Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Yong-Joon Cho 4 Articles
Environmental Adaptation of Psychrophilic Bacteria Subtercola spp. Isolated from Various Cryospheric Habitats
Hanbyul Lee , Yong-Joon Cho , Ahnna Cho , Ok-Sun Kim
J. Microbiol. 2023;61(7):663-672.   Published online August 24, 2023
DOI: https://doi.org/10.1007/s12275-023-00068-y
  • 246 View
  • 0 Download
AbstractAbstract PDF
Subtercola boreus K300T is a novel psychrophilic strain that was isolated from permanently cold groundwater in Finland and has also been found in several places in Antarctica including lake, soil, and rocks. We performed genomic and transcriptomic analyses of 5 strains from Antarctica and a type strain to understand their adaptation to different environments. Interestingly, the isolates from rocks showed a low growth rate and smaller genome size than strains from the other isolation sources (lake, soil, and groundwater). Based on these habitat-dependent characteristics, the strains could be classified into two ecotypes, which showed differences in energy production, signal transduction, and transcription in the clusters of orthologous groups of proteins (COGs) functional category. In addition, expression pattern changes revealed differences in metabolic processes, including uric acid metabolism, DNA repair, major facilitator superfamily (MFS) transporters, and xylose degradation, depending on the nutritional status of their habitats. These findings provide crucial insights into the environmental adaptation of bacteria, highlighting genetic diversity and regulatory mechanisms that enable them to thrive in the cryosphere.
A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis
Ju-Hyung Lee , Soo-Jeong Kwon , Ji-Yoon Han , Sang-Hyun Cho , Yong-Joon Cho , Joo-Hong Park
J. Microbiol. 2022;60(2):215-223.   Published online February 1, 2022
DOI: https://doi.org/10.1007/s12275-022-1649-3
  • 377 View
  • 2 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract PDF
The mammalian intestinal tract contains trillions of bacteria. However, the genetic factors that allow gut symbiotic bacteria to occupy intestinal niches remain poorly understood. Here, we identified genetic determinants required for Bacteroides thetaiotaomicron colonization in the gut using transposon sequencing analysis. Transposon insertion in BT2391, which encodes a hybrid two-component system, increased the competitive fitness of B. thetaiotaomicron. The BT2391 mutant showed a growth advantage in a mucin-dependent manner and had an increased ability to adhere to mucus-producing cell lines. The increased competitive advantage of the BT2391 mutant was dependent on the BT2392–2395 locus containing susCD homologs. Deletion of BT2391 led to changes in the expression levels of B. thetaiotaomicron genes during gut colonization. However, colonization of the BT2391 mutant promoted DSS colitis in low-fiber diet-fed mice. These results indicate that BT2391 contributes to a sustainable symbiotic relationship by maintaining a balance between mucosal colonization and gut homeostasis.

Citations

Citations to this article as recorded by  
  • Saliva-driven surface-engineered Bacteroides thetaiotaomicron alleviates hypertension
    Shuo Xu, Huilong Luo, Lin-Juan Du, Ting Dong, Lu-Jun Zhou, Bo-Yan Chen, Yu-Lin Li, Guo-Cai Tian, Xiao-Qian Meng, Xue-Bing Bai, Hui-Lin Ye, Jun Zhang, Wen-Zhen Lin, Wu-Chang Zhang, Jinyao Liu, Sheng-Zhong Duan
    Bioactive Materials.2026; 57: 137.     CrossRef
  • The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron
    Ann-Sophie Rüttiger, Daniel Ryan, Luisella Spiga, Vanessa Lamm-Schmidt, Gianluca Prezza, Sarah Reichardt, Madison Langford, Lars Barquist, Franziska Faber, Wenhan Zhu, Alexander J. Westermann
    Nature Communications.2025;[Epub]     CrossRef
  • Effect of Lactobacillus plantarum BFS1243 on a female frailty model induced by fecal microbiota transplantation in germ-free mice
    Sashuang Dong, Qi Zeng, Weimin He, Wei Cheng, Ling Zhang, Ruimin Zhong, Wen He, Xiang Fang, Hong Wei
    Food & Function.2024; 15(8): 3993.     CrossRef
  • A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides
    Rong Gao, Ti Wu, Ann M. Stock, Michael T. Laub
    mBio.2024;[Epub]     CrossRef
  • Polysaccharides from Polygonatum cyrtonema Hua prevent depression-like behaviors in mice with chronic unpredictable mild stress through refining gut microbiota-lipopolysaccharide-paraventricular nucleus signal axis
    Xinya Wang, Xueqing Wang, Feng Gao, Shaojie Yang, Yilan Zhen, Xuncui Wang, Guoqi Zhu
    Heliyon.2024; 10(19): e38554.     CrossRef
  • Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems
    Alexander Paredes, Chioma Iheacho, Aaron T. Smith
    Biochemistry.2023; 62(16): 2339.     CrossRef
  • Tang-Ping-San Decoction Remodel Intestinal Flora and Barrier to Ameliorate Type 2 Diabetes Mellitus in Rodent Model
    Wen Yin, Si-Qi Zhang, Wen-Lin Pang, Xiao-Jiao Chen, Jing Wen, Jiong Hou, Cui Wang, Li-Yun Song, Zhen-Ming Qiu, Peng-Tao Liang, Jia-Li Yuan, Zhong-Shan Yang, Yao Bian
    Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy.2022; Volume 15: 2563.     CrossRef
The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism
Sang-Hyun Cho , Yong-Joon Cho , Joo-Hong Park
J. Microbiol. 2022;60(1):118-127.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1614-1
  • 469 View
  • 0 Download
  • 25 Web of Science
  • 20 Crossref
AbstractAbstract PDF
The gut microbiome plays an important role in lipid metabolism. Consumption of a high-fat diet (HFD) alters the bacterial communities in the gut, leading to metabolic disorders. Several bacterial species have been associated with diet-induced obesity, nonalcoholic fatty liver disease, and metabolic syndrome. However, the mechanisms underlying the control of lipid metabolism by symbiotic bacteria remain elusive. Here, we show that the human symbiont Bacteroides thetaiotaomicron aggravates metabolic disorders by promoting lipid digestion and absorption. Administration of B. thetaiotaomicron to HFD-fed mice promoted weight gain, elevated fasting glucose levels, and impaired glucose tolerance. Furthermore, B. thetaiotaomicron treatment upregulated the gene expression of the fatty acid transporter and increased fatty acid accumulation in the liver. B. thetaiotaomicron inhibits expression of the gene encoding a lipoprotein lipase inhibitor, angiopoietin-like protein 4 (ANGPTL4), thereby increasing lipase activity in the small intestine. In particular, we found that B. thetaiotaomicron induced the expression of hepcidin, the master regulator of iron metabolism and an antimicrobial peptide, in the liver. Hepcidin treatment resulted in a decrease in ANGPTL4 expression in Caco-2 cells, whereas treatment with an iron chelator restored ANGPTL4 expression in hepcidin- treated cells. These results indicate that B. thetaiotaomicron- mediated regulation of iron storage in intestinal epithelial cells may contribute to increased fat deposition and impaired glucose tolerance in HFD-fed mice.

Citations

Citations to this article as recorded by  
  • Integrating transcriptomics and Microbiomics to unravel the regulatory effects of Anji white tea on lipid metabolism in HFD-induced obese mice
    Zhenyu Wang, Yifang Zhang, Xiaolei Shi, Xiaojun Li, Shangxiong Qi, Chunli Hu, Jin Zhao
    Food Research International.2025; 206: 116101.     CrossRef
  • Investigating Polyreactivity of CD4+ T Cells to the Intestinal Microbiota
    Ahmed Saadawi, Florian Mair, Esther Rosenwald, Daniel Hoces, Emma Slack, Manfred Kopf
    European Journal of Immunology.2025;[Epub]     CrossRef
  • Three Kampo medicines—bofutsushosan, boiogito, and daisaikoto—have different effects on host fat accumulation and the intestinal microbiota in a high-fat-diet–induced mouse model of obesity
    Kosuke Nakamichi, Tetsuhiro Yoshino, Masahiro Akiyama, Aya Jibiki, Yuta Yokoyama, Hitoshi Kawazoe, Sayo Suzuki, Kenji Watanabe, Yun-Gi Kim, Tomonori Nakamura
    Journal of Natural Medicines.2025; 79(5): 1044.     CrossRef
  • Long-term health outcomes in adolescents with obesity treated with faecal microbiota transplantation: 4-year follow-up
    Brooke C. Wilson, Michele Zuppi, José G. B. Derraik, Benjamin B. Albert, Ry Y. Tweedie-Cullen, Karen S. W. Leong, Kathryn L. Beck, Tommi Vatanen, Justin M. O’Sullivan, Wayne S. Cutfield, Benjamin Albert, Kathryn Beck, Valentina Chiavaroli, Cathryn Conlon,
    Nature Communications.2025;[Epub]     CrossRef
  • Unraveling the complexities of diet induced obesity and glucolipid dysfunction in metabolic syndrome
    Babi Dutta, Aparna Tripathy, P. R. Archana, Shobha U. Kamath
    Diabetology & Metabolic Syndrome.2025;[Epub]     CrossRef
  • High-fat diet increases circulating palmitic acid produced by gut Bacteroides thetaiotaomicron to promote thrombosis
    Xiaoshan Huang, Xiaopeng Tang, Qiuyue He, Dawit Adisu Tadese, Kaixun Cao, Jinai Gao, Qiuyue Xu, Ruomei Cheng, Qiumin Lu, Yifan Chen, Min Yang, Yan Du, James Mwangi, Heyu Ni, Ren Lai
    Cell Reports Medicine.2025; 6(8): 102260.     CrossRef
  • Effects of dietary lipid and protein levels on metamorphosis, growth, metabolism and gut microbiota of tadpole (Lithobates catesbeianus)
    Bo Zhu, Lei Zhong, Chuang Shao, Wenjie Xu, Shuhui Xiang, Shuiquan Fu, Yi Hu
    Aquaculture.2024; 587: 740900.     CrossRef
  • Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice
    Jennifer Lee, Kerry Wellenstein, Ali Rahnavard, Andrew T. Nelson, Marlena M. Holter, Bethany P. Cummings, Vladimir Yeliseyev, Angela Castoldi, Clary B. Clish, Lynn Bry, Dionicio Siegel, Barbara B. Kahn
    Proceedings of the National Academy of Sciences.2024;[Epub]     CrossRef
  • Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265
    Seoung Woo Ryu, Jeong Chan Moon, Byeong Seob Oh, Seung Yeob Yu, Jeong Eun Bak, Eun Seo Heo, Jae-Ho Jeong, Ju Huck Lee
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism
    Hu Li, Xue-Kai Wang, Mei Tang, Lei Lei, Jian-Rui Li, Han Sun, Jing Jiang, Biao Dong, Hong-Ying Li, Jian-Dong Jiang, Zong-Gen Peng
    Gut Microbes.2024;[Epub]     CrossRef
  • Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis
    Zhibo Zeng, Chuxian Quan, Shimeng Zhou, Saisai Gong, Mudassar Iqbal, Muhammad Fakhar-e-Alam Kulyar, Shah Nawaz, Kewei Li, Jiakui Li
    International Journal of Biological Macromolecules.2024; 254: 127808.     CrossRef
  • Insights from metagenomics into gut microbiome associated with acute coronary syndrome therapy
    Yuee Guan, Shuru Zhao, Jing Li, Wenqian Zhang, Zhonghao Guo, Yi Luo, Xiaofei Jiang, Jun Li, Jianxiong Liu, Xi Chen, Zicheng Zhao, Zhe Zhang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes
    Martin Šimon, Špela Mikec, Santosh S. Atanur, Janez Konc, Nicholas M. Morton, Simon Horvat, Tanja Kunej
    Genes & Genomics.2024; 46(5): 557.     CrossRef
  • Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway
    Chenghao Lv, Xin Liu, Shiyun Chen, Yuhang Yi, Xinnian Wen, Tao Li, Si Qin
    Antioxidants.2024; 13(3): 293.     CrossRef
  • A microbial causal mediation analytic tool for health disparity and applications in body mass index
    Chan Wang, Jiyoung Ahn, Thaddeus Tarpey, Stella S. Yi, Richard B. Hayes, Huilin Li
    Microbiome.2023;[Epub]     CrossRef
  • Differences in dietary patterns related to metabolic health by gut microbial enterotypes of Korean adults
    Hwan-Hee Jang, Hwayoung Noh, Gichang Kim, Su-Yeon Cho, Hyeon-Jeong Kim, Jeong-Sook Choe, Jeongseon Kim, Augustin Scalbert, Marc J. Gunter, Oran Kwon, Hyesook Kim
    Frontiers in Nutrition.2023;[Epub]     CrossRef
  • Impact of diet and host genetics on the murine intestinal mycobiome
    Yask Gupta, Anna Lara Ernst, Artem Vorobyev, Foteini Beltsiou, Detlef Zillikens, Katja Bieber, Simone Sanna-Cherchi, Angela M. Christiano, Christian D. Sadik, Ralf J. Ludwig, Tanya Sezin
    Nature Communications.2023;[Epub]     CrossRef
  • Effects of OsomeFood Clean Label plant-based meals on the gut microbiome
    Dwiyanto Jacky, Chia Bibi, Look Melvin Chee Meng, Fong Jason, Tan Gwendoline, Lim Jeremy, Chong Chun Wie
    BMC Microbiology.2023;[Epub]     CrossRef
  • Consumption of Antioxidant-Rich “Cerrado” Cashew Pseudofruit Affects Hepatic Gene Expression in Obese C57BL/6J High Fat-Fed Mice
    Mariana Buranelo Egea, Gavin Pierce, Si-Hong Park, Sang-In Lee, Fabienne Heger, Neil Shay
    Foods.2022; 11(17): 2543.     CrossRef
  • Host—microbial interactions in metabolic diseases: from diet to immunity
    Ju-Hyung Lee, Joo-Hong Park
    Journal of Microbiology.2022; 60(6): 561.     CrossRef
Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor
Yeonbum Kim , Jung-Hye Roe , Joo-Hong Park , Yong-Joon Cho , Kang-Lok Lee
J. Microbiol. 2021;59(12):1083-1091.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1457-1
  • 379 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract PDF
CatR, a peroxide-sensing transcriptional repressor of Fur family, can de-repress the transcription of the catA gene encoding catalase upon peroxide stress in Streptomyces coelicolor. Since CatR-regulated genes other than catA and its own gene catR have not been identified in detail, the understanding of the role of CatR regulon is very limited. In this study, we performed transcriptomic analysis to identify genes influenced by both 􀈟􀂊atR mutation and hydrogen peroxide treatment. Through ChIP-qPCR and other analyses, a new consensus sequence was found in CatR-responsive promoter region of catR gene and catA operon for direct regulation. In addition, vtlA (SCO2027) and SCO4983 were identified as new members of the CatR regulon. Expression levels of iron uptake genes were reduced by hydrogen peroxide and a DmdR1 binding sequence was identified in promoters of these genes. The increase in free iron by hydrogen peroxide was thought to suppress the iron import system by DmdR1. A putative exporter protein VtlA regulated by CatR appeared to reduce intracellular iron to prevent oxidative stress. The name vtlA (VIT1-like transporter) was proposed for iron homeostasis related gene SCO2027.

Citations

Citations to this article as recorded by  
  • Structure, Function, and Biosynthesis of Siderophores Produced by Streptomyces Species
    Mingxuan Wang, Honglin Li
    Journal of Agricultural and Food Chemistry.2025; 73(8): 4425.     CrossRef
  • Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing Streptomyces
    Karel Beneš, Vladislav Čurn, Baveesh Pudhuvai, Jaroslav Motis, Zuzana Michalcová, Andrea Bohatá, Jana Lencová, Jan Bárta, Michael Rost, Andreas Vilcinskas, Vladimír Maťha
    Microorganisms.2025; 13(1): 107.     CrossRef
  • Genome mining based on transcriptional regulatory networks uncovers a novel locus involved in desferrioxamine biosynthesis
    Hannah E. Augustijn, Zachary L. Reitz, Le Zhang, Jeanine A. Boot, Somayah S. Elsayed, Gregory L. Challis, Marnix H. Medema, Gilles P. van Wezel, Tobias Bollenbach
    PLOS Biology.2025; 23(6): e3003183.     CrossRef
  • Pirin, a redox-sensitive modulator of beta-oxidation, generates hydroxyl radicals and interacts with CatR, the transcriptional repressor of the major vegetative catalase gene in Streptomyces
    Matteo Calcagnile, Fabrizio Damiano, Adelfia Talà, Pietro Alifano
    Microbiological Research.2025; 301: 128310.     CrossRef
  • Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis
    Yanchao Gu, Yongde Liu, Wei Mao, Ying Peng, Xiaoru Han, Han Jin, Jingling Xu, Liyang Chang, Yixin Hou, Xihui Shen, Xingyu Liu, Yantao Yang, G. Marcela Rodriguez
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Multi-integrated approach for unraveling small open reading frames potentially associated with secondary metabolism in Streptomyces
    Si-Min Fan, Ze-Qi Li, Shi-Zhe Zhang, Liang-Yu Chen, Xi-Ying Wei, Jian Liang, Xin-Qing Zhao, Chun Su, Xiao-Hua Zhang
    mSystems.2023;[Epub]     CrossRef
  • The regulatory role of Fur-encoding SCLAV_3199 in iron homeostasis in Streptomyces clavuligerus
    Büşra Abanoz-Seçgin, Çiğdem Otur, Sezer Okay, Aslıhan Kurt-Kızıldoğan
    Gene.2023; 878: 147594.     CrossRef
Yong-Joon Cho 0 Article

Journal of Microbiology : Journal of Microbiology
TOP