- Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov., isolated from kimchi, a traditional Korean fermented food
-
Min Ji Lee, Jisu Lee, Sohee Nam, Mi-Ja Jung, Yeon Bee Kim, Yujin Kim, Jeong Ui Yun, Seong Woon Roh, Tae Woong Whon, Che Ok Jeon, Se Hee Lee
-
J. Microbiol. 2025;63(11):e2507007. Published online November 30, 2025
-
DOI: https://doi.org/10.71150/jm.2507007
-
-
Abstract
PDF Supplementary Material
-
Two Gram-stain-positive, facultatively anaerobic, rod-shaped, and non-motile lactic acid bacterial strains, designated as strains CBA3605T and CBA3606T, were isolated from kimchi, a traditional Korean fermented food. Both strains were oxidase- and catalase-negative, non-spore-forming, non-hemolytic, and non-gas-producing. Optimal growth conditions for the two strains were observed at 30°C, pH 5.0, and 0% NaCl. The two genomes were composed of a circular chromosome and three plasmids and the DNA G + C content of 43.0%, respectively. Strains CBA3605T and CBA3606T were most closely related to Lactiplantibacillus (Lp.) pingfangensis 382-1T with 16S rRNA sequence similarity of 99.4% and 99.1%, respectively. However, the orthologous average nucleotide identities between CBA3605T and CBA3606T were 91.7%, and those with strain 382-1T were 76.9% and 76.5%, respectively. Digital DNA–DNA hybridization values between CBA3605T and CBA3606T were 45.0%, and those with strain 382-1T were 21.4% and 21.0%, respectively. The major fatty acids detected in both strains included C16:0, C18:1 ω9c, and summed features 7 (C19:1 ω7c, C19:1 ω6c, C19:0 cyclo ω10c, and/or C19:0 ω6c). The peptidoglycan of both strains CBA3605T and CBA3606T contained meso-diaminopimelic acid and was classified as A4α type (L-Lys–D-Asp). In polar lipid analyses, only strain CBA3605T contained aminophosphoglycolipid, which was absent in CBA3606T, although both strains harbored same major polar lipids (diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine). Based on phenotypic, phylogenetic, genomic, biochemical, and chemotaxonomic analyses, strains CBA3605T and CBA3606T represent two novel species of the genus Lactiplantibacillus, for which the names Lactiplantibacillus koreensis sp. nov. and Lactiplantibacillus kimchii sp. nov. are proposed, with CBA3605T (= KACC 81073BPT = JCM 37965T), and CBA3606T (= KACC 81074BPT = JCM 37966T) as the type strains.
- Infection Dynamics of Dengue Virus in Caco-2 Cells Depending on Its Differentiation Status
-
Jayoung Nam, Jisu Lee, Geon A Kim, Seung-Min Yoo, Changhoon Park, Myung-Shin Lee
-
J. Microbiol. 2024;62(9):799-809. Published online August 30, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00161-w
-
-
406
View
-
12
Download
-
2
Web of Science
-
2
Crossref
-
Abstract
PDF
-
Dengue virus (DENV), from the Flaviviridae family, is the causative agent of dengue fever and poses a significant global health challenge. The virus primarily affects the vascular system and liver; however, a growing body of evidence suggests its involvement in the gastrointestinal (GI) tract, contributing to clinical symptoms such as abdominal pain, vomiting, and diarrhea. However, the mechanisms underlying DENV infection in the digestive system remain largely unexplored. Prior research has detected viral RNA in the GI tissue of infected animals; however, whether the dengue virus can directly infect human enterocytes remains unclear. In this study, we examine the infectivity of human intestinal cell lines to the dengue virus and their subsequent response. We report that the Caco-2 cell line, a model of human enterocytes, is susceptible to infection and capable of producing viruses. Notably, differentiated Caco-2 cells exhibited a lower infection rate yet a higher level of virus production than their undifferentiated counterparts. These findings suggest that human intestinal cells are a viable target for the dengue virus, potentially elucidating the GI symptoms observed in dengue fever and offering a new perspective on the pathogenetic mechanisms of the virus.
-
Citations
Citations to this article as recorded by 
- Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
Sojung Bae, Jinjong Myoung Journal of Microbiology.2025; 63(7): e2504015. CrossRef - Domain-Specific Impacts of Spike Protein Mutations on Infectivity and Antibody Escape in SARS-CoV-2 Omicron BA.1
Tae-Hun Kim, Sojung Bae, Jinjong Myoung Journal of Microbiology and Biotechnology.2025;[Epub] CrossRef
|