- The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis
-
Bindu Subhadra , Surya Surendran , Bo Ra Lim , Jong Sung Yim , Dong Ho Kim , Kyungho Woo , Hwa-Jung Kim , Man Hwan Oh , Chul Hee Choi
-
J. Microbiol. 2020;58(6):519-529. Published online May 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0186-1
-
-
397
View
-
0
Download
-
16
Web of Science
-
15
Crossref
-
Abstract
PDF
-
Adaptation to changing environmental conditions is crucial
for the survival of microorganisms. Bacteria have evolved
various mechanisms to cope with osmotic stress. Here, we
report the identification and functional characterization of
the osmotic stress response operon, betIBA, in Acinetobacter
nosocomialis. The betIBA operon encodes enzymes that are
important for the conversion of choline to the osmoprotectant,
glycine betaine. The betIBA operon is polycistronic
and is under the regulation of the first gene, betI, of the same
operon. A bioinformatics analysis revealed the presence of
a BetI-binding motif upstream of the betIBA operon, and
electrophoretic mobility shift assays confirmed the specific
binding of BetI. An mRNA expression analysis revealed that
expression of betI, betB, and betA genes is elevated in a betIeletion
mutant compared with the wild type, confirming that
the autorepressor BetI represses the betIBA operon in A.
nosocomialis. We further found that the betIBA operon is
under the transcriptional control of the quorum-sensing (QS)
regulator, AnoR in, A. nosocomialis. A subsequent analysis
of the impact of BetI on expression of the QS genes, anoR
and anoI, demonstrated that BetI acts as a repressor of anoR
and anoI. In addition, it was noticed that the osmotic stress
response regulator, OmpR might play an important role in
controlling the expression of betIBA operon in A. nosocomialis.
Collectively, these data demonstrate that QS and osmotic
stress-response systems are correlated in A. nosocomialis
and that the expression of genes in both systems is
finely tuned by various feedback loops depending on osmolarity
conditions.
-
Citations
Citations to this article as recorded by 
-
Comamonas halotolerans sp. nov., isolated from the faecal sample of a zoo animal, Naemorhedus caudatus
Yerim Park, Bitnara Kim, Jihyeon Min, Woojun Park
International Journal of Systematic and Evolutionary Microbiology
.2025;[Epub] CrossRef - Plant Growth-Promoting Effect and Complete Genomic Sequence Analysis of the Beneficial Rhizosphere Streptomyces sp. GD-4 Isolated from Leymus secalinus
Wanru Xu, Yimeng Liu, Yiping Cheng, Jie Zhang Microorganisms.2025; 13(2): 286. CrossRef -
Comparative genomic analysis of 255
Oenococcus oeni
isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance
Wei Chi, Hanwen Zhang, Xinyi Li, Yeqin Zhou, Qiang Meng, Ling He, Yafan Yang, Shuwen Liu, Kan Shi, Feng Gao Microbiology Spectrum.2025;[Epub] CrossRef - Potential mode of action of multispecies inoculums on wheat growth under water stress
Asmaâ Agoussar, Julien Tremblay, Étienne Yergeau ISME Communications.2025;[Epub] CrossRef - A Novel Phosphorus-Recovering Bacterium Pelagibacterium mangrovi sp. nov., Isolated from Mangrove Sediment
Shang Yang, Guohong Liu, Ruili Li, Wei Yu, Yuefei Huang, Xiaofeng Wu, Shungui Zhou, Bing Li Current Microbiology.2025;[Epub] CrossRef - Novel regulatory mechanism of choline-O-sulfate and choline catabolism by two BetIs in Alphaproteobacteria
Jia-Rong Liu, Zhen-Kun Li, Ming-Chen Wang, Na Wang, Zhi-Qing Wang, Fei-Fei Li, Yin Chen, Yu-Zhong Zhang, Hui-Hui Fu, Arpita Bose Applied and Environmental Microbiology.2025;[Epub] CrossRef - Metabolome analysis revealed the critical role of betaine for arsenobetaine biosynthesis in the marine medaka (Oryzias melastigma)
Qianyu Zhao, Qiao-Guo Tan, Wen-Xiong Wang, Peng Zhang, Zijun Ye, Liping Huang, Wei Zhang Environmental Pollution.2024; 359: 124612. CrossRef -
The atypical organization of the
luxI/R
family genes in AHL-driven quorum-sensing circuits
Yuyuan Cai, Xuehong Zhang, Michael J. Federle Journal of Bacteriology.2024;[Epub] CrossRef - The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation
Sergey Peltek, Svetlana Bannikova, Tamara M. Khlebodarova, Yulia Uvarova, Aleksey M. Mukhin, Gennady Vasiliev, Mikhail Scheglov, Aleksandra Shipova, Asya Vasilieva, Dmitry Oshchepkov, Alla Bryanskaya, Vasily Popik International Journal of Molecular Sciences.2024; 25(22): 12059. CrossRef - Mycobacterium smegmatis MraZ Regulates Multiple Genes within and Outside of the dcw Operon during Hypoxia
Ismail Mohamed Suleiman, Huang Yu, Junqi Xu, Junfeng Zhen, Hongxiang Xu, Abulimiti Abudukadier, Amina Rafique Hafiza, Jianping Xie ACS Infectious Diseases.2024; 10(12): 4301. CrossRef - Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0
Helen Park, Matthew Faulkner, Helen S Toogood, Guo-Qiang Chen, Nigel Scrutton Bioinformatics and Biology Insights.2023;[Epub] CrossRef - The Effect of Proline on the Freeze-Drying Survival Rate of Bifidobacterium longum CCFM 1029 and Its Inherent Mechanism
Shumao Cui, Wenrui Zhou, Xin Tang, Qiuxiang Zhang, Bo Yang, Jianxin Zhao, Bingyong Mao, Hao Zhang International Journal of Molecular Sciences.2022; 23(21): 13500. CrossRef - Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee Microbial Pathogenesis.2022; 165: 105460. CrossRef - The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress
Jia Guo, Xingmei Deng, Yu Zhang, Shengnan Song, Tianyi Zhao, Dexin Zhu, Shuzhu Cao, Peter Ivanovic Baryshnikov, Gang Cao, Hugh T. Blair, Chuangfu Chen, Xinli Gu, Liangbo Liu, Hui Zhang International Journal of Molecular Sciences.2022; 23(17): 9905. CrossRef - Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae
Gwendolyn J. Gregory, E. Fidelma Boyd Computational and Structural Biotechnology Journal.2021; 19: 1014. CrossRef
- Regulation of the AcrAB efflux system by the quorum-sensing regulator AnoR in Acinetobacter nosocomialis
-
Bindu Subhadra , Surya Surendran , Bo Ra Lim , Jong Sung Yim , Dong Ho Kim , Kyungho Woo , Hwa-Jung Kim , Man Hwan Oh , Chul Hee Choi
-
J. Microbiol. 2020;58(6):507-518. Published online May 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0185-2
-
-
371
View
-
0
Download
-
13
Web of Science
-
11
Crossref
-
Abstract
PDF
-
Multidrug efflux pumps play an important role in antimicrobial
resistance and pathogenicity in bacteria. Here, we report
the functional characterization of the RND (resistance-nodulation-
division) efflux pump, AcrAB, in Acinetobacter nosocomialis.
An in silico analysis revealed that homologues of the
AcrAB efflux pump, comprising AcrA and AcrB, are widely
distributed among different bacterial species. Deletion of acrA
and/or acrB genes led to decreased biofilm/pellicle formation
and reduced antimicrobial resistance in A. nosocomialis. RNA
sequencing and mRNA expression analyses showed that expression
of acrA/B was downregulated in a quorum sensing
(QS) regulator (anoR)-deletion mutant, indicating transcriptional
activation of the acrAB operon by AnoR in A. nosocomialis.
Bioassays showed that secretion of N-acyl homoserine
lactones (AHLs) was unaffected in acrA and acrB deletion
mutants; however, AHL secretion was limited in a deletion
mutant of acrR, encoding the acrAB regulator, AcrR.
An in silico analysis indicated the presence of AcrR-binding
motifs in promoter regions of anoI (encoding AHL synthase)
and anoR. Specific binding of AcrR was confirmed by electrophoretic
mobility shift assays, which revealed that AcrR
binds to positions -214 and -217 bp upstream of the translational
start sites of anoI and anoR, respectively, demonstrating
transcriptional regulation of these QS genes by AcrR.
The current study further addresses the possibility that AcrAB
is controlled by the osmotic stress regulator, OmpR, in A.
nosocomialis. Our data demonstrate that the AcrAB efflux
pump plays a crucial role in biofilm/pellicle formation and
antimicrobial resistance in A. nosocomialis, and is under the
transcriptional control of a number of regulators. In addition,
the study emphasizes the interrelationship of QS and AcrAB
efflux systems in A. nosocomialis.
-
Citations
Citations to this article as recorded by 
- Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii
Kira M. Zack, Trent Sorenson, Suresh G. Joshi Pathogens.2024; 13(3): 197. CrossRef - Lysine Trimethylation in Planktonic and Pellicle Modes of Growth in Acinetobacter baumannii
Nicolas Nalpas, Takfarinas Kentache, Emmanuelle Dé, Julie Hardouin Journal of Proteome Research.2023; 22(7): 2339. CrossRef - The Mechanism of Tigecycline Resistance in Acinetobacter baumannii Revealed by Proteomic and Genomic Analysis
Cunwei Liu, Lei Wang, Ping Wang, Di Xiao, Qinghua Zou International Journal of Molecular Sciences.2023; 24(10): 8652. CrossRef - Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies
Yijun Li, Guanwen Sun, Jingchan Xie, Suli Xiao, Chen Lin Frontiers in Microbiology.2023;[Epub] CrossRef - The multifaceted genusAcinetobacter: from infection to bioremediation
Ujwal Dahal, Karan Paul, Shelly Gupta Journal of Applied Microbiology.2023;[Epub] CrossRef - Efflux pumps and microbial biofilm formation
Mahdyeh Neghabi Hajiagha, Hossein Samadi Kafil Infection, Genetics and Evolution.2023; 112: 105459. CrossRef - Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria
Ronit Vogt Sionov, Doron Steinberg Microorganisms.2022; 10(6): 1239. CrossRef - Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa
Rakesh Sikdar, Mikael H. Elias, Giordano Rampioni Microbiology Spectrum.2022;[Epub] CrossRef - Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp.
Vanessa Kornelsen, Ayush Kumar Antimicrobial Agents and Chemotherapy.2021;[Epub] CrossRef - Orthopedic Implant-Related Biofilm Pathophysiology: A Review of the Literature
Meletis Rozis, Dimitrios S Evangelopoulos, Spyros G Pneumaticos Cureus.2021;[Epub] CrossRef - The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions
Xinyi Zhang, Zhendong Li, Shengmei Pang, Boyu Jiang, Yang Yang, Qiangde Duan, Guoqiang Zhu Archives of Microbiology.2021; 203(2): 431. CrossRef
|