Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "phagocytosis"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Lactobacillus rhamnosus KBL2290 Ameliorates Gut Inflammation in a Mouse Model of Dextran Sulfate Sodium‑Induced Colitis
Woon-ki Kim , Sung-gyu Min , Heeun Kwon , SungJun Park , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2023;61(7):673-682.   Published online June 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00061-5
  • 63 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.

Citations

Citations to this article as recorded by  
  • Dietary supplementation with proanthocyanidins and rutin alleviates the symptoms of type 2 diabetes mice and regulates gut microbiota
    Yue Gao, Binbin Huang, Yunyi Qin, Bing Qiao, Mengfei Ren, Liqing Cao, Yan Zhang, Maozhen Han
    Frontiers in Microbiology.2025;[Epub]     CrossRef
  • Probiotics: Shaping the gut immunological responses
    Eirini Filidou, Leonidas Kandilogiannakis, Anne Shrewsbury, George Kolios, Katerina Kotzampassi
    World Journal of Gastroenterology.2024; 30(15): 2096.     CrossRef
  • Synergistic effects of probiotics with soy protein alleviate ulcerative colitis by repairing the intestinal barrier and regulating intestinal flora
    Rentang Zhao, Bingqing Shang, Luyan Sun, Suyuan Lv, Guolong Liu, Qiu Wu, Yue Geng
    Journal of Functional Foods.2024; 122: 106514.     CrossRef
  • Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation
    Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun
    Journal of Microbiology.2024; 62(10): 907.     CrossRef
  • Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide
    Yeji You, Sung-Hwan Kim, Chul-Hong Kim, In-Hwan Kim, YoungSup Shin, Tae-Rahk Kim, Minn Sohn, Jeseong Park
    Microorganisms.2023; 11(9): 2312.     CrossRef
The novel antifungal agent AB-22 displays in vitro activity against hyphal growth and biofilm formation in Candida albicans and potency for treating systemic candidiasis
Kyung-Tae Lee , Dong-Gi Lee , Ji Won Choi , Jong-Hyun Park , Ki Duk Park , Jong-Seung Lee , Yong-Sun Bahn
J. Microbiol. 2022;60(4):438-443.   Published online March 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2016-0
  • 47 View
  • 0 Download
  • 1 Web of Science
  • 1 Scopus
AbstractAbstract
Systemic candidiasis, which is mainly caused by Candida albicans, is a serious acute fungal infection in the clinical setting. In a previous study, we reported that compound 22h (designated as AB-22 in this study), a vinyl sulfate compound, is a fast-acting fungicidal agent against a broad spectrum of fungal pathogens. In this study, we aimed to further analyze the in vitro and in vivo efficacy of AB-22 against filamentation, biofilm formation, and virulence of C. albicans. Under in vitro hyphal growth-inducing condition, AB-22 effectively inhibited germ tube formation and hyphal growth, which are required for the initiation of biofilm formation. Indeed, AB-22 significantly suppressed C. albicans biofilm formation in a dose-dependent manner. Moreover, AB-22 treatment inhibited the normal induction of ALS3, HWP1, and ECE1, which are all required for hyphal transition in C. albicans. Furthermore, AB-22 treatment increased the survival of mice systemically infected with C. albicans. In conclusion, in addition to its fungicidal activity, AB-22 inhibits filamentation and biofilm formation in C. albicans, which could collectively contribute to its potent in vivo efficacy against systemic candidiasis.
Low-density lipoprotein as an opsonin promoting the phagocytosis of Pseudomonas aeruginosa by U937 cells
Yuxin Li , Zhi Liu , Jinli Yang , Ling Liu , Runlin Han
J. Microbiol. 2019;57(8):711-716.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-8413-3
  • 60 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Low-density lipoprotein (LDL) was recently reported to be an opsonin, enhancing the phagocytosis of group A Streptococcus (GAS) by human monocytic leukemia U937 cells due to the binding of LDL to some GAS strains. We postulated that LDL might also promote the opsonophagocytosis of Pseudomonas aeruginosa by U937 cells since this bacterium interacts with LDL. In this study, P. aeruginosa (CMCC10104), U937 cells, and human LDL were used in phagocytosis assays to test our hypothesis. Escherichia coli strain BL21, which does not interact with LDL, was used as a negative control. Colony counting and fluorescence microscopy were used to determine the bacterial quantity in the opsonophagocytosis assays. After incubation of U937 cells and P. aeruginosa with LDL (100 μg/ml) for 15 and 30 min, phagocytosis was observed to be increased by 22.71% and 32.90%, respectively, compared to that seen in the LDL-free group. However, LDL did not increase the phagocytosis of E. coli by U937 cells. In addition, we identified CD36 as a major opsonin receptor on U937 cells, since an anti-CD36 monoclonal antibody, but not an anti- CD4 monoclonal antibody, almost completely abolished the opsonophagocytosis of P. aeruginosa by U937 cells.

Citations

Citations to this article as recorded by  
  • Adhesion of Enteropathogenic, Enterotoxigenic, and Commensal Escherichia coli to the Major Zymogen Granule Membrane Glycoprotein 2
    Christin Bartlitz, Rafał Kolenda, Jarosław Chilimoniuk, Krzysztof Grzymajło, Stefan Rödiger, Rolf Bauerfeind, Aamir Ali, Veronika Tchesnokova, Dirk Roggenbuck, Peter Schierack, Isaac Cann
    Applied and Environmental Microbiology.2022;[Epub]     CrossRef
  • Lipoprotein(a), an Opsonin, Enhances the Phagocytosis of Nontypeable Haemophilus influenzae by Macrophages
    Zhi Liu, Yuxin Li, Yu Wang, Zhe Liu, Yan Su, Qiang Ma, Runlin Han, Enrique Ortega
    Journal of Immunology Research.2021; 2021: 1.     CrossRef
Review
REVIEW] Perturbation of Pulmonary Immune Functions by Carbon Nanotubes and Susceptibility to Microbial Infection
Brent E. Walling , Gee W. Lau
J. Microbiol. 2014;52(3):227-234.   Published online March 1, 2014
DOI: https://doi.org/10.1007/s12275-014-3695-y
  • 47 View
  • 0 Download
  • 5 Crossref
AbstractAbstract
Occupational and environmental pulmonary exposure to carbon nanotubes (CNT) is considered to be a health risk with a very low threshold of tolerance as determined by the United States Center for Disease Control. Immortalized airway epithelial cells exposed to CNTs show a diverse range of effects including reduced viability, impaired proliferation, and elevated reactive oxygen species generation. Additionally, CNTs inhibit internalization of targets in multiple macrophage cell lines. Mice and rats exposed to CNTs often develop pulmonary granulomas and fibrosis. Furthermore, CNTs have immunomodulatory properties in these animal models. CNTs themselves are proinflammatory and can exacerbate the allergic response. However, CNTs may also be immunosuppressive, both locally and systemically. Studies that examined the relationship of CNT exposure prior to pulmonary infection have reached different conclusions. In some cases, pre-exposure either had no effect or enhanced clearance of infections while other studies showed CNTs inhibited clearance. Interestingly, most studies exploring this relationship use pathogens which are not considered primary pulmonary pathogens. Moreover, harmony across studies is difficult as different types of CNTs have dissimilar biological effects. We used Pseudomonas aeruginosa as model pathogen to study how helical multi-walled carbon nanotubes (HCNTs) affected internalization and clearance of the pulmonary pathogen. The results showed that, although HCNTs can inhibit internalization through multiple processes, bacterial clearance was not altered, which was attributed to an enhanced inflammatory response caused by pre-exposure to HCNTs. We compare and contrast our findings in relation to other studies to gauge the modulation of pulmonary immune response by CNTs.

Citations

Citations to this article as recorded by  
  • Activation of Kruppel-like factor 6 by multi-walled carbon nanotubes in a diameter-dependent manner in THP-1 macrophages in vitro and bronchoalveolar lavage cells in vivo
    Fengmei Song, Xiaomin Tang, Weichao Zhao, Chaobo Huang, Xuyan Dai, Yi Cao
    Environmental Science: Nano.2023; 10(3): 855.     CrossRef
  • Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes
    Timur O. Khaliullin, Naveena Yanamala, Mackenzie S. Newman, Elena R. Kisin, Liliya M. Fatkhutdinova, Anna A. Shvedova
    Toxicology and Applied Pharmacology.2020; 390: 114898.     CrossRef
  • Non-Malignant Respiratory Illnesses in Association with Occupational Exposure to Asbestos and Other Insulating Materials: Findings from the Alberta Insulator Cohort
    Subhabrata Moitra, Ali Farshchi Tabrizi, Kawtar Idrissi Machichi, Samineh Kamravaei, Noushin Miandashti, Linda Henderson, Manali Mukherjee, Fadi Khadour, Muhammad T. Naseem, Paige Lacy, Lyle Melenka
    International Journal of Environmental Research and Public Health.2020; 17(19): 7085.     CrossRef
  • The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles
    Dania Movia, Luisana Di Cristo, Roaa Alnemari, Joseph E. McCarthy, Hanane Moustaoui, Marc Lamy de la Chapelle, Jolanda Spadavecchia, Yuri Volkov, Adriele Prina‐Mello
    Journal of Interdisciplinary Nanomedicine.2017; 2(2): 110.     CrossRef
  • Molecular microbiology in antibacterial research
    You-Hee Cho
    Journal of Microbiology.2014; 52(3): 185.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP