A Gram-stain-negative, aerobic, non-motile, rod-shaped, and orange-pigmented bacterium, designated CJ426T, was isolated from ginseng soil in Anseong, Korea. Strain CJ426T grew optimally on Reasoner’s 2A agar at 30°C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ426T belonged to the family Chitinophagaceae and had the highest sequence similarity with Niabella hibiscisoli KACC 18857T (98.7%). The 16S rRNA gene sequence similarities with other members of the genus Niabella ranged from 92.3% to 98.1%. Phylogenomic analyses and overall genomic relatedness indices, including average nucleotide identity, average amino acid identity, and the percentage of conserved proteins values, supported the classification of strain CJ426T as a representative of a novel genus within the family Chitinophagaceae. Furthermore, genome-based analyses suggested that five members of the genus Niabella, including N. aquatica, N. defluvii, N. ginsengisoli, N. hibiscisoli, and, N. yanshanensis, should be separated from other Niabella species and be assigned as a novel genus. The major isoprenoid quinone of strain CJ426T was menaquinone-7 (MK-7). The predominant polar lipids were phosphatidylethanolamine and six unidentified aminolipids. The major fatty acids were iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The genome of strain CJ426T was 6.3 Mbp in size, consisting of three contigs, with a G + C content of 41.9%. Based on a polyphasic taxonomic approach, strain CJ426T represents a novel genus and species within the family Chitinophagaceae, for which the name Paraniabella aurantiaca gen. nov., sp. nov. is proposed. The type strain is CJ426T (= KACC 23908T = JCM 37728T).
Two novel, Gram-stain-negative, anaerobic, and non-motile bacterial strains, designated KFT8T and CG01T, were isolated from the feces of healthy individuals without diagnosed diseases and characterized using a polyphasic approach. Phylogenetic analysis revealed that both strains belong to the genus Bacteroides, with < 99.0% similarity in their 16S rRNA gene sequences to B. facilis NSJ-77T and B. nordii JCM 12987T. Within the genus Bacteroides, strain KFT8T exhibited the highest Orthologous Average Nucleotide Identity value of 94.7% and a digital DNA-DNA hybridization value of 63.7% with B. ovatus ATCC 8483T, whereas strain CG01T showed the highest values of 95.3% and 63.3%, respectively, with B. nordii JCM 12987T. The values between the two novel strains were 74.8% and 21.4%, respectively, which are below the species delineation thresholds, supporting their classification as novel species. The major fatty acid of strain KFT8T was C18:1 ω9c, whereas strain CG01T predominantly contained summed feature 11 (comprising iso-C17:0 3OH and/or C18:2 DMA). The only respiratory quinone was MK-11, the major polar lipid was phosphatidylethanolamine. Both strains produced succinic acid and acetic acid as common metabolic end-products of fermentation, while lactic acid and formic acid were detected individually in each strain. Based on polyphasic characterization, strains KFT8T (= KCTC 15614T = JCM 36011T) and CG01T (= KCTC 15613T = JCM 36010T) represent two novel species within the genus Bacteroides, for which the names Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov. are proposed, respectively. Additionally, genome-based analyses and phenotypic comparisons revealed that B. koreensis and B. kribbi represent the same strain, showing genomic relatedness to B. ovatus that exceeds the threshold for species delineation. Consequently, we propose the reclassification of B. koreensis
Citations