Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "recombinant E. coli"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov'ts
NOTE] Biosynthetic Pathway for Poly(3-Hydroxypropionate) in Recombinant Escherichia coli
Qi Wang , Changshui Liu , Mo Xian , Yongguang Zhang , Guang Zhao
J. Microbiol. 2012;50(4):693-697.   Published online August 25, 2012
DOI: https://doi.org/10.1007/s12275-012-2234-y
  • 250 View
  • 0 Download
  • 33 Crossref
AbstractAbstract PDF
Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In this study, we engineered a P3HP biosynthetic pathway in recombinant Escherichia coli. The genes for malonyl-CoA reductase (mcr, from Chloroflexus aurantiacus), propionyl-CoA synthetase (prpE, from E. coli), and polyhydroxyalkanoate synthase (phaC1, from Ralstonia eutropha) were cloned and expressed in E. coli. The E. coli genes accABCD encoding acetyl-CoA carboxylase were used to channel the carbon into the P3HP pathway. Using glucose as a sole carbon source, the cell yield and P3HP content were 1.32 g/L and 0.98% (wt/wt [cell dry weight]), respectively. Although the yield is relatively low, our study shows the feasibility of engineering a P3HP biosynthetic pathway using a structurally unrelated carbon source in bacteria.

Citations

Citations to this article as recorded by  
  • Carbon cycle of polyhydroxyalkanoates (CCP): Biosynthesis and biodegradation
    Si-Qin Zhang, Hao-Zhe Yuan, Xue Ma, Dai-Xu Wei
    Environmental Research.2025; 269: 120904.     CrossRef
  • Metabolic flux analysis and metabolic engineering for polyhydroxybutyrate (PHB) production
    Bhargavi Subramanian, Souvik Basak, Rithanya Thirumurugan, Lilly M. Saleena
    Polymer Bulletin.2024; 81(12): 10589.     CrossRef
  • Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review
    Seo Young Jo, Seo Hyun Lim, Ji Yeon Lee, Jina Son, Jong-Il Choi, Si Jae Park
    International Journal of Biological Macromolecules.2024; 274: 133157.     CrossRef
  • Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology
    Nils Wagner, Linxuan Wen, Cláudio J.R. Frazão, Thomas Walther
    Biotechnology Advances.2023; 69: 108276.     CrossRef
  • Lysine acetylation of Escherichia coli lactate dehydrogenase regulates enzyme activity and lactate synthesis
    Min Liu, Meitong Huo, Changshui Liu, Likun Guo, Yamei Ding, Qingjun Ma, Qingsheng Qi, Mo Xian, Guang Zhao
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • Poly(3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties
    Albert Gyapong Aduhene, Hongliang Cui, Hongyi Yang, Chengwei Liu, Guangchao Sui, Changli Liu
    Frontiers in Bioengineering and Biotechnology.2021;[Epub]     CrossRef
  • Biosynthesis of Poly(3HB-co-3HP) with Variable Monomer Composition in Recombinant Cupriavidus necator H16
    Callum McGregor, Nigel P. Minton, Katalin Kovács
    ACS Synthetic Biology.2021; 10(12): 3343.     CrossRef
  • Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries
    Shahina Riaz, Kyong Yop Rhee, Soo Jin Park
    Polymers.2021; 13(2): 253.     CrossRef
  • Microbial Polyhydroxyalkanoates and Nonnatural Polyesters
    So Young Choi, In Jin Cho, Youngjoon Lee, Yeo‐Jin Kim, Kyung‐Jin Kim, Sang Yup Lee
    Advanced Materials.2020;[Epub]     CrossRef
  • Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli
    Stephen Tamekou Lacmata, Jules-Roger Kuiate, Yamei Ding, Mo Xian, Huizhou Liu, Thaddée Boudjeko, Xinjun Feng, Guang Zhao, Marie-Joelle Virolle
    PLOS ONE.2017; 12(3): e0173150.     CrossRef
  • Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis
    Changshui Liu, Yamei Ding, Mo Xian, Min Liu, Huizhou Liu, Qingjun Ma, Guang Zhao
    Critical Reviews in Biotechnology.2017; 37(7): 933.     CrossRef
  • Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803
    Yunpeng Wang, Tao Sun, Xingyan Gao, Mengliang Shi, Lina Wu, Lei Chen, Weiwen Zhang
    Metabolic Engineering.2016; 34: 60.     CrossRef
  • The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources
    Volker F. Wendisch, Luciana Fernandes Brito, Marina Gil Lopez, Guido Hennig, Johannes Pfeifenschneider, Elvira Sgobba, Kareen H. Veldmann
    Journal of Biotechnology.2016; 234: 139.     CrossRef
  • Biosynthesis of poly(3-hydroxypropionate) from glycerol using engineeredKlebsiella pneumoniaestrain without vitamin B12
    Xinjun Feng, Mo Xian, Wei Liu, Chao Xu, Haibo Zhang, Guang Zhao
    Bioengineered.2015; 6(2): 77.     CrossRef
  • Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha
    Chayatip Insomphun, Huan Xie, Jun Mifune, Yui Kawashima, Izumi Orita, Satoshi Nakamura, Toshiaki Fukui
    Metabolic Engineering.2015; 27: 38.     CrossRef
  • Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products
    Judith Becker, Christoph Wittmann
    Angewandte Chemie International Edition.2015; 54(11): 3328.     CrossRef
  • Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli
    De-Chuan Meng, Ying Wang, Lin-Ping Wu, Rui Shen, Jin-Chun Chen, Qiong Wu, Guo-Qiang Chen
    Metabolic Engineering.2015; 29: 189.     CrossRef
  • Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes
    Javier A. Linares-Pastén, Ramin Sabet-Azad, Laura Pessina, Roya R.R. Sardari, Mohammad H.A. Ibrahim, Rajni Hatti-Kaul
    Bioresource Technology.2015; 180: 172.     CrossRef
  • Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten
    Judith Becker, Christoph Wittmann
    Angewandte Chemie.2015; 127(11): 3383.     CrossRef
  • Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose
    Qi Wang, Peng Yang, Mo Xian, Lu Feng, Jiming Wang, Guang Zhao
    Biotechnology Letters.2014; 36(11): 2257.     CrossRef
  • Acs is essential for propionate utilization in Escherichia coli
    Fengying Liu, Jing Gu, Xude Wang, Xian-En Zhang, Jiaoyu Deng
    Biochemical and Biophysical Research Communications.2014; 449(3): 272.     CrossRef
  • Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
    Miguel A. Campodonico, Barbara A. Andrews, Juan A. Asenjo, Bernhard O. Palsson, Adam M. Feist
    Metabolic Engineering.2014; 25: 140.     CrossRef
  • Unfamiliar metabolic links in the central carbon metabolism
    Georg Fuchs, Ivan A. Berg
    Journal of Biotechnology.2014; 192: 314.     CrossRef
  • Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli
    Yoong Kit Leong, Pau Loke Show, Chien Wei Ooi, Tau Chuan Ling, John Chi-Wei Lan
    Journal of Biotechnology.2014; 180: 52.     CrossRef
  • Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials
    Björn Andreeßen, Nicolas Taylor, Alexander Steinbüchel, V. Müller
    Applied and Environmental Microbiology.2014; 80(21): 6574.     CrossRef
  • Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae
    Björn Andreeßen, Benjamin Johanningmeier, Joachim Burbank, Alexander Steinbüchel
    Applied Microbiology and Biotechnology.2014; 98(17): 7409.     CrossRef
  • Metabolic and pathway engineering to influence native and altered erythromycin production through E. coli
    Ming Jiang, Blaine A. Pfeifer
    Metabolic Engineering.2013; 19: 42.     CrossRef
  • Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth
    Matthew d. Mattozzi, Marika Ziesack, Mathias J. Voges, Pamela A. Silver, Jeffrey C. Way
    Metabolic Engineering.2013; 16: 130.     CrossRef
  • From Waste to Plastic: Synthesis of Poly(3-Hydroxypropionate) in Shimwellia blattae
    Daniel Heinrich, Bj�rn Andreessen, Mohamed H. Madkour, Mansour A. Al-Ghamdi, Ibrahim I. Shabbaj, Alexander Steinb�chel
    Applied and Environmental Microbiology.2013; 79(12): 3582.     CrossRef
  • Dissection of Malonyl-Coenzyme A Reductase of Chloroflexus aurantiacus Results in Enzyme Activity Improvement
    Changshui Liu, Qi Wang, Mo Xian, Yamei Ding, Guang Zhao, Andrew C. Gill
    PLoS ONE.2013; 8(9): e75554.     CrossRef
  • Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli
    Qi Wang, Peng Yang, Changshui Liu, Yongchang Xue, Mo Xian, Guang Zhao
    Bioresource Technology.2013; 131: 548.     CrossRef
  • Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli
    Qian Wang, Qianqian Zhuang, Quanfeng Liang, Qingsheng Qi
    Applied Microbiology and Biotechnology.2013; 97(8): 3301.     CrossRef
  • Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical
    Kris Niño G. Valdehuesa, Huaiwei Liu, Grace M. Nisola, Wook-Jin Chung, Seung Hwan Lee, Si Jae Park
    Applied Microbiology and Biotechnology.2013; 97(8): 3309.     CrossRef
NOTE] Development of a High-Throughput Screening Method for Recombinant Escherichia coli with Intracellular Dextransucrase Activity
So-Ra Lee , Ah-Rum Yi , Hong-Gyun Lee , Myoung-Uoon Jang , Jung-Mi Park , Nam Soo Han , Tae-Jip Kim
J. Microbiol. 2011;49(2):320-323.   Published online May 3, 2011
DOI: https://doi.org/10.1007/s12275-011-1078-1
  • 177 View
  • 0 Download
  • 1 Scopus
AbstractAbstract PDF
To efficiently engineer intracellular dextransucrase (DSase) expression in Escherichia coli, a high-throughput screening method was developed based on the polymer-forming activity of the enzyme. Recombinant E. coli containing the Leuconostoc citreum DSase (LcDS) gene was grown on Luria-Bertani agar plates, containing 2% sucrose, at 37°C for 8 h. The plates were then evenly overlaid with 0.6% soft agar, containing 1.2 mg/ml D-cycloserine, and incubated at 30°C to allow gradual cell disruption until a dextran polymer grew through the overlaid layer. A significant correlation between dextran size and enzyme activity was established and applied for screening truncated mutants with LcDS activity.

Journal of Microbiology : Journal of Microbiology
TOP