Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "actin cytoskeleton"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Encapsulin protein MAV2054 enhances Mycobacterium avium virulence by promoting Cdc42-dependent epithelial cell invasion
Dong Ho Kim, I Jeong Jo, Min Ju Kang, Yi Seol Kim, Duyen Do Tran Huong, Kyungho Woo, Ho-Sung Park, Hwa-Jung Kim, Chul Hee Choi
J. Microbiol. 2025;63(11):e2506008.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2506008
  • 136 View
  • 1 Download
AbstractAbstract PDF

Mycobacterium avium complex (MAC) organisms are widespread environmental pathogens associated with chronic pulmonary infections. Although M. avium is known to invade epithelial cells, the molecular mechanisms underlying this process remain incompletely understood. In this study, we identified a novel role for MAVRS09815 (formerly MAV2054), a family 2A encapsulin nanocompartment shell protein, in mediating bacterial adhesion, epithelial cell invasion, and in vivo virulence. We engineered a recombinant M. smegmatis strain expressing MAV2054 (Ms_2054) and an M. avium MAV2054 deletion mutant (Δ2054). Ms_2054 exhibited enhanced epithelial invasion, whereas Δ2054 showed reduced intracellular survival. Recombinant MAV2054 protein was bound directly to human epithelial cells in a dose-dependent manner. Pretreatment of host cells with cytochalasin D or vinblastine significantly inhibited bacterial internalization, indicating that MAV2054-mediated invasion is cytoskeleton-dependent. Confocal and scanning electron microscopy revealed MAV2054-dependent membrane rearrangements during infection. Pull-down assays demonstrated that MAV2054 activates Cdc42, a key regulator of actin polymerization, with reduced activation observed in Δ2054-infected cells. In a murine intratracheal infection model, the Δ2054 exhibited significantly reduced bacterial burdens and lung inflammation compared to the wild type. These findings demonstrate that MAV2054 enhances M. avium virulence by promoting epithelial cell invasion through Cdc42-dependent cytoskeletal remodeling. This study reveals a previously unrecognized role for an encapsulin-like protein in host-pathogen interactions and highlights its potential as a therapeutic target in MAC infections.

Journal Article
Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., Isolated from Jeotgal, a Traditional Korean Fermented Seafood
Ah-In Yang, Bora Kim, Sung-Hong Joe, Hae-In Joe, Hanna Choe, Ki Hyun Kim, Min Ok Jun, Na-Ri Shin
J. Microbiol. 2024;62(4):285-296.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00106-3
  • 463 View
  • 12 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Three novel, Gram-stain-positive, obligate aerobic, catalase- and oxidase-positive bacterial strains, designated B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T), were isolated from jeotgal, a traditional Korean fermented seafood. Strains B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T) exhibited distinct colony colors, characterized by pink, yellow, and red opaque circular colonies, respectively. Phylogenetic analysis revealed that three strains formed a paraphyletic clade within the genus Sporosarcina and shared < 99.0% similarity with Sporosarcina aquimarina KCTC 3840(T) and Sporosarcina saromensis KCTC 13119(T) in their 16S rRNA gene sequences. The three strains exhibiting Orthologous Average Nucleotide Identity values < 79.3% and digital DNA-DNA hybridization values < 23.1% within the genus Sporosarcina affirmed their distinctiveness. Strains B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T) contained MK-7 as a sole respiratory menaquinone and A4α type peptidoglycan based on lysine with alanine, glutamic acid, and aspartic acid. The common polar lipids include diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Strain T2O-4(T) contained one unidentified phospholipid, whereas strain 0.2-SM1T-5(T) contained two unidentified phospholipids. Cellular fatty acid profiles, with C(15:0) anteiso as the major fatty acid, supported the affiliation of the three strains to the genus Sporosarcina. Based on the polyphasic characteristics, strains B2O-1(T) (= KCTC 43506(T) = JCM 36032(T)), T2O-4(T) (= KCTC 43489(T) = JCM 36031(T)), and 0.2-SM1T-5(T) (= KCTC 43519(T) = JCM 36034(T)) represent three novel species within the genus Sporosarcina, named Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., respectively.

Citations

Citations to this article as recorded by  
  • Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 41
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Brevibacterium koreense sp. nov., a moderately halophilic bacterium isolated from jogae-jeotgal, a Korean fermented seafood
    Sohee Nam, Yujin Kim, Min Ji Lee, Yeon Bee Kim, Jeong Ui Yun, Mi-Ja Jung, Hye Seon Song, Se Hee Lee, Seok-Jun Kim, Tae Woong Whon
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov., isolated from human feces, and the reclassification of Bacteroides koreensis Shin et al. 2017 and Bacteroides kribbi Shin et al. 2017 as later heterotypic synonyms of Bacteroides ovatus Egg
    Ah-In Yang, Bora Kim, Woorim Kang, Hae-In Joe, Na-Ri Shin
    Journal of Microbiology.2025; 63(6): e2502006.     CrossRef
  • Validation List no. 220. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP