Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
19 "therapy"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
The key pathways and genes related to oncolytic Newcastle disease virus-induced phenotypic changes in ovarian cancer cells
Wei Song, Yuan Yuan, Fangfang Cao, Huazheng Pan, Yaqing Liu
J. Microbiol. 2025;63(4):e2411018.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2411018
  • 51 View
  • 3 Download
AbstractAbstract PDFSupplementary Material

The poor prognosis and high recurrence rate of ovarian cancer highlight the urgent need to develop new therapeutic strategies. Oncolytic Newcastle disease virus (NDV) can kill cancer cells directly and regulate innate and adaptive immunity. In this study, ovarian cancer cells infected with or without velogenic NDV-BJ were subjected to a CCK-8 assay for detecting cell proliferation, flow cytometry for detecting the cell cycle and apoptosis, and wound healing and transwell assays for detecting cell migration and invasion. Transcriptomic sequencing was conducted to identify the differentially expressed genes (DEGs). GO and KEGG enrichment analyses were performed to explore the mechanism underlying the oncolytic effect of NDV on ovarian cancer cells. The results showed that infection with NDV inhibited ovarian cancer cell proliferation, migration, and invasion; disrupted the cell cycle; and promoted apoptosis. Compared with those in negative control cells, the numbers of upregulated and downregulated genes in ovarian cancer cells infected with NDV were 1,499 and 2,260, respectively. Thirteen KEGG pathways related to cell growth and death, cell mobility, and signal transduction were significantly enriched. Among these pathways, 48 DEGs, especially SESN2, HLA B/C/E, GADD45B, and RELA, that may be involved in the oncolytic process were screened, and qPCR analysis verified the reliability of the transcription data. This study discovered some key pathways and genes related to oncolytic NDV-induced phenotypic changes in ovarian cancer cells, which will guide our future research directions and help further explore the specific mechanisms by which infection with NDV suppresses ovarian cancer development.

Journal Article
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 64 View
  • 0 Download
AbstractAbstract
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
Reviews
Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses
Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(7):491-509.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00159-4
  • 206 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.

Citations

Citations to this article as recorded by  
  • Engineering an oncolytic adenoviral platform for precise delivery of antisense peptide nucleic acid to modulate PD-L1 overexpression in cancer cells
    Andrea Patrizia Falanga, Francesca Greco, Monica Terracciano, Stefano D’Errico, Maria Marzano, Sara Feola, Valentina Sepe, Flavia Fontana, Ilaria Piccialli, Vincenzo Cerullo, Hélder A. Santos, Nicola Borbone
    International Journal of Pharmaceutics.2025; 668: 124941.     CrossRef
  • Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology
    Emile Youssef, Brandon Fletcher, Dannelle Palmer
    Frontiers in Medicine.2025;[Epub]     CrossRef
  • Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics
    Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen, Laura M. K. Dassama
    Chemical Reviews.2025; 125(4): 2120.     CrossRef
  • Intestinal mucus: the unsung hero in the battle against viral gastroenteritis
    Waqar Saleem, Ateeqa Aslam, Mehlayl Tariq, Hans Nauwynck
    Gut Pathogens.2025;[Epub]     CrossRef
  • Chromatin structure and gene transcription of recombinant p53 adenovirus vector within host
    Duo Ning, Yuqing Deng, Simon Zhongyuan Tian
    Frontiers in Molecular Biosciences.2025;[Epub]     CrossRef
  • Molecular Engineering of Virus Tropism
    Bo He, Belinda Wilson, Shih-Heng Chen, Kedar Sharma, Erica Scappini, Molly Cook, Robert Petrovich, Negin P. Martin
    International Journal of Molecular Sciences.2024; 25(20): 11094.     CrossRef
  • Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration
    Andrey Vyacheslavovich Vasilyev, Irina Alekseevna Nedorubova, Viktoria Olegovna Chernomyrdina, Anastasiia Yurevna Meglei, Viktoriia Pavlovna Basina, Anton Vladimirovich Mironov, Valeriya Sergeevna Kuznetsova, Victoria Alexandrovna Sinelnikova, Olga Anatol
    International Journal of Molecular Sciences.2024; 25(24): 13300.     CrossRef
The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses
In‑Young Chung, Jihyun Kim, Ara Koh
J. Microbiol. 2024;62(3):137-152.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00110-7
  • 112 View
  • 4 Download
  • 2 Web of Science
  • 4 Crossref
AbstractAbstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confned to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specifc microbial taxa within diferent cancer types underscore their pivotal roles in driving tumorigenesis and infuencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse efects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.

Citations

Citations to this article as recorded by  
  • COVID-19, Long COVID, and Gastrointestinal Neoplasms: Exploring the Impact of Gut Microbiota and Oncogenic Interactions
    do Rêgo Amália Cinthia Meneses, Araújo-Filho Irami
    Archives of Cancer Science and Therapy.2024; 8(1): 054.     CrossRef
  • Glycans in the oral bacteria and fungi: Shaping host-microbe interactions and human health
    Xiameng Ren, Min Wang, Jiabao Du, Yu Dai, Liuyi Dang, Zheng Li, Jian Shu
    International Journal of Biological Macromolecules.2024; 282: 136932.     CrossRef
  • A Review of the Relationship between Tumors of the Biliary System and Intestinal Microorganisms
    勇利 李
    Advances in Clinical Medicine.2024; 14(07): 833.     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
Journal Articles
Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii
Zhiyuan An, Wenyi Ding
J. Microbiol. 2024;62(4):315-325.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00109-0
  • 64 View
  • 0 Download
AbstractAbstract
Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.
Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence
Yongchao Guan , Meng Zhang , Yingda Wang , Zhongzhuo Liu , Zelin Zhao , Hong Wang , Dingjie An , Aidong Qian , Yuanhuan Kang , Wuwen Sun , Xiaofeng Shan
J. Microbiol. 2022;60(12):1153-1161.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2373-8
  • 53 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Aeromonas veronii is a pathogen which can induce diseases in humans, animals and aquatic organisms, but its pathogenic mechanism and virulence factors are still elusive. In this study, we successfully constructed a mutant strain (ΔascP) by homologous recombination. The results showed that the deletion of the ascP gene significantly down-regulated the expression of associated effector proteins in A. veronii compared to its wild type. The adhesive and invasive abilities of ΔascP to EPC cells were 0.82-fold lower in contrast to the wild strain. The toxicity of ΔascP to cells was decreased by about 2.91-fold (1 h) and 1.74-fold (2 h). Furthermore, the LD50 of the mutant strain of crucian carp was reduced by 19.94-fold, and the virulence was considerably attenuated. In contrast to the wild strain, the ΔascP content in the liver and spleen was considerably lower. The titers of serum cytokines (IL-8, TNF-α, and IL-1β) in crucian carp after the infection of the ΔascP strain were considerably lower in contrast to the wild strain. Hence, the ascP gene is essential for the etiopathogenesis of A. veronii TH0426.

Citations

Citations to this article as recorded by  
  • Complete genome sequence and genome-wide transposon mutagenesis enable the determination of genes required for sodium hypochlorite tolerance and drug resistance in pathogen Aeromonas veronii GD2019
    Yifan Bu, Chengyu Liu, Yabo Liu, Wensong Yu, Tingjin Lv, Yuanxing Zhang, Qiyao Wang, Yue Ma, Shuai Shao
    Microbiological Research.2024; 284: 127731.     CrossRef
  • Construction of the flagellin F mutant of Vibrio parahaemolyticus and its toxic effects on silver pomfret (Pampus argenteus) cells
    Yang Li, Chao Liu, Yuechen Sun, Ruijun Wang, Choufei Wu, Hanqu Zhao, Liqin Zhang, Dawei Song, Quanxin Gao
    International Journal of Biological Macromolecules.2024; 259: 129395.     CrossRef
  • Ferric uptake regulator (fur) affects the pathogenicity of Aeromonas veronii TH0426 by regulating flagellar assembly and biofilm formation
    Jin-shuo Gong, Ying-da Wang, Yan-long Jiang, Di Zhang, Ya-nan Cai, Xiao-feng Shan, He Gong, Hao Dong
    Aquaculture.2024; 580: 740361.     CrossRef
Review
[MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
J. Microbiol. 2020;58(12):979-987.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-020-0483-8
  • 56 View
  • 0 Download
  • 14 Web of Science
  • 13 Crossref
AbstractAbstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNAbinding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.

Citations

Citations to this article as recorded by  
  • Bacterial protein acetylation: mechanisms, functions, and methods for study
    Jocelin Rizo, Sergio Encarnación-Guevara
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus
    Miao Feng, Xiaoyu Yi, Yanling Feng, Feng He, Zonghui Xiao, Hailan Yao
    Heliyon.2024; 10(15): e35326.     CrossRef
  • Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota
    Menglu Xi, Yalu Yan, Sufang Duan, Ting Li, Ignatius Man-Yau Szeto, Ai Zhao
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress
    Xujian Li, Shanshan Dai, Shanshan Sun, Dongying Zhao, Hui Li, Junyi Zhang, Jie Ma, Binghai Du, Yanqin Ding
    Journal of Proteome Research.2024;[Epub]     CrossRef
  • Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa
    Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
    microLife.2024;[Epub]     CrossRef
  • Lysine acetylation regulates the AT-rich DNA possession ability of H-NS
    Yabo Liu, Mengqing Zhou, Yifan Bu, Liang Qin, Yuanxing Zhang, Shuai Shao, Qiyao Wang
    Nucleic Acids Research.2024; 52(4): 1645.     CrossRef
  • Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate Salmonella virulence
    Liu-Qing Zhang, Yi-Lin Shen, Bang-Ce Ye, Ying Zhou, Christopher A. Elkins
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance
    Yuying Fu, Lishan Zhang, Huanhuan Song, Junyan Liao, Li Lin, Wenjia Jiang, Xiaoyun Wu, Guibin Wang
    Antibiotics.2022; 11(7): 841.     CrossRef
  • Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium
    Hyojeong Koo, Eunna Choi, Shinae Park, Eun-Jin Lee, Jung-Shin Lee
    Journal of Microbiology.2022; 60(8): 823.     CrossRef
  • Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa
    Shouyi Li, Xuetao Gong, Liwen Yin, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Un-Hwan Ha, Weihui Wu, Pierre Cornelis, Gerald B. Pier
    mBio.2022;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation ofexsAinPseudomonas aeruginosa
    Shouyi Li, Yuding Weng, Xiaoxiao Li, Zhuo Yue, Zhouyi Chai, Xinxin Zhang, Xuetao Gong, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Weihui Wu
    Nucleic Acids Research.2021; 49(12): 6756.     CrossRef
  • Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review
    Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    Pathogens.2021; 10(7): 801.     CrossRef
Journal Article
Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Jeesun Chun , Byeonghak Na , Dae-Hyuk Kim
J. Microbiol. 2020;58(12):1046-1053.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0380-1
  • 56 View
  • 0 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family “Fusagraviridae”, with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1- NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pathogen, but this enhanced antifungal activity appeared to be species-specific.

Citations

Citations to this article as recorded by  
  • Co-infection with two novel mycoviruses affects the biocontrol activity of Trichoderma polysporum
    Jeesun Chun, Hae-Ryeong Yoon, Sei-Jin Lee, Dae-Hyuk Kim
    Biological Control.2024; 188: 105440.     CrossRef
  • An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate
    Chenchen Liu, Xiliang Jiang, Zhaoyan Tan, Rongqun Wang, Qiaoxia Shang, Hongrui Li, Shujin Xu, Miguel A. Aranda, Beilei Wu, Lea Atanasova
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae
    Siwei Li, Zhihao Ma, Xinyi Zhang, Yibo Cai, Chenggui Han, Xuehong Wu
    Journal of Fungi.2023; 10(1): 30.     CrossRef
  • Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture
    Miriam Schalamun, Monika Schmoll
    Frontiers in Fungal Biology.2022;[Epub]     CrossRef
  • A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
    Subha Das, Sakae Hisano, Ana Eusebio-Cope, Hideki Kondo, Nobuhiro Suzuki
    Viruses.2022; 14(8): 1722.     CrossRef
  • Molecular characteristics of a novel hypovirus from Trichoderma harzianum
    Jeesun Chun, Kum-Kang So, Yo-Han Ko, Dae-Hyuk Kim
    Archives of Virology.2022; 167(1): 233.     CrossRef
  • Sustainable Management of Medicago sativa for Future Climates: Insect Pests, Endophytes and Multitrophic Interactions in a Complex Environment
    Mark R. McNeill, Xiongbing Tu, Eric Altermann, Wu Beilei, Shengjing Shi
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host
    Carolina Cornejo, Sakae Hisano, Helena Bragança, Nobuhiro Suzuki, Daniel Rigling
    Journal of Fungi.2021; 7(10): 861.     CrossRef
Reviews
MINIREVIEW] Development of bacteria as diagnostics and therapeutics by genetic engineering
Daejin Lim , Miryoung Song
J. Microbiol. 2019;57(8):637-643.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-9105-8
  • 56 View
  • 0 Download
  • 15 Web of Science
  • 13 Crossref
AbstractAbstract
Bacteria sense and respond to the environment, communicate, and continuously interact with their surroundings, including host bodies. For more than a century, engineers have been trying to harness the natural ability of bacteria as live biotherapeutics for the treatment of diseases. Recent advances in synthetic biology facilitate the enlargement of the repertoire of genetic parts, tools, and devices that serve as a framework for biotherapy. This review describes bacterial species developed for specific diseases shown in in vitro studies and clinical stages. Here, we focus on drug delivery by programing bacteria and discuss the challenges for safety and improvement.

Citations

Citations to this article as recorded by  
  • Engineered Microorganisms for Advancing Tumor Therapy
    Jinxuan Jia, Xiaocheng Wang, Xiang Lin, Yuanjin Zhao
    Advanced Materials.2024;[Epub]     CrossRef
  • Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future
    Aref Yarahmadi, Mitra Zare, Masoomeh Aghayari, Hamed Afkhami, Gholam Ali Jafari
    Cell Communication and Signaling.2024;[Epub]     CrossRef
  • Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications
    Xia Lin, Rong Jiao, Haowen Cui, Xuebing Yan, Kun Zhang
    Advanced Science.2024;[Epub]     CrossRef
  • Intestinal Delivery of Probiotics: Materials, Strategies, and Applications
    Chengcheng Li, Zi‐Xi Wang, Huining Xiao, Fu‐Gen Wu
    Advanced Materials.2024;[Epub]     CrossRef
  • Research and application of intelligent diagnosis and treatment engineering bacteria
    Na Zhao, Junwei Chen, Jingtian Shi, Yan Gao, Lijing Li, Liyun Dong
    Frontiers in Bioengineering and Biotechnology.2024;[Epub]     CrossRef
  • Gastrointestinal worms and bacteria: From association to intervention
    James Rooney, Cinzia Cantacessi, Javier Sotillo, Alba Cortés
    Parasite Immunology.2023;[Epub]     CrossRef
  • Bacterial Therapy of Cancer: A Way to the Dustbin of History or to the Medicine of the Future?
    Larisa N. Ikryannikova, Neonila V. Gorokhovets, Darya A. Belykh, Leonid K. Kurbatov, Andrey A. Zamyatnin
    International Journal of Molecular Sciences.2023; 24(11): 9726.     CrossRef
  • Derivation and elimination of uremic toxins from kidney-gut axis
    Ying Xu, Wen-Di Bi, Yu-Xuan Shi, Xin-Rui Liang, Hai-Yan Wang, Xue-Li Lai, Xiao-Lu Bian, Zhi-Yong Guo
    Frontiers in Physiology.2023;[Epub]     CrossRef
  • Decorated bacteria and the application in drug delivery
    Feng Wu, Jinyao Liu
    Advanced Drug Delivery Reviews.2022; 188: 114443.     CrossRef
  • Bakterie Modyfikowane Genetycznie – Perspektywy Zastosowania w Profilaktyce, Diagnostyce I Terapii
    Barbara Macura, Aneta Kiecka, Marian Szczepanik
    Postępy Mikrobiologii - Advancements of Microbiology.2022; 61(1): 21.     CrossRef
  • Bacteria and cells as alternative nano-carriers for biomedical applications
    Rafaela García-Álvarez, María Vallet-Regí
    Expert Opinion on Drug Delivery.2022; 19(1): 103.     CrossRef
  • Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis
    Jeong Eun Han, Woorim Kang, June-Young Lee, Hojun Sung, Dong-Wook Hyun, Hyun Sik Kim, Pil Soo Kim, Euon Jung Tak, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Ji-Hyun Yun, Mi-Ja Jung, Na-Ri Shin, Tae Woong Whon, Myung-Suk Kang, Ki-Eun Lee, Byoung-Hee Lee, Ji
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(4): 2305.     CrossRef
  • Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model
    Laísa M. Tavares, Luís C. L. de Jesus, Tales F. da Silva, Fernanda A. L. Barroso, Viviane L. Batista, Nina D. Coelho-Rocha, Vasco Azevedo, Mariana M. Drumond, Pamela Mancha-Agresti
    Frontiers in Bioengineering and Biotechnology.2020;[Epub]     CrossRef
MINIREVIEW] Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy
Ji Eun Choi , Woo-Hyun Chung
J. Microbiol. 2019;57(1):9-17.   Published online December 29, 2018
DOI: https://doi.org/10.1007/s12275-019-8475-2
  • 62 View
  • 0 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract
Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.

Citations

Citations to this article as recorded by  
  • CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference
    Yuyang Dou, Yujie Ren, Xinmiao Zhao, Jiaming Jin, Shizheng Xiong, Lulu Luo, Xinru Xu, Xueni Yang, Jiafeng Yu, Li Guo, Tingming Liang
    Computers in Biology and Medicine.2024; 170: 108066.     CrossRef
  • ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin
    Xiao-Yan Ma, Jia-Fu Zhao, Yong Ruan, Wang-Ming Zhang, Lun-Qing Zhang, Zheng-Dong Cai, Hou-Qiang Xu
    Molecules.2022; 27(24): 8790.     CrossRef
  • Clinical significance of chromosomal integrity in gastric cancers
    Rukui Zhang, Zhaorui Liu, Xusheng Chang, Yuan Gao, Huan Han, Xiaona Liu, Hui Cai, Qiqing Fu, Lei Liu, Kai Yin
    The International Journal of Biological Markers.2022; 37(3): 296.     CrossRef
  • Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms
    Ji Eun Choi, Woo-Hyun Chung
    Journal of Microbiology.2020; 58(2): 81.     CrossRef
  • Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants
    Jenna E. Gallegos, Neil R. Adames, Mark F. Rogers, Pavel Kraikivski, Aubrey Ibele, Kevin Nurzynski-Loth, Eric Kudlow, T. M. Murali, John J. Tyson, Jean Peccoud
    npj Systems Biology and Applications.2020;[Epub]     CrossRef
  • DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae
    Michael G. Mfarej, Robert V. Skibbens, Marco Muzi-Falconi
    PLOS ONE.2020; 15(12): e0242968.     CrossRef
Journal Articles
Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus
Hüseyin Ta&# , Ay&# , Nermin Topalo&# , Vildan Alptüzün
J. Microbiol. 2018;56(11):828-837.   Published online October 24, 2018
DOI: https://doi.org/10.1007/s12275-018-8244-7
  • 56 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.

Citations

Citations to this article as recorded by  
  • An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance
    Anamika Singh, Mansi Tanwar, T.P. Singh, Sujata Sharma, Pradeep Sharma
    International Journal of Biological Macromolecules.2024; 279: 135253.     CrossRef
  • Novel porphyrin derivative containing cations as new photodynamic antimicrobial agent with high efficiency
    Jiajing Zhang, Xiaoqian Yuan, Hongsen Li, Liting Yu, Yulong Zhang, Keyi Pang, Chaoyue Sun, Zhongyang Liu, Jie Li, Liying Ma, Jinming Song, Lingxin Chen
    RSC Advances.2024; 14(5): 3122.     CrossRef
  • Photo-Inactivation of Staphylococcus aureus by Diaryl-Porphyrins
    Viviana Teresa Orlandi, Eleonora Martegani, Nicola Trivellin, Fabrizio Bolognese, Enrico Caruso
    Antibiotics.2023; 12(2): 228.     CrossRef
  • Enhancement of the mechanical and antibacterial properties of Bis-GMA/TEGDMA dental composite incorporated with ZnO/CS and Si/PMMA core–shell nanostructures
    Izel Ok, Ahmet Aykac
    Chemical Papers.2023; 77(11): 6959.     CrossRef
  • Antimicrobial photodynamic in vitro inactivation of Enterococcus spp. and Staphylococcus spp. strains using tetra-cationic platinum(II) porphyrins
    Ticiane da Rosa Pinheiro, Carolina Gonzalez Urquhart, Thiago Vargas Acunha, Roberto Christ Vianna Santos, Bernardo Almeida Iglesias
    Photodiagnosis and Photodynamic Therapy.2023; 42: 103542.     CrossRef
  • Shear bond characteristics and surface roughness of poly-ether-ether-ketone treated with contemporary surface treatment regimes bonded to composite resin
    Mashael Binhasan, Mai M. Alhamdan, Khulud A. Al-Aali, Fahim Vohra, Tariq Abduljabbar
    Photodiagnosis and Photodynamic Therapy.2022; 38: 102765.     CrossRef
  • Antimicrobial efficacy of in vitro and ex vivo photodynamic therapy using porphyrins against Moraxella spp. isolated from bovine keratoconjunctivitis
    M. G. Seeger, C. S. Machado, B. A. Iglesias, F. S. F. Vogel, J. F. Cargnelutti
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • The antibacterial activity of photodynamic agents against multidrug resistant bacteria causing wound infection
    Ayşe Akbiyik, Hüseyin Taşli, Nermin Topaloğlu, Vildan Alptüzün, Sülünay Parlar, Selçuk Kaya
    Photodiagnosis and Photodynamic Therapy.2022; 40: 103066.     CrossRef
  • Efficacy of chemical and photoactivated disinfectants against Candida Albicans and assessment of hardness, roughness, and mass loss of acrylic denture base resin
    Fahad Alkhtani
    Photodiagnosis and Photodynamic Therapy.2022; 39: 102911.     CrossRef
  • Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model
    Jianhua Huang, Shutian Wu, Minfeng Wu, Qingyu Zeng, Xiuli Wang, Hongwei Wang
    Photodiagnosis and Photodynamic Therapy.2021; 36: 102480.     CrossRef
  • Efficacy of porphyrin derivative, Chlorhexidine and PDT in the surface disinfection and roughness of Cobalt chromium alloy removable partial dentures
    Eman M. AlHamdan, Samar Al-Saleh, Sidra Sadaf Nisar, Ibraheem Alshiddi, Abdulaziz S. Alqahtani, Khaled M. Alzahrani, Mustafa Naseem, Fahim Vohra, Tariq Abduljabbar
    Photodiagnosis and Photodynamic Therapy.2021; 36: 102515.     CrossRef
  • Effectiveness of synthetic and natural photosensitizers and different chemical disinfectants on the contaminated metal crown
    Samar Al-Saleh, Ahmed Heji Albaqawi, Feras Alrawi, Huda I. Tulbah, Amal S Al-Qahtani, Emal Heer, Sidra Sadaf Nisar, Fahim Vohra, Tariq Abduljabbar
    Photodiagnosis and Photodynamic Therapy.2021; 36: 102601.     CrossRef
  • Natural Photosensitizers in Antimicrobial Photodynamic Therapy
    Ece Polat, Kyungsu Kang
    Biomedicines.2021; 9(6): 584.     CrossRef
  • In vitro antimicrobial photodynamic therapy using tetra-cationic porphyrins against multidrug-resistant bacteria isolated from canine otitis
    M.G. Seeger, A.S. Ries, L.T. Gressler, S.A. Botton, B.A. Iglesias, J.F. Cargnelutti
    Photodiagnosis and Photodynamic Therapy.2020; 32: 101982.     CrossRef
  • Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections
    Yu‐Xuan Ma, Chen‐Yu Wang, Yuan‐Yuan Li, Jing Li, Qian‐Qian Wan, Ji‐Hua Chen, Franklin R. Tay, Li‐Na Niu
    Advanced Science.2020;[Epub]     CrossRef
  • Effect of methylene blue photodynamic therapy on human neutrophil functional responses
    Elisa Trevisan, Renzo Menegazzi, Giuliano Zabucchi, Barbara Troian, Stefano Prato, Francesca Vita, Valentina Rapozzi, Micaela Grandolfo, Violetta Borelli
    Journal of Photochemistry and Photobiology B: Biology.2019; 199: 111605.     CrossRef
  • In Vitro Effect of Toluidine Blue Antimicrobial Photodynamic Chemotherapy on Staphylococcus epidermidis and Staphylococcus aureus Isolated from Ocular Surface Infection
    Jing Shen, Qingfeng Liang, Guanyu Su, Yang Zhang, Zhiqun Wang, Christophe Baudouin, Antoine Labbé
    Translational Vision Science & Technology.2019; 8(3): 45.     CrossRef
  • Synthesis and photo-bactericidal properties of a cationic porphyrin grafted onto kraft pulp fibers
    Zineb Khaldi, Jean K. Nzambe Takeki, Tan-Sothea Ouk, Romain Lucas, Rachida Zerrouki
    Journal of Porphyrins and Phthalocyanines.2019; 23(04n05): 489.     CrossRef
  • Preliminary evaluation of the positively and negatively charge effects of tetra-substituted porphyrins on photoinactivation of rapidly growing mycobacteria
    Kevim Bordignon Guterres, Grazielle Guidolin Rossi, Lucas Brandalise Menezes, Marli Matiko Anraku de Campos, Bernardo Almeida Iglesias
    Tuberculosis.2019; 117: 45.     CrossRef
Anti protein A antibody-gold nanorods conjugate: a targeting agent for selective killing of methicillin resistant Staphylococcus aureus using photothermal therapy method
Rasoul Shokri , Mojtaba Salouti , Rahim Sorouri Zanjani
J. Microbiol. 2015;53(2):116-121.   Published online January 28, 2015
DOI: https://doi.org/10.1007/s12275-015-4519-4
  • 55 View
  • 0 Download
  • 20 Crossref
AbstractAbstract
The high prevalence of methicillin resistant Staphylococcus aureus (MRSA) and developing resistance to antibiotics requires new approaches for treatment of infectious diseases due to this bacterium. In this study, we developed a targeting agent for selective killing of MRSA using photothermal therapy method based on anti protein A antibody and gold nanorods (GNRs). Polystyrene sulfonate (PSS) coated GNRs were conjugated with anti protein A antibody. The FT-IR and UV-vis analyses approved the formation of anti protein A antibody-gold nanorods conjugate. In vitro study of photothermal therapy showed 82% reduction in the MRSA cells viability which was significantly greater than the ablation effect of free GNRs and laser alone. Significant accumulation of anti protein A antibody-GNRs in the infected muscle in comparison with normal muscle approved the targeting ability of new agent. In vivo study of photothermal therapy resulted in a significant reduction (73%) in the bacterial cells viability in the infected mouse model. These results demonstrated the ability of anti protein A antibody-GNRs conjugate in combination with NIR laser energy for selective killing of MRSA in mouse model.

Citations

Citations to this article as recorded by  
  • Breast Cancer Cell Destruction Using Individually Encapsulated Cytotoxic T Lymphocytes in Polyelectrolyte Layer Coated with Dual Nanoparticles in Combination with Magnetic Exposure and Laser Irradiation
    Porntida Wattanakull, Dakrong Pissuwan
    Nano Select.2024;[Epub]     CrossRef
  • Infection Microenvironment‐Sensitive Photothermal Nanotherapeutic Platform to Inhibit Methicillin‐Resistant Staphylococcus aureus Infection
    Yu Zhao, Jiaying Yang, Danli Hao, Ran Xie, Lingyu Jia, Miyi Yang, Hai Ma, Pengqian Wang, Weipeng Yang, Feng Sui, Haiyu Zhao, Yanjun Chen, Qinghe Zhao
    Macromolecular Bioscience.2023;[Epub]     CrossRef
  • Nanomaterials-mediated on-demand and precise antibacterial therapies
    Shi Cheng, Qihui Wang, Manlin Qi, Wenyue Sun, Kun Wang, Wen Li, Jinying Lin, Biao Dong, Lin Wang
    Materials & Design.2023; 230: 111982.     CrossRef
  • Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility
    Karol Skłodowski, Sylwia Joanna Chmielewska-Deptuła, Ewelina Piktel, Przemysław Wolak, Tomasz Wollny, Robert Bucki
    International Journal of Molecular Sciences.2023; 24(3): 2104.     CrossRef
  • Fabrication of a New Hyaluronic Acid/Gelatin Nanocomposite Hydrogel Coating on Titanium-Based Implants for Treating Biofilm Infection and Excessive Inflammatory Response
    Yao Ding, Ruichen Ma, Genhua Liu, Xuan Li, Kun Xu, Peng Liu, Kaiyong Cai
    ACS Applied Materials & Interfaces.2023; 15(10): 13783.     CrossRef
  • Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing
    Xinyu Xu, Yujie Ding, Roja Hadianamrei, Songwei Lv, Rongrong You, Fang Pan, Peng Zhang, Nan Wang, Xiubo Zhao
    Colloids and Surfaces B: Biointerfaces.2022; 220: 112887.     CrossRef
  • Selective Capture, Separation, and Photothermal Inactivation of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Functional Magnetic Nanoparticles
    Chengnan Li, Zongshao Li, Yingying Gan, Fenglin Jiang, Huimin Zhao, Jeremy Tan, Yi Yan Yang, Peiyan Yuan, Xin Ding
    ACS Applied Materials & Interfaces.2022; 14(18): 20566.     CrossRef
  • Anti-bacterial monoclonal antibodies: next generation therapy against superbugs
    Hui Wang, Daijie Chen, Huili Lu
    Applied Microbiology and Biotechnology.2022; 106(11): 3957.     CrossRef
  • Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria
    Bingqing Yang, Dan Fang, Qingyan Lv, Zhiqiang Wang, Yuan Liu
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices
    Piersandro Pallavicini, Giuseppe Chirico, Angelo Taglietti
    Chemistry – A European Journal.2021; 27(62): 15361.     CrossRef
  • Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment
    Yuan Chen, Yujie Gao, Yue Chen, Liu Liu, Anchun Mo, Qiang Peng
    Journal of Controlled Release.2020; 328: 251.     CrossRef
  • Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant Staphylococcus aureus Biofilm Infection on Bone Implant
    Yuan Li, Xiangmei Liu, Bo Li, Yufeng Zheng, Yong Han, Da-fu Chen, Kelvin Wai Kwok Yeung, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu
    ACS Nano.2020; 14(7): 8157.     CrossRef
  • Aptamer-based selective KB cell killing by the photothermal effect of gold nanorods
    Yuseon Noh, Min-Jin Kim, Hyoyoung Mun, Eun-Jung Jo, Hoyeon Lee, Min-Gon Kim
    Journal of Nanoparticle Research.2019;[Epub]     CrossRef
  • Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes
    Nouf N. Mahmoud, Alaaldin M. Alkilany, Enam A. Khalil, Amal G. Al-Bakri
    Scientific Reports.2018;[Epub]     CrossRef
  • Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces
    Gujie Mi, Di Shi, Mian Wang, Thomas J. Webster
    Advanced Healthcare Materials.2018;[Epub]     CrossRef
  • Metal-Based Nanoparticles for the Treatment of Infectious Diseases
    Blessing Aderibigbe
    Molecules.2017; 22(8): 1370.     CrossRef
  • Multianchored Glycoconjugate‐Functionalized Magnetic Nanoparticles: A Tool for Selective Killing of Targeted Bacteria via Alternating Magnetic Fields
    Yash S. Raval, Benjamin D. Fellows, Jamie Murbach, Yves Cordeau, Olin Thompson Mefford, Tzuen‐Rong J. Tzeng
    Advanced Functional Materials.2017;[Epub]     CrossRef
  • Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing
    Alireza Gharatape, Soodabeh Davaran, Roya Salehi, Hamed Hamishehkar
    RSC Advances.2016; 6(112): 111482.     CrossRef
  • A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan)
    Alireza Gharatape, Morteza Milani, Seyed Hossein Rasta, Mohammad Pourhassan-Moghaddam, Sohrab Ahmadi-Kandjani, Soodabeh Davaran, Roya Salehi
    RSC Advances.2016; 6(112): 110499.     CrossRef
  • High-resolution imaging of the microbial cell surface
    Ki Woo Kim
    Journal of Microbiology.2016; 54(11): 703.     CrossRef
Research Support, Non-U.S. Gov'ts
Neutralization Potential of the Plasma of HIV-1 Infected Indian Patients in the Context of Anti-V3 Antibody Content and Antiretroviral Theraphy
Alok Kumar Choudhary , Raiees Andrabi , Somi Sankaran Prakash , Rajesh Kumar , Shubhasree Dutta Choudhury Choudhury , Naveet Wig , Ashutosh Biswas , Anjali Hazarika , Kalpana Luthra
J. Microbiol. 2012;50(1):149-154.   Published online February 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1246-y
  • 34 View
  • 0 Download
  • 8 Scopus
AbstractAbstract
We assessed the anti-V3 antibody content and viral neutralization potential of the plasma of 63 HIV-1-infected patients (antiretroviral naïve=39, treated=24) against four primary isolates (PIs) of clade C and a tier 1 clade B isolate SF162. Depletion and inhibition of anti-V3 antibodies in the plasma of five patients with high titers of anti-V3 antibodies led to modest change in the neutralization percentage against two PIs (range 0–21%). The plasma of antiretroviral-treated patients exhibited higher neutralization potential than that of the drug-naïve plasmas against the four PIs tested which was further evidenced by a follow-up study.
Antibacterial Efficacy of Lytic Pseudomonas Bacteriophage in Normal and Neutropenic Mice Models
Birendra R. Tiwari , Shukho Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2011;49(6):994-999.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1512-4
  • 32 View
  • 0 Download
  • 61 Scopus
AbstractAbstract
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.
The Photodynamic Effect of Methylene Blue and Toluidine Blue on Candida albicans Is Dependent on Medium Conditions
Gabriela Guimarães Carvalho , Monalisa Poliana Felipe , Maricilia Silva Costa
J. Microbiol. 2009;47(5):619-623.   Published online October 24, 2009
DOI: https://doi.org/10.1007/s12275-009-0059-0
  • 43 View
  • 0 Download
  • 48 Scopus
AbstractAbstract
Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida and other fungi have increased dramatically. Photodynamic antimicrobial chemotherapy (PACT) has been presented as a potential antimicrobial therapy, in a process that combines light and a photosensitizing drug, which promotes a phototoxic response by the treated cells. In this work, we studied the effects of the different medium conditions during PACT, using either methylene blue (MB) or toluidine blue (TB) on Candida albicans. The inhibition of the growth produced by PACT was decreased for different pH values (6.0, 7.0, and 8.0) in a buffered medium. The phototoxic effects were observed only in the presence of saline (not buffered medium). PACT was modulated by calcium in a different manner using either MB or TB. Also when using MB both verapamil or sodium azide were able to decrease the phototoxic effects on the C. albicans. These results show that PACT is presented as a new and promising antifungal therapy, however, new studies are necessary to understand the mechanism by which this event occurs.

Journal of Microbiology : Journal of Microbiology
TOP