in controlling iron homeostasis through the availability of Bfr-bound iron.

Citations

Citations to this article as recorded by  
  • Brucellosis: Bacteriology, pathogenesis, epidemiology and role of the metallophores in virulence: a review
    Ghassan Ghssein, Zeinab Ezzeddine, Sima Tokajian, Charbel Al Khoury, Hussein Kobeissy, Jose-Noel Ibrahim, Christelle Iskandar, Hussein F. Hassan
    Frontiers in Cellular and Infection Microbiology.2025;[Epub]     CrossRef
  • The Pseudogene BMEA_B0173 Deficiency in Brucella melitensis Contributes to M-epitope Formation and Potentiates Virulence in a Mice Infection Model
    Ge Zhang, Hao Dong, Yu Feng, Hui Jiang, Tonglei Wu, Jiali Sun, Xin Wang, Minghe Liu, Xiaowei Peng, Yinghui Zhang, Xiaoqian Zhang, Liangquan Zhu, Jiabo Ding, Xingjia Shen
    Current Microbiology.2022;[Epub]     CrossRef
  • The Irr and RirA Proteins Participate in a Complex Regulatory Circuit and Act in Concert To Modulate Bacterioferritin Expression in Ensifer meliloti 1021
    Daniela Costa, Vanesa Amarelle, Claudio Valverde, Mark R. O'Brian, Elena Fabiano, Robert M. Kelly
    Applied and Environmental Microbiology.2017;[Epub]     CrossRef
  • Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism
    Alvaro Machuca, Victor Martinez, James E Samuel
    PLOS ONE.2016; 11(12): e0168855.     CrossRef
  • Role and regulation of ferritin-like proteins in iron homeostasis and oxidative stress survival of Caulobacter crescentus
    Ivan Gonçalves de Castro Ferreira, Mirian Molnar Rodrigues, José Freire da Silva Neto, Ricardo Ruiz Mazzon, Marilis do Valle Marques
    BioMetals.2016; 29(5): 851.     CrossRef
  • Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation
    Sascha Al Dahouk, Véronique Jubier-Maurin, Heinrich Neubauer, Stephan Köhler
    BMC Microbiology.2013; 13(1): 199.     CrossRef
  • Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern
    Sarra Snoussi, Alya El May, Laurent Coquet, Philippe Chan, Thierry Jouenne, Ahmed Landoulsi, Emmanuelle DÉ
    Proteome Science.2012;[Epub]     CrossRef
  • Iron Storage Proteins Are Essential for the Survival and Pathogenesis of Mycobacterium tuberculosis in THP-1 Macrophages and the Guinea Pig Model of Infection
    P. Vineel Reddy, Rupangi Verma Puri, Aparna Khera, Anil K. Tyagi
    Journal of Bacteriology.2012; 194(3): 567.     CrossRef
  • Metal acquisition and virulence inBrucella
    R. Martin Roop
    Animal Health Research Reviews.2012; 13(1): 10.     CrossRef
DRA0336, Another OxyR Homolog, Involved in the Antioxidation Mechanisms in Deinococcus radiodurans
Longfei Yin , Liangyan Wang , Huiming Lu , Guangzhi Xu , Huan Chen , Hongdan Zhan , Bing Tian , Yuejin Hua
J. Microbiol. 2010;48(4):473-479.   Published online August 20, 2010
DOI: https://doi.org/10.1007/s12275-010-0043-8
  • 237 View
  • 0 Download
  • 22 Crossref
AbstractAbstract PDF
A novel OxyR (DR0615) with one conserved cysteine that senses hydrogen peroxide in Deinococcus radiodurans had been identified in our previous work. Comparative genomics revealed that D. radiodurans possesses another OxyR homolog, OxyR2 (DRA0336). In this study, we constructed the deletion mutant of oxyR2 and the double mutant of both the OxyR homologs to investigate the role of OxyR in response to oxidative stress in D. radiodurans. Deletion of oxyR2 resulted in an obviously increased sensitivity to hydrogen peroxide, and the double mutant for oxyR and oxyR2 was significantly more sensitive than any of the two single mutants. The total catalase activity of the double mutant was lower than that of any of the single mutants, and reactive oxygen species (ROS) accumulated to a greater extent. DNA microarray analysis further suggested that oxyR2 was involved in antioxidation mechanisms. Site-direct mutagenesis and complementation analysis revealed that C228 in OxyR2 was essential. This is the first report of the presence of two OxyR in one organism. These results suggest that D. radiodurans OxyR and OxyR2 function together to protect the cell against oxidative stress.

Citations

Citations to this article as recorded by  
  • Effects of OxyR regulator on oxidative stress, Apx toxin secretion and virulence of Actinobacillus pleuropneumoniae
    Fangfang Guo, Rong Quan, Yifang Cui, Xiaoya Cao, Tong Wen, Fuzhou Xu
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • LysR-type transcriptional regulators: state of the art
    S. Mayo-Pérez, Y. Gama-Martínez, S. Dávila, N. Rivera, I. Hernández-Lucas
    Critical Reviews in Microbiology.2024; 50(5): 598.     CrossRef
  • RNAs as Sensors of Oxidative Stress in Bacteria
    Ryan Buchser, Phillip Sweet, Aparna Anantharaman, Lydia Contreras
    Annual Review of Chemical and Biomolecular Engineering .2023; 14(1): 265.     CrossRef
  • DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi
    Arjan de Groot, Laurence Blanchard
    Canadian Journal of Microbiology.2023; 69(11): 416.     CrossRef
  • Antioxidant defense of Deinococcus radiodurans : how does it contribute to extreme radiation resistance?
    Izabela Sadowska-Bartosz, Grzegorz Bartosz
    International Journal of Radiation Biology.2023; 99(12): 1803.     CrossRef
  • Structural and mechanistic basis for redox sensing by the cyanobacterial transcription regulator RexT
    Bin Li, Minshik Jo, Jianxin Liu, Jiayi Tian, Robert Canfield, Jennifer Bridwell-Rabb
    Communications Biology.2022;[Epub]     CrossRef
  • New insights into the activation of Radiation Desiccation Response regulon in Deinococcus radiodurans
    Anaganti Narasimha, Bhakti Basu
    Journal of Biosciences.2021;[Epub]     CrossRef
  • How Microbes Defend Themselves From Incoming Hydrogen Peroxide
    Ananya Sen, James A. Imlay
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Redox potential change by the cystine importer affected on enzymatic antioxidant protection in Deinococcus geothermalis
    Kyungsil Choo, Minwook Kim, Sama Abdi Nansa, Min K. Bae, Chanjae Lee, Sung-Jae Lee
    Antonie van Leeuwenhoek.2020; 113(6): 779.     CrossRef
  • Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans
    Wuzhou Wang, Yun Ma, Junyan He, Huizhou Qi, Fangzhu Xiao, Shuya He
    Gene.2019; 715: 144008.     CrossRef
  • Conservation and diversity of radiation and oxidative stress resistance mechanisms inDeinococcusspecies
    Sangyong Lim, Jong-Hyun Jung, Laurence Blanchard, Arjan de Groot
    FEMS Microbiology Reviews.2019; 43(1): 19.     CrossRef
  • Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System
    Jennifer R. Tanner, Palak G. Patel, Jacqueline R. Hellinga, Lynda J. Donald, Celine Jimenez, Jason J. LeBlanc, Ann Karen C. Brassinga, Anke Becker
    Journal of Bacteriology.2017;[Epub]     CrossRef
  • Proteomic insights into the functional basis for the response regulator DrRRA ofDeinococcus radiodurans
    Liangyan Wang, Jing Hu, Mengjia Liu, Su Yang, Ye Zhao, Kaiying Cheng, Guangzhi Xu, Mingfeng Li, Bing Tian, Yuejin Hua
    International Journal of Radiation Biology.2016; 92(5): 273.     CrossRef
  • PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions
    Sun-Wook Jeong, Ho Seong Seo, Min-Kyu Kim, Jong-Il Choi, Heon-Man Lim, Sangyong Lim
    Journal of Microbiology.2016; 54(6): 426.     CrossRef
  • Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain
    Zhuo Ma, Vincenzo C. Russo, Seham M. Rabadi, Yu Jen, Sally V. Catlett, Chandra Shekhar Bakshi, Meenakshi Malik
    Molecular Microbiology.2016; 101(5): 856.     CrossRef
  • DNA repair in hyperthermophilic and hyperradioresistant microorganisms
    Yoshizumi Ishino, Issay Narumi
    Current Opinion in Microbiology.2015; 25: 103.     CrossRef
  • Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction
    Sarela García-Santamarina, Susanna Boronat, Elena Hidalgo
    Biochemistry.2014; 53(16): 2560.     CrossRef
  • Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H2O2 stress
    Peng Yang, Zhouwei Chen, Zhan Shan, Xianfeng Ding, Lili Liu, Jiangfeng Guo
    Microbiological Research.2014; 169(5-6): 411.     CrossRef
  • Peroxide-Sensing Transcriptional Regulators in Bacteria
    James M. Dubbs, Skorn Mongkolsuk
    Journal of Bacteriology.2012; 194(20): 5495.     CrossRef
  • Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria
    Sarah M. Chiang, Herb E. Schellhorn
    Archives of Biochemistry and Biophysics.2012; 525(2): 161.     CrossRef
  • DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans
    Huiming Lu, Huan Chen, Guangzhi Xu, Amir Miraj-Ul-Hussain Shah, Yuejin Hua
    DNA Repair.2012; 11(2): 139.     CrossRef
  • Oxidative Stress Resistance inDeinococcus radiodurans
    Dea Slade, Miroslav Radman
    Microbiology and Molecular Biology Reviews.2011; 75(1): 133.     CrossRef
Virulence Attenuation of Streptococcus pneumoniae clpP Mutant by Sensitivity to Oxidative Stress in Macrophages via an NO-Mediated Pathway
Chul-Yong Park , Eun-Hye Kim , Sang-Yoon Choi , Thao Dang-Hien Tran , In-Hye Kim , Su-Nam Kim , Suhkneung Pyo , Dong-Kwon Rhee
J. Microbiol. 2010;48(2):229-235.   Published online May 1, 2010
DOI: https://doi.org/10.1007/s12275-010-9300-0
  • 293 View
  • 0 Download
  • 19 Crossref
AbstractAbstract PDF
ClpP protease is essential for virulence and survival under stress conditions in several pathogenic bacteria. The clpP mutation in a murine infection model has demonstrated both attenuation of virulence and a sensitivity to hydrogen peroxide. However, the underlying mechanisms for these changes have not been resolved. Because macrophages play a major role in immune response and activated macrophages can kill microbes via oxygen-dependant mechanisms, we investigated the effect of the clpP mutation on its sensitivity to macrophage-mediated oxygen-dependant mechanisms. The clpP mutant derived from D39 (serotype 2) exhibited a higher sensitivity to oxidative stresses such as reactive oxygen intermediates, reactive nitrogen intermediates, and H2O2, but no sensitivity to osmotic stress (NaCl) and pH. Moreover, viability of the clpP mutant was significantly increased in murine macrophage cells by treatment with S-methylisothiourea sulfate, which inhibits inducible nitric oxide synthase (iNOS) activity and subsequently elicits lower level secretions of nitric oxide (NO). However, viability of wild type was unchanged. Taken together, these results indicate that ClpP is involved in the resistance to oxidative stresses after entrapment by macrophages and subsequently contributes to virulence via NO mediated pathway.

Citations

Citations to this article as recorded by  
  • The ClpXP protease and the ClpX unfoldase control virulence, cell division, and autolysis in Streptococcus pneumoniae
    Viktor H. Mebus, Supradipta De, Larissa M. Busch, Manuela Gesell Salazar, Rabea Schlüter, Uwe Völker, Sven Hammerschmidt, Dorte Frees, Carlos J. Blondel
    Microbiology Spectrum.2025;[Epub]     CrossRef
  • The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival
    Mirelys Hernandez-Morfa, Nadia B. Olivero, Victoria E. Zappia, German E. Piñas, Nicolas M. Reinoso-Vizcaino, Melina B. Cian, Mariana Nuñez-Fernandez, Paulo R. Cortes, Jose Echenique
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Pathogenicity and virulence ofStreptococcus pneumoniae: Cutting to the chase on proteases
    Mary E. Marquart
    Virulence.2021; 12(1): 766.     CrossRef
  • ClpP participates in stress tolerance, biofilm formation, antimicrobial tolerance, and virulence of Enterococcus faecalis
    Jinxin Zheng, Yang Wu, Zhiwei Lin, Guangfu Wang, Sibo Jiang, Xiang Sun, Haopeng Tu, Zhijian Yu, Di Qu
    BMC Microbiology.2020;[Epub]     CrossRef
  • Las proteasas de serina bacterianas y su implicación en la fisiopatología de la infección
    Gerardo García-González, Gloria María González, José P. Palma-Nicolás
    Revista del Laboratorio Clínico.2019; 12(3): 137.     CrossRef
  • ClpP Protease, a Promising Antimicrobial Target
    Carlos Moreno-Cinos, Kenneth Goossens, Irene G. Salado, Pieter Van Der Veken, Hans De Winter, Koen Augustyns
    International Journal of Molecular Sciences.2019; 20(9): 2232.     CrossRef
  • Identification and Characterization of Approved Drugs and Drug-Like Compounds as Covalent Escherichia coli ClpP Inhibitors
    Elisa Sassetti, Cristina Durante Cruz, Päivi Tammela, Mathias Winterhalter, Koen Augustyns, Philip Gribbon, Björn Windshügel
    International Journal of Molecular Sciences.2019; 20(11): 2686.     CrossRef
  • α-Amino Diphenyl Phosphonates as Novel Inhibitors of Escherichia coli ClpP Protease
    Carlos Moreno-Cinos, Elisa Sassetti, Irene G. Salado, Gesa Witt, Siham Benramdane, Laura Reinhardt, Cristina D. Cruz, Jurgen Joossens, Pieter Van der Veken, Heike Brötz-Oesterhelt, Päivi Tammela, Mathias Winterhalter, Philip Gribbon, Björn Windshügel, Koe
    Journal of Medicinal Chemistry.2019; 62(2): 774.     CrossRef
  • Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence
    Huan Wang, Zhongling Yang, Shuo Du, Lin Ma, Yao Liao, Yujie Wang, Ian Toth, Jiaqin Fan
    Molecular Plant Pathology.2018; 19(1): 35.     CrossRef
  • Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39
    John P. Lisher, Ho-Ching Tiffany Tsui, Smirla Ramos-Montañez, Kristy L. Hentchel, Julia E. Martin, Jonathan C. Trinidad, Malcolm E. Winkler, David P. Giedroc, Craig D. Ellermeier
    mSphere.2017;[Epub]     CrossRef
  • An ensemble-guided approach identifies ClpP as a major regulator of transcript levels in nitric oxide-stressed Escherichia coli
    Jonathan L. Robinson, Mark P. Brynildsen
    Metabolic Engineering.2015; 31: 22.     CrossRef
  • Stress responses in Streptococcus species and their effects on the host
    Cuong Thach Nguyen, Sang-Sang Park, Dong-Kwon Rhee
    Journal of Microbiology.2015; 53(11): 741.     CrossRef
  • Overexpression and Enzymatic Assessment of Antigenic Fragments of Hyaluronidase Recombinant Protein from Streptococcus pyogenes
    Shabnam Sadoogh Abbasian, Ehsanollah Ghaznavi Rad, Neda Akbari, Mohammad Reza Zolfaghari, Iraj pakzad, Hamid Abtahi
    Jundishapur Journal of Microbiology.2014;[Epub]     CrossRef
  • Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals
    Hasan Yesilkaya, Vahid Farshchi Andisi, Peter W. Andrew, Jetta J.E. Bijlsma
    Trends in Microbiology.2013; 21(4): 187.     CrossRef
  • Streptococcus pneumoniae ClpP protease induces apoptosis via caspase-independent pathway in human neuroblastoma cells: Cytoplasmic relocalization of p53
    Jun-Oh Lee, Ji-Yun Kim, Dong-Kwon Rhee, Suhkneung Pyo
    Toxicon.2013; 70: 142.     CrossRef
  • Alveolar macrophages in pulmonary host defence – the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing
    J D Aberdein, J Cole, M A Bewley, H M Marriott, D H Dockrell
    Clinical and Experimental Immunology.2013; 174(2): 193.     CrossRef
  • The Role of ClpP in Protein Expression of Streptococcus pneumoniae
    Qun Zhang, Yuanshuai Huang, Hong Wang, Wenchun Xu, Lan Liu, Yibing Yin, Xuemei Zhang
    Current Microbiology.2012; 64(3): 294.     CrossRef
  • Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress
    Vahid Farshchi Andisi, Cecilia A. Hinojosa, Anne de Jong, Oscar P. Kuipers, Carlos J. Orihuela, Jetta J. E. Bijlsma, J. N. Weiser
    Infection and Immunity.2012; 80(3): 1037.     CrossRef
  • A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation
    Tiffany Vinckx, Qing Wei, Sandra Matthijs, Jean-Paul Noben, Ruth Daniels, Pierre Cornelis
    BioMetals.2011; 24(3): 523.     CrossRef
Role of a Burkholderia pseudomallei Polyphosphate Kinase in an Oxidative Stress Response, Motilities, and Biofilm Formation
Suda Tunpiboonsak , Rungrawee Mongkolrob , Kaniskul Kitudomsub , Phawatwaristh Thanwatanaying , Witcha Kiettipirodom , Yanin Tungboontina , Sumalee Tungpradabkul
J. Microbiol. 2010;48(1):63-70.   Published online March 11, 2010
DOI: https://doi.org/10.1007/s12275-010-9138-5
  • 225 View
  • 0 Download
  • 40 Crossref
AbstractAbstract PDF
Burkholderia pseudomallei, a motile and rod Gram-negative bacterium, is the causative agent of melioidosis. The bacterium is an intracellular pathogen and that motility is generally crucial for their survival in a natural environment and for systemic infection inside a host. We report here a role of B. pseudomallei polyphosphate kinase in virulence, such as an oxidative stress response, motilities and biofilm formation. The polyphosphate kinase (ppk) mutant is susceptible to hydrogen peroxide in an oxidative stress condition, unable to perform swimming, swarming motilities, and has lower density biofilm forming capacity than the wild-type strain. We also demonstrated that both polyphosphate kinase and motile flagella are essential and independently involved in biofilm formation. The B. pseudomallei flagellin (fliC) mutant and B. mallei, a nonmotile species, are shown to produce higher density biofilm formation than the ppk mutant, but less than wild type B. pseudomallei.

Citations

Citations to this article as recorded by  
  • Inorganic Polyphosphate Relieves Ulcerative Colitis by Modulating the Gut Microbiota and Metabolites
    Zhicheng Wang, Jing Zhao, Sisi He, Rongpeng Li, Xiuxiu Wang, Chao Yan, Jing Zhao, Wei Wei
    ACS Applied Bio Materials.2025; 8(8): 7473.     CrossRef
  • C-terminal Poly-histidine Tags Alter Escherichia coli Polyphosphate Kinase Activity and Susceptibility to Inhibition
    Marvin Q. Bowlin, Avery D. Lieber, Abagail R. Long, Michael J. Gray
    Journal of Molecular Biology.2024; 436(16): 168651.     CrossRef
  • Gallein potentiates isoniazid's ability to suppress Mycobacterium tuberculosis growth
    Ramesh Rijal, Richard H. Gomer
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Transcriptional landscape of Burkholderia pseudomallei cultured under environmental and clinical conditions
    Cin Kong, Rui-Rui Wong, Ahmad-Kamal Ghazali, Yuka Hara, Tengku Nurfarhana Tengku Aziz, Sheila Nathan
    Microbial Genomics .2023;[Epub]     CrossRef
  • Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: biochemical performances, microbial response and intrinsic mechanisms
    Wen Li, Yongli Liu, Baocun Wu, Li Gu, Rui Deng
    Water Research.2022; 221: 118850.     CrossRef
  • Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples
    Siti Nur Hazwani Oslan, Abdul Hafidz Yusoff, Mazlina Mazlan, Si Jie Lim, Jing Jing Khoo, Siti Nurbaya Oslan, Aziah Ismail
    Microbial Pathogenesis.2022; 169: 105637.     CrossRef
  • The GntR-like transcriptional regulator HutC involved in motility, biofilm-forming ability, and virulence in Vibrio parahaemolyticus
    Yangyang Li, Weidong Sun, Quan Wang, Ying Yu, Ying Wan, Kai Zhou, Rong Guo, Xiangan Han, Zhaoguo Chen, Weihuan Fang, Wei Jiang
    Microbial Pathogenesis.2022; 167: 105546.     CrossRef
  • Inorganic polyphosphate in host and microbe biology
    Marvin Q. Bowlin, Michael J. Gray
    Trends in Microbiology.2021; 29(11): 1013.     CrossRef
  • Proteomics insights into the Burkholderia cenocepacia phosphorus stress response
    Holly Shropshire, Rebekah A. Jones, María M. Aguilo‐Ferretjans, David J. Scanlan, Yin Chen
    Environmental Microbiology.2021; 23(9): 5069.     CrossRef
  • In vitro passage alters virulence, immune activation and proteomic profiles of Burkholderia pseudomallei
    Taksaon Duangurai, Onrapak Reamtong, Amporn Rungruengkitkun, Varintip Srinon, Usa Boonyuen, Direk Limmathurotsakul, Narisara Chantratita, Pornpan Pumirat
    Scientific Reports.2020;[Epub]     CrossRef
  • Polyphosphate is an extracellular signal that can facilitate bacterial survival in eukaryotic cells
    Ramesh Rijal, Louis A. Cadena, Morgan R. Smith, Joseph F. Carr, Richard H. Gomer
    Proceedings of the National Academy of Sciences.2020; 117(50): 31923.     CrossRef
  • Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei
    Nicole M. Bzdyl, Nichollas E. Scott, Isobel H. Norville, Andrew E. Scott, Timothy Atkins, Stanley Pang, Derek S. Sarovich, Geoffrey Coombs, Timothy J. J. Inglis, Charlene M. Kahler, Mitali Sarkar-Tyson, Manuela Raffatellu
    Infection and Immunity.2019;[Epub]     CrossRef
  • Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion
    Kitima Srisanga, Praewa Suthapot, Permkun Permsirivisarn, Piyarat Govitrapong, Sumalee Tungpradabkul, Patompon Wongtrakoongate
    Journal of Proteomics.2019; 194: 14.     CrossRef
  • Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential
    Lalit Kumar Gautam, Prince Sharma, Neena Capalash
    Current Drug Targets.2019; 20(3): 292.     CrossRef
  • BIOFILMS OF PATHOGENIC BURKHOLDERIA AND THEIR ROLE IN RESISTANCE TO ANTIBIOTICS
    E. V. Shubnikova, L. K. Merinova, T. V. Senina, E. V. Korol, O. A. Merinova
    Journal of microbiology, epidemiology and immunobiology.2018; 95(1): 101.     CrossRef
  • Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
    Grace I. Borlee, Brooke A. Plumley, Kevin H. Martin, Nawarat Somprasong, Mihnea R. Mangalea, M. Nurul Islam, Mary N. Burtnick, Paul J. Brett, Ivo Steinmetz, David P. AuCoin, John T. Belisle, Dean C. Crick, Herbert P. Schweizer, Bradley R. Borlee, Nicholas
    PLOS Neglected Tropical Diseases.2017; 11(6): e0005689.     CrossRef
  • Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance
    Tania Timmermann, Grace Armijo, Raúl Donoso, Aldo Seguel, Loreto Holuigue, Bernardo González
    Molecular Plant-Microbe Interactions®.2017; 30(3): 215.     CrossRef
  • Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity
    DongAhn Yoo, Bernadette B. Bagon, Valerie Diane V. Valeriano, Ju Kyoung Oh, Heebal Kim, Seoae Cho, Dae-Kyung Kang
    FEMS Microbiology Letters.2017;[Epub]     CrossRef
  • Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei
    Aekkalak Puknun, Sakawrat Kanthawong, Chitchanok Anutrakunchai, Kamran Nazmi, Wikky Tigchelaar, Kees A. Hoeben, Enno C. I. Veerman, Jan G. M. Bolscher, Suwimol Taweechaisupapong
    World Journal of Microbiology and Biotechnology.2016;[Epub]     CrossRef
  • Polyphosphate Kinase Mediates Antibiotic Tolerance in Extraintestinal Pathogenic Escherichia coli PCN033
    Jing Chen, Lijie Su, Xiangru Wang, Tao Zhang, Feng Liu, Huanchun Chen, Chen Tan
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • A predicted cation transporter protein, BPSS1228, is involved in intracellular behaviour ofBurkholderia pseudomalleiin a human lung epithelial cell line (A549)
    Teerasit Techawiwattanaboon, Sorujsiri Chareonsudjai, Craig Winstanley
    FEMS Microbiology Letters.2016; 363(23): fnw259.     CrossRef
  • Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis
    Laura E. Batten, Alice E. Parnell, Neil J. Wells, Amber L. Murch, Petra C. F. Oyston, Peter L. Roach
    Bioscience Reports.2016;[Epub]     CrossRef
  • Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei
    Pawinee Siritongsuk, Nuttaya Hongsing, Saengrawee Thammawithan, Sakda Daduang, Sompong Klaynongsruang, Apichai Tuanyok, Rina Patramanon, Lisa A. Morici
    PLOS ONE.2016; 11(12): e0168098.     CrossRef
  • Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei
    Natalie R. Lazar Adler, Elizabeth M. Allwood, Deanna Deveson Lucas, Paul Harrison, Stephen Watts, Alexandra Dimitropoulos, Puthayalai Treerat, Priyangi Alwis, Rodney J. Devenish, Mark Prescott, Brenda Govan, Ben Adler, Marina Harper, John D. Boyce
    BMC Genomics.2016;[Epub]     CrossRef
  • Ellagic acid derivatives from Terminalia chebula Retz. increase the susceptibility of Pseudomonas aeruginosa to stress by inhibiting polyphosphate kinase
    S. Sarabhai, K. Harjai, P. Sharma, N. Capalash
    Journal of Applied Microbiology.2015; 118(4): 817.     CrossRef
  • Air-Adapted Methanosarcina acetivorans Shows High Methane Production and Develops Resistance against Oxygen Stress
    Ricardo Jasso-Chávez, M. Geovanni Santiago-Martínez, Elizabeth Lira-Silva, Erika Pineda, Armando Zepeda-Rodríguez, Javier Belmont-Díaz, Rusely Encalada, Emma Saavedra, Rafael Moreno-Sánchez, Stephan Neil Witt
    PLOS ONE.2015; 10(2): e0117331.     CrossRef
  • Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence
    Chui-Yoke Chin, Yuka Hara, Ahmad-Kamal Ghazali, Soon-Joo Yap, Cin Kong, Yee-Chin Wong, Naufal Rozali, Seng-Fook Koh, Chee-Choong Hoh, Savithri D. Puthucheary, Sheila Nathan
    BMC Genomics.2015;[Epub]     CrossRef
  • Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomalleibpsI, ppk, and rpoS mutant strains
    Rungrawee Mongkolrob, Suwimol Taweechaisupapong, Sumalee Tungpradabkul
    Microbiology and Immunology.2015; 59(11): 653.     CrossRef
  • Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants
    Suthamat Niyompanich, Kitima Srisanga, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Sumalee Tungpradabkul, Yang Cai
    PLOS ONE.2015; 10(12): e0144128.     CrossRef
  • What Drives the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Domestic Gardens?
    Mirjam Kaestli, Glenda Harrington, Mark Mayo, Mark D. Chatfield, Ian Harrington, Audrey Hill, Niels Munksgaard, Karen Gibb, Bart J. Currie, Joseph M. Vinetz
    PLOS Neglected Tropical Diseases.2015; 9(3): e0003635.     CrossRef
  • Deficiency of the Novel Exopolyphosphatase Rv1026/PPX2 Leads to Metabolic Downshift and Altered Cell Wall Permeability in Mycobacterium tuberculosis
    Yu-Min Chuang, Nirmalya Bandyopadhyay, Dalin Rifat, Harvey Rubin, Joel S. Bader, Petros C. Karakousis, Christina Stallings, L. David Sibley
    mBio.2015;[Epub]     CrossRef
  • Growth on mannitol-rich media elicits a genome-wide transcriptional response in Burkholderia multivorans that impacts on multiple virulence traits in an exopolysaccharide-independent manner
    Carmen C. Denman, Matthew T. Robinson, Andrea M. Sass, Eshwar Mahenthiralingam, Alan R. Brown
    Microbiology.2014; 160(1): 187.     CrossRef
  • The Multiple Roles of Hypothetical Gene BPSS1356 in Burkholderia pseudomallei
    Hokchai Yam, Ainihayati Abdul Rahim, Suriani Mohamad, Nor Muhammad Mahadi, Uyub Abdul Manaf, Alexander Chong Shu-Chien, Nazalan Najimudin, Catherine A. Brissette
    PLoS ONE.2014; 9(6): e99218.     CrossRef
  • Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) ofCampylobacter jejuni
    Anandkumar Malde, Dharanesh Gangaiah, Kshipra Chandrashekhar, Ruby Pina-Mimbela, Jordi B Torrelles, Gireesh Rajashekara
    Virulence.2014; 5(4): 521.     CrossRef
  • Identification of a Predicted Trimeric Autotransporter Adhesin Required for Biofilm Formation of Burkholderia pseudomallei
    Natalie R. Lazar Adler, Rachel E. Dean, Richard J. Saint, Mark P. Stevens, Joann L. Prior, Timothy P. Atkins, Edouard E. Galyov, Lisa A. Morici
    PLoS ONE.2013; 8(11): e79461.     CrossRef
  • A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei
    Aekkalak Puknun, Jan G. M. Bolscher, Kamran Nazmi, Enno C. I. Veerman, Sumalee Tungpradabkul, Surasakdi Wongratanacheewin, Sakawrat Kanthawong, Suwimol Taweechaisupapong
    World Journal of Microbiology and Biotechnology.2013; 29(7): 1217.     CrossRef
  • Bacterial Phosphate Homeostasis: Role of Phosphate Transporters
    Yoon-Mee Park, Iel-Soo Bang
    The Korean Journal of Microbiology.2012; 48(2): 57.     CrossRef
  • Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their co‐regulation of target genes
 in Burkholderia pseudomallei
    Patompon Wongtrakoongate, Sarinna Tumapa, Sumalee Tungpradabkul
    Microbiology and Immunology.2012; 56(5): 281.     CrossRef
  • Polyphosphate Deficiency Affects the Sliding Motility and Biofilm Formation of Mycobacterium smegmatis
    Tingyu Shi, Tiwei Fu, Jianping Xie
    Current Microbiology.2011; 63(5): 470.     CrossRef
  • Biofilm formation in bacterial pathogens of veterinary importance
    Mario Jacques, Virginia Aragon, Yannick D. N. Tremblay
    Animal Health Research Reviews.2010; 11(2): 97.     CrossRef
Identification of the Vibrio vulnificus ahpC1 Gene and Its Influence on Survival under Oxidative Stress and Virulence
Woon Ki Baek , Hyun Sung Lee , Man Hwan Oh , Myung Jin Koh , Kun-Soo Kim , Sang Ho Choi
J. Microbiol. 2009;47(5):624-632.   Published online October 24, 2009
DOI: https://doi.org/10.1007/s12275-009-0130-x
  • 247 View
  • 0 Download
  • 13 Crossref
AbstractAbstract PDF
Pathogens have evolved sophisticated mechanisms to survive oxidative stresses imposed by host defense systems, and the mechanisms are closely linked to their virulence. In the present study, ahpC1, a homologue of Escherichia coli ahpC encoding a peroxiredoxin, was identified among the Vibrio vulnificus genes specifically induced by exposure to H2O2. In order to analyze the role of AhpC1 in the pathogenesis of V. vulnificus, a mutant, in which the ahpC1 gene was disrupted, was constructed by allelic exchanges. The ahpC1 mutant was hypersusceptable to killing by reactive oxygen species (ROS) such as H2O2 and t-BOOH, which is one of the most commonly used hydroperoxides in vitro. The purified AhpC1 reduced H2O2 in the presence of AhpF and NADH as a hydrogen donor, indicating that V. vulnificus AhpC1 is a NADH-dependent peroxiredoxin and constitutes a peroxide reductase system with AhpF. Compared to wild type, the ahpC1 mutant exhibited less cytotoxicity toward INT-407 epithelial cells in vitro and reduced virulence in a mouse model. In addition, the ahpC1 mutant was significantly diminished in growth with INT-407 epithelial cells, reflecting that the ability of the mutant to grow, survive, and persist during infection is also impaired. Consequently, the combined results suggest that AhpC1 and the capability of resistance to oxidative stresses contribute to the virulence of V. vulnificus by assuring growth and survival during infection.

Citations

Citations to this article as recorded by  
  • Exploring functional and structural features of chemically related natural prenylated hydroquinone and benzoic acid from Piper crassinervium (Piperaceae) on bacterial peroxiredoxin inhibition
    Vitoria Isabela Montanhero Cabrera, Gabrielle do Nascimento Sividanes, Natalia Fernanda Quintiliano, Marcos Hikari Toyama, João Henrique Ghilardi Lago, Marcos Antonio de Oliveira, A. Ganesan
    PLOS ONE.2023; 18(2): e0281322.     CrossRef
  • Relevance of peroxiredoxins in pathogenic microorganisms
    Marcos Antonio de Oliveira, Carlos A. Tairum, Luis Eduardo Soares Netto, Ana Laura Pires de Oliveira, Rogerio Luis Aleixo-Silva, Vitoria Isabela Montanhero Cabrera, Carlos A. Breyer, Melina Cardoso dos Santos
    Applied Microbiology and Biotechnology.2021; 105(14-15): 5701.     CrossRef
  • Vibrio vulnificus RtxA Is a Major Factor Driving Inflammatory T Helper Type 17 Cell Responses in vitro and in vivo
    Arim Lee, Myun Soo Kim, Daeho Cho, Kyung Ku Jang, Sang Ho Choi, Tae Sung Kim
    Frontiers in Immunology.2018;[Epub]     CrossRef
  • Influence of oxyR on Growth, Biofilm Formation, and Mobility of Vibrio parahaemolyticus
    Chun-Hui Chung, Shin-yuan Fen, Shu-Chuan Yu, Hin-chung Wong, H. Nojiri
    Applied and Environmental Microbiology.2016; 82(3): 788.     CrossRef
  • Protective roles ofkatG-homologous genes against extrinsic peroxides inVibrio parahaemolyticus
    Shu-Chuan Yu, Shin-yuan Fen, Cheng-Lun Chien, Hin-chung Wong, Séamus Fanning
    FEMS Microbiology Letters.2016; 363(6): fnw038.     CrossRef
  • Distinct characteristics of OxyR2, a new OxyR‐type regulator, ensuring expression of Peroxiredoxin 2 detoxifying low levels of hydrogen peroxide in Vibrio vulnificus
    Suyeon Kim, Ye‐Ji Bang, Dukyun Kim, Jong Gyu Lim, Man Hwan Oh, Sang Ho Choi
    Molecular Microbiology.2014; 93(5): 992.     CrossRef
  • Characterization of the Vibrio vulnificus 1-Cys Peroxiredoxin Prx3 and Regulation of Its Expression by the Fe-S Cluster Regulator IscR in Response to Oxidative Stress and Iron Starvation
    Jong Gyu Lim, Ye-Ji Bang, Sang Ho Choi
    Journal of Biological Chemistry.2014; 289(52): 36263.     CrossRef
  • IscR Is a Global Regulator Essential for Pathogenesis of Vibrio vulnificus and Induced by Host Cells
    Jong Gyu Lim, Sang Ho Choi, A. Camilli
    Infection and Immunity.2014; 82(2): 569.     CrossRef
  • Activities of Alkyl Hydroperoxide Reductase Subunits C1 and C2 of Vibrio parahaemolyticus against Different Peroxides
    Chun-Hui Chung, Tsung-yong Ma, Shin-yuan Fen, Hin-chung Wong, J. Björkroth
    Applied and Environmental Microbiology.2014; 80(23): 7398.     CrossRef
  • Roles of Alkyl Hydroperoxide Reductase Subunit C (AhpC) in Viable but Nonculturable Vibrio parahaemolyticus
    Hen-Wei Wang, Chun-Hui Chung, Tsung-Yong Ma, Hin-chung Wong
    Applied and Environmental Microbiology.2013; 79(12): 3734.     CrossRef
  • Distinct Characteristics of Two 2-Cys Peroxiredoxins of Vibrio vulnificus Suggesting Differential Roles in Detoxifying Oxidative Stress
    Ye-Ji Bang, Man Hwan Oh, Sang Ho Choi
    Journal of Biological Chemistry.2012; 287(51): 42516.     CrossRef
  • Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri
    Tyler R. Schleicher, Spencer V. Nyholm, Immo A. Hansen
    PLoS ONE.2011; 6(10): e25649.     CrossRef
  • Evidence that Vibrio vulnificus ahpC2 is essential for survival under high salinity by modulating intracellular level of ROS
    Myung Jin Koh, Hyun Sung Lee, Jee Eun Rhee, Sang Ho Choi
    The Journal of Microbiology.2010; 48(1): 129.     CrossRef
The Role and Regulation of Trx1, a Cytosolic Thioredoxin in Schizosaccharomyces pombe
Ji-Yoon Song , Jung-Hye Roe
J. Microbiol. 2008;46(4):408-414.   Published online August 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0076-4
  • 294 View
  • 0 Download
  • 25 Crossref
AbstractAbstract PDF
The genome of fission yeast Schizosaccharomyces pombe harbors two genes for thioredoxins, trx1+ and trx2+, which encode cytosolic and mitochondrial thioredoxins, respectively. The Δtrx1 mutant was found sensitive to diverse external stressors such as various oxidants, heat, and salt, whereas Δtrx2 mutant was not sensitive except to paraquat, a superoxide generator. Both Δtrx1 and Δtrx2 mutants were more resistant to diamide, a thiol-specific oxidant, than the wild type. The trx1+ gene expression was induced by H2O2 and menadione, being mediated through a stress-responsive transcription factor Pap1. In Δtrx1 cells, the basal expression of Pap1-regulated genes were elevated, suggesting a role for Trx1 as a reducer for oxidized (activated) Pap1. The Δtrx1 mutant exhibited cysteine auxotrophy, which can be overcome by adding sulfite. This suggests that Trx1 serves as a primary electron donor for 3’-phosphoadenosine-5’-phosphosulfate (PAPS) reductase and thus is an essential protein for sulfur assimilation in S. pombe. These results suggest that, in contrast to Trx2 whose role is more confined to mitochondrial functions, Trx1 plays a major role in protecting S. pombe against various stressful conditions and enables proper sulfur metabolism.

Citations

Citations to this article as recorded by  
  • In fission yeast, 65 non-essential mitochondrial proteins related to respiration and stress become essential in low-glucose conditions
    Ayaka Mori, Lisa Uehara, Yusuke Toyoda, Fumie Masuda, Saeko Soejima, Shigeaki Saitoh, Mitsuhiro Yanagida
    Royal Society Open Science.2023;[Epub]     CrossRef
  • Improvement of Root Yield and Ion Content of Carrot with Exogenous Application Calcium Under Salinity
    Ahmet Turhan, Hayrettin Kuscu
    Gesunde Pflanzen.2023; 75(4): 947.     CrossRef
  • Pharmacologic approaches to amino acid depletion for cancer therapy
    Carly S. Wilder, Zhao Chen, John DiGiovanni
    Molecular Carcinogenesis.2022; 61(2): 127.     CrossRef
  • Human Sulfotransferase Assays With PAPS Production in situ
    Yanan Sun, Lukas Corbinian Harps, Matthias Bureik, Maria Kristina Parr
    Frontiers in Molecular Biosciences.2022;[Epub]     CrossRef
  • Response to sulfur in Schizosaccharomyces pombe
    Hokuto Ohtsuka, Takafumi Shimasaki, Hirofumi Aiba
    FEMS Yeast Research.2021;[Epub]     CrossRef
  • Improvement in salt tolerance of Iris pseudacorus L. in constructed wetland by exogenous application of salicylic acid and calcium chloride
    Yuanyuan Liu, Min Xi, Yue Li, Ziwei Cheng, Sen Wang, Fanlong Kong
    Journal of Environmental Management.2021; 300: 113703.     CrossRef
  • The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress
    Rim Ben Youssef, Nahida Jelali, Nadia Boukari, Alfonso Albacete, Cristina Martinez, Francisco Perez Alfocea, Chedly Abdelly
    Plants.2021; 10(11): 2264.     CrossRef
  • Salicylic Acid and Calcium Signaling Induce Physiological and Phytochemical Changes to Improve Salinity Tolerance in Red Amaranth (Amaranthus tricolor L.)
    Hai Ly Hoang, Constancio C. de Guzman, Nina M. Cadiz, Thi Thai Hoa Hoang, Dang Hoa Tran, H. Rehman
    Journal of Soil Science and Plant Nutrition.2020; 20(4): 1759.     CrossRef
  • Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress
    Badar Jahan, Mohamed F. AlAjmi, Md Tabish Rehman, Nafees A. Khan
    Physiologia Plantarum.2020; 168(2): 490.     CrossRef
  • Hemolymph transcriptome analysis of Chinese mitten crab (Eriocheir sinensis) with intact, left cheliped autotomy and bilateral eyestalk ablation
    Cong Zhang, Yangyang Pang, Qian Zhang, Genyong Huang, Minjie Xu, Boping Tang, Yongxu Cheng, Xiaozhen Yang
    Fish & Shellfish Immunology.2018; 81: 266.     CrossRef
  • Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase
    Susanna Boronat, Alba Domènech, Mercè Carmona, Sarela García-Santamarina, M. Carmen Bañó, José Ayté, Elena Hidalgo, Julian E. Sale
    PLOS Genetics.2017; 13(6): e1006858.     CrossRef
  • Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard
    Noushina Iqbal, Shahid Umar, Tasir S. Per, Nafees A. Khan
    Plant Signaling & Behavior.2017; 12(5): e1297000.     CrossRef
  • Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae
    Shijie Zhang, Cong Jiang, Qiang Zhang, Linlu Qi, Chaohui Li, Jin‐Rong Xu
    Environmental Microbiology.2016; 18(11): 3768.     CrossRef
  • l‐Cysteine metabolism and its nutritional implications
    Jie Yin, Wenkai Ren, Guan Yang, Jielin Duan, Xingguo Huang, Rejun Fang, Chongyong Li, Tiejun Li, Yulong Yin, Yongqing Hou, Sung Woo Kim, Guoyao Wu
    Molecular Nutrition & Food Research.2016; 60(1): 134.     CrossRef
  • Diverse fission yeast genes required for responding to oxidative and metal stress: Comparative analysis of glutathione‐related and other defense gene deletions
    Tomáš Pluskal, Kenichi Sajiki, Joanne Becker, Kojiro Takeda, Mitsuhiro Yanagida
    Genes to Cells.2016; 21(6): 530.     CrossRef
  • Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea)
    Noushina Iqbal, Shahid Umar, Nafees A. Khan
    Journal of Plant Physiology.2015; 178: 84.     CrossRef
  • Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in Beauveria bassiana
    Long-Bin Zhang, Li Tang, Sheng-Hua Ying, Ming-Guang Feng
    Fungal Genetics and Biology.2015; 76: 1.     CrossRef
  • Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars
    A. Manaa, E. Gharbi, H. Mimouni, S. Wasti, S. Aschi-Smiti, S. Lutts, H. Ben Ahmed
    South African Journal of Botany.2014; 95: 32.     CrossRef
  • The Oxidative Stress Responsive Transcription Factor Pap1 Confers DNA Damage Resistance on Checkpoint-Deficient Fission Yeast Cells
    Carrie Belfield, Craig Queenan, Hui Rao, Kenji Kitamura, Nancy C. Walworth, Deanna M. Koepp
    PLoS ONE.2014; 9(2): e89936.     CrossRef
  • Possible Involvement of Nitric Oxide and Reactive Oxygen Species in Glucose Deprivation-Induced Activation of Transcription Factor Rst2
    Toshiaki Kato, Xin Zhou, Yan Ma, Reiko Sugiura
    PLoS ONE.2013; 8(10): e78012.     CrossRef
  • Effect of Salinity and Calcium on Tomato Fruit Proteome
    Arafet Manaa, Mireille Faurobert, Benoît Valot, Jean-Paul Bouchet, Dominique Grasselly, Mathilde Causse, Hela Ben Ahmed
    OMICS: A Journal of Integrative Biology.2013; 17(6): 338.     CrossRef
  • The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to H 2 O 2
    Isabel A. Calvo, Patricia García, José Ayté, Elena Hidalgo
    Nucleic Acids Research.2012; 40(11): 4816.     CrossRef
  • Txl1 and Txc1 Are Co-Factors of the 26S Proteasome in Fission Yeast
    Katrine M. Andersen, Camilla Jensen, Franziska Kriegenburg, Anne-Marie B. Lauridsen, Colin Gordon, Rasmus Hartmann-Petersen
    Antioxidants & Redox Signaling.2011; 14(9): 1601.     CrossRef
  • Salt-Stress Induced Physiological and Proteomic Changes in Tomato (Solanum lycopersicum) Seedlings
    Arafet Manaa, Hela Ben Ahmed, Samira Smiti, Mireille Faurobert
    OMICS: A Journal of Integrative Biology.2011; 15(11): 801.     CrossRef
  • Thiol-Independent Action of Mitochondrial Thioredoxin To Support the Urea Cycle of Arginine Biosynthesis in Schizosaccharomyces pombe
    Ji-Yoon Song, Kyoung-Dong Kim, Jung-Hye Roe
    Eukaryotic Cell.2008; 7(12): 2160.     CrossRef
Journal Article
The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics
Il Sup Kim , Hae Sun Yun , Sun Hye Kwak , Ing Nyol Jin
J. Microbiol. 2007;45(4):326-332.
DOI: https://doi.org/2565 [pii]
  • 182 View
  • 0 Download
AbstractAbstract PDF
In order to understand the functional role of CPR1 in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wildtype strain of KNU5377. Among the proteins, Sod1p, Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the cpr1Δ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the cpr1Δ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.
Research Support, Non-U.S. Gov'ts
Increase of Yeast Survival under Oxidative Stress by the Expression of the Laccase Gene from Coprinellus congregatus
Dongsik Kim , Eunju Kwak , Hyoung T. Choi
J. Microbiol. 2006;44(6):617-621.
DOI: https://doi.org/2466 [pii]
  • 186 View
  • 0 Download
AbstractAbstract PDF
Coprinellus congregatus secreted a laccase isozyme when the culture was transferred to an acidic liquid medium (pH 4.1). The laccase cDNA gene (clac2) was used as a probe for cloning of the genomic laccase gene (lac2) including the promoter (Plac2). The open reading frame (ORF) of lac2 had 526 deduced amino acids and four conserved copper binding domains as other fungal laccases. Recombinant plasmid (pRSlac2p-cDNA) of lac2 cDNA with its own promoter was transformed in Saccharomyces cerevisiae. Expression of the transformed lac2 gene was induced by oxidative stress (H2O2) in yeast and the survival rate of the transformed yeast strain was greatly increased when compared with that of the control strain transformed with pRS316 yeast vector.
Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377
Il-Sup Kim , Hye-Youn Moon , Hae-Sun Yun , Ingnyol Jin
J. Microbiol. 2006;44(5):492-501.
DOI: https://doi.org/2449 [pii]
  • 195 View
  • 0 Download
AbstractAbstract PDF
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40°C. The KNU5377 strain evidenced a very similar growth rate at 40°C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43°C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43°C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.
Regulation of fpr Gene encoding NADPH :Ferredoxin oxidoreductase by the soxRS locus in escherichia coli
Koh, Young Sang , Chouh, Jenny , Roe, Jung Hye
J. Microbiol. 1996;34(2):137-143.
  • 3,158 View
  • 0 Download
AbstractAbstract PDF
We isolated a promoter inducible by paraquat, a superoxide-generating agent, from Escherichia coli using a promoter-probing plasmid pRS415. From sequence analysis we found out the promoter is for fpr ENCODING nadph : ferredoxin oxidoreductase. We constructed on operon fusion of lacZ gene with fpr promoter to monitor the expression of the gene in the single-copy state. LacZ expression generators, menadione and plumbagin, also induced the expression of β-galactosidase in the fusion strain. On the other hand, no significant induction was observed by treatment with hydrogen peroxide, ethanol, and heat shock. Induction of β-galactosidase was significantly reduced by introducing a Δsox 8 :: cat of soxS3 :: Tn10 mutation into the fusion strain, indicating that fpr gene is a member of the soxRS regulon. The transcriptional start site was determined by primer extension analysis. Possible roles of fpr induction in superoxide stress were discussed.

Journal of Microbiology : Journal of Microbiology
TOP