Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
7 "genome sequence"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13
Wei Zeng , Jia Pan , Guannan Ye
J. Microbiol. 2024;62(2):63-73.   Published online February 24, 2024
DOI: https://doi.org/10.1007/s12275-023-00100-1
  • 89 View
  • 1 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resistance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression and promoting cisplatin resistance in CRC.

Citations

Citations to this article as recorded by  
  • miR-135b: A key role in cancer biology and therapeutic targets
    Yingchun Shao, Shuangshuang Zhang, Yuxin Pan, Zhan Peng, Yinying Dong
    Non-coding RNA Research.2025; 12: 67.     CrossRef
  • miR‐135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy
    Dezhi Yan, Qingliu He, Chunjian Wang, Tian Li, Xueping Yi, Haisheng Yu, Wenfei Wu, Hanyun Yang, Wenzhao Wang, Liang Ma
    WIREs RNA.2025;[Epub]     CrossRef
  • Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies
    Zhuangzhuang Shi, Zhaoming Li, Mingzhi Zhang
    Journal of Translational Medicine.2024;[Epub]     CrossRef
  • Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer
    Mengjie Luo
    American Journal of Cancer Research.2024; 14(8): 3962.     CrossRef
  • Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer
    Sevag Hamamah, Andrei Lobiuc, Mihai Covasa
    International Journal of Molecular Sciences.2024; 25(16): 9026.     CrossRef
  • Identification of Penexanthone A as a Novel Chemosensitizer to Induce Ferroptosis by Targeting Nrf2 in Human Colorectal Cancer Cells
    Genshi Zhao, Yanying Liu, Xia Wei, Chunxia Yang, Junfei Lu, Shihuan Yan, Xiaolin Ma, Xue Cheng, Zhengliang You, Yue Ding, Hongwei Guo, Zhiheng Su, Shangping Xing, Dan Zhu
    Marine Drugs.2024; 22(8): 357.     CrossRef
Review
Influence of Microbiota on Vaccine Effectiveness: “Is the Microbiota the Key to Vaccine‑induced Responses?”
So-Hee Hong
J. Microbiol. 2023;61(5):483-494.   Published online April 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00044-6
  • 66 View
  • 0 Download
  • 12 Web of Science
  • 13 Crossref
AbstractAbstract
Vaccines are one of the most powerful tools for preventing infectious diseases. To effectively fight pathogens, vaccines should induce potent and long-lasting immune responses that are specific to the pathogens. However, not all vaccines can induce effective immune responses, and the responses vary greatly among individuals and populations. Although several factors, such as age, host genetics, nutritional status, and region, affect the effectiveness of vaccines, increasing data have suggested that the gut microbiota is critically associated with vaccine-induced immune responses. In this review, I discuss how gut microbiota affects vaccine effectiveness based on the clinical and preclinical data, and summarize possible underlying mechanisms related to the adjuvant effects of microbiota. A better understanding of the link between vaccine-induced immune responses and the gut microbiota using high-throughput technology and sophisticated system vaccinology approaches could provide crucial insights for designing effective personalized preventive and therapeutic vaccination strategies.

Citations

Citations to this article as recorded by  
  • Parasite-microbiota interactions: a pathway to innovative interventions for Chagas disease, leishmaniasis, and ascariasis
    Juan David Ramírez, Sergio Castañeda, Jill Weatherhead, Cristina Poveda
    Future Microbiology.2025; 20(2): 149.     CrossRef
  • Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways
    Jemma J. Taitz, Jian Tan, Duan Ni, Camille Potier-Villette, Georges Grau, Ralph Nanan, Laurence Macia
    Frontiers in Immunology.2025;[Epub]     CrossRef
  • Microbiome and mycobiome cross-talk from an immunobiotic perspective in COVID-19 and post-acute COVID-19 syndrome
    Sunny Kumar, Zeel Bhatia, Sriram Seshadri
    Exploration of Immunology.2025;[Epub]     CrossRef
  • Gut Microbiota and Postbiotic Metabolites: Biotic Intervention for Enhancing Vaccine Responses and Personalized Medicine for Disease Prevention
    Naheed Mojgani, Sumel Ashique, Mehran Moradi, Masoumeh Bagheri, Ashish Garg, Monika Kaushik, Md Sadique Hussain, Sabina Yasmin, Mohammad Yousuf Ansari
    Probiotics and Antimicrobial Proteins.2025;[Epub]     CrossRef
  • Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance
    Yixin Liu, Jianfeng Zhou, Yushang Yang, Xiangzheng Chen, Longqi Chen, Yangping Wu
    Vaccines.2024; 12(8): 868.     CrossRef
  • Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective
    Pierluigi Rio, Mario Caldarelli, Monica Chiantore, Francesca Ocarino, Marcello Candelli, Antonio Gasbarrini, Giovanni Gambassi, Rossella Cianci
    Cells.2024; 13(6): 526.     CrossRef
  • Ruhao Dashi granules exert therapeutic effects on H1N1 influenza virus infection by altering intestinal microflora composition
    Wei Pan, Rui Wu, Qianyun Zhang, Yuan Ma, Jinxiang Xiang, Jingbo Wang, Jing Chen
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms
    Xi-Chen Zhao, Bo Ju, Nuan-Nuan Xiu, Xiao-Yun Sun, Fan-Jun Meng
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Long Prime–Boost Interval and Heightened Anti-GD2 Antibody Response to Carbohydrate Cancer Vaccine
    Irene Y. Cheung, Audrey Mauguen, Shakeel Modak, Ellen M. Basu, Yi Feng, Brian H. Kushner, Nai Kong Cheung
    Vaccines.2024; 12(6): 587.     CrossRef
  • Baseline Gut Microbiota Was Associated with Long-Term Immune Response at One Year Following Three Doses of BNT162b2
    Li-Na Zhang, Jing-Tong Tan, Ho-Yu Ng, Yun-Shi Liao, Rui-Qi Zhang, Kwok-Hung Chan, Ivan Fan-Ngai Hung, Tommy Tsan-Yuk Lam, Ka-Shing Cheung
    Vaccines.2024; 12(8): 916.     CrossRef
  • Immunologische Konsequenzen bei frühgeborenen Kindern
    Josina M. Hofer, Dimitra E. Zazara, Anke Diemert, Petra Clara Arck
    Gynäkologische Endokrinologie.2023; 21(4): 261.     CrossRef
  • Ginsenoside Rb1 enhanced immunity and altered the gut microflora in mice immunized by H1N1 influenza vaccine
    Chuanqi Wan, Rufeng Lu, Chen Zhu, Haibo Wu, Guannan Shen, Yang Yang, Xiaowei Wu, Bangjiang Fang, Yuzhou He
    PeerJ.2023; 11: e16226.     CrossRef
  • Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go
    Francesca Romana Ponziani, Gaetano Coppola, Pierluigi Rio, Mario Caldarelli, Raffaele Borriello, Giovanni Gambassi, Antonio Gasbarrini, Rossella Cianci
    Vaccines.2023; 11(10): 1609.     CrossRef
Journal Articles
Flavobacterium zhairuonensis sp. nov., a gliding bacterium isolated from marine sediment of the East China Sea
Sanjit Chandra Debnath , Ahmed Mohammed Abdo Miyah , Can Chen , Huan Sheng , Xue-Wei Xu , Yue-Hong Wu , Dao-Qiong Zheng , Jin-Zhong Xu , Ya-Nan Di , Pin-Mei Wang , Li Shen
J. Microbiol. 2019;57(12):1065-1072.   Published online September 27, 2019
DOI: https://doi.org/10.1007/s12275-019-9194-4
  • 49 View
  • 0 Download
  • 5 Web of Science
  • 7 Crossref
AbstractAbstract
A yellow pigmented, Gram-stain-negative, aerobic bacterium designated A5.7T was studied to evaluate the taxonomic position following the modern polyphasic approach. The strain was isolated from sediments near Zhairuo Island, which is situated in the East China Sea. Cells were non-spore forming rods without flagella but showed motility by gliding. Growth was observed at 15–35°C (optimum 28°C), pH 6.0–9.0 (optimum pH 6.5) and 0–2% (w/v) NaCl (optimum 0–0.5%) in LB broth. The major respiratory quinone of A5.7T was menaquinone 6. The major polar lipid of A5.7T was phosphatidylethanolamine and the predominant fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, C15:1 ω6c, iso-C15:0 3-OH, iso-C15:1 G, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 9 (iso-C17:1 ω9c and/or C16:0 10-methyl). Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Flavobacterium and shares the highest sequence similarities with Flavobacterium sharifuzzamanii A7.6T (98.5%), Flavobacterium tistrianum GB 56.1T (98.3%), Flavobacterium nitrogenifigens NXU-44T (97.8%), Flavobacterium anhuiense D3T (97.6%), Flavobacterium ginsenosidimutans THG 01T (97.6%), and Flavobacterium foetidum CJ42T (97.6%). Digital DNA-DNA hybridization and average nucleotide identity values between the strain and its closest phylogenetic neighbors showed the ranges from 19.6 to 34.1% and 73.7 to 87.9%, respectively. Therefore, based on polyphasic characteristics, strain A5.7T represents a novel species of the genus Flavobacterium for which the name Flavobacterium zhairuonensis sp. nov. is proposed. The type strain is A5.7T (= KCTC 62406T = MCCC 1K03494T).

Citations

Citations to this article as recorded by  
  • Three novel species of the genus Flavobacterium, Flavobacterium odoriferum sp. nov., Flavobacterium fragile sp. nov. and Flavobacterium luminosum sp. nov., isolated from activated sludge
    Qi Ran, Xinran Du, Lin Han, Jingjing Wang, Yue-zhong Li
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • Ten Novel Species Belonging to the Genus Flavobacterium, Isolated from Freshwater Environments: F. praedii sp. nov., F. marginilacus sp. nov., F. aestivum sp. nov., F. flavigenum sp. nov., F. luteolum sp. nov., F. gelatinilyticum sp. nov., F. aquiphilum s
    Hyunyoung Jo, Miri S. Park, Yeonjung Lim, Ilnam Kang, Jang-Cheon Cho
    Journal of Microbiology.2023; 61(5): 495.     CrossRef
  • Description of Flavobacterium cyclinae sp. nov. and Flavobacterium channae sp. nov., isolated from the intestines of Cyclina sinensis (Corb shell) and Channa argus (Northern snakehead)
    Seomin Kang, Jae-Yun Lee, Jeong Eun Han, Yun-Seok Jeong, Do-Hun Gim, Jin-Woo Bae
    Journal of Microbiology.2022; 60(9): 890.     CrossRef
  • Flavobacterium litorale sp. nov., isolated from red alga
    Neak Muhammad, Ho Le Han, Yong-Jae Lee, Jaeho Ko, Tra T. H. Nguyen, Song-Gun Kim
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Flavobacterium salilacus sp. nov., isolated from surface water of a hypersaline lake, and descriptions of Flavobacterium salilacus subsp. altitudinum subsp. nov. and Flavobacterium salilacus subsp. salilacus subsp. nov.
    Sanjit Chandra Debnath, Can Chen, Ishrat Khan, Wen-Jie Wang, Dao-Qiong Zheng, Jin-Zhong Xu, Pin-Mei Wang
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(7): 4250.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(3): 1443.     CrossRef
  • Flavobacterium phycosphaerae sp. nov. isolated from the phycosphere of Microcystis aeruginosa
    Minkyung Kim, Byoung-Hee Lee, Ki-Eun Lee, Woojun Park
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Whole genome analysis of Aspergillus sojae SMF 134 supports its merits as a starter for soybean fermentation
Kang Uk Kim , Kyung Min Kim , Yong-Ho Choi , Byung-Serk Hurh , Inhyung Lee
J. Microbiol. 2019;57(10):874-883.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-9152-1
  • 58 View
  • 0 Download
  • 14 Web of Science
  • 14 Crossref
AbstractAbstract
Aspergillus sojae is a koji (starter) mold that has been applied for food fermentation in Asia. The whole genome of A. sojae SMF 134, which was isolated from meju (Korean soybean fermented brick), was analyzed at the genomic level to evaluate its potential as a starter for soybean fermentation. The genome size was 40.1 Mbp, which was expected to be composed of eight chromosomes with 13,748 ORFs. Strain SMF 134 had a total of 151 protease genes, among which two more leucine aminopeptidase (lap) genes were found in addition to the previously known lap1, and three γ-glutamyltranspeptidase (ggt) genes were newly identified. Such genomic characteristics of SMF 134 with many protease and flavor-related (lap and ggt) genes support its merits as a starter for soybean fermentation. In addition, this first complete genome of A. sojae will allow for further genetic studies to better understand the production of various enzymes, including proteases, LAPs, and GGTs, as well as other characteristics as a starter mold for soybean fermentation.

Citations

Citations to this article as recorded by  
  • Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review
    Yihao Liu, Guangru Sun, Jingyao Li, Peng Cheng, Qian Song, Wen Lv, Chunling Wang
    Food Research International.2024; 184: 114273.     CrossRef
  • Phenotypic, Genomic, and Transcriptomic Comparison of Industrial Aspergillus oryzae Used in Chinese and Japanese Soy Sauce: Analysis of Key Proteolytic Enzymes Produced by Koji Molds
    Lijie Zhang, Le Kang, Yan Xu, Yanbin Yin
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Characteristics of the soy sauce taste and koji enzyme profiles as affected by soybean traits
    Yimin Chen, Mouming Zhao, Yunzi Feng
    Food Bioscience.2023; 53: 102776.     CrossRef
  • Comparative proteome and volatile metabolome analysis of Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 during koji fermentation
    Jingyao Li, Bin Liu, Xiaojuan Feng, Mengli Zhang, Tingting Ding, Yue Zhao, Chunling Wang
    Food Research International.2023; 165: 112527.     CrossRef
  • CRISPR/Cas9 genome editing for comparative genetic analysis related to soy sauce brewing in Aspergillus sojae industrial strains
    Takayuki Igarashi, Takuya Katayama, Jun-ichi Maruyama
    Bioscience, Biotechnology, and Biochemistry.2023; 87(10): 1236.     CrossRef
  • Untargeted metabolomic profiling of Aspergillus sojae 3.495 and Aspergillus oryzae 3.042 fermented soy sauce koji and effect on moromi fermentation flavor
    Jingyao Li, Chengguo Sun, Zhanyu Shen, Yutong Tian, Fanghua Mo, Binghui Wang, Bin Liu, Chunling Wang
    LWT.2023; 184: 115027.     CrossRef
  • Identification of Virulence Factors in Entomopathogenic Aspergillus flavus Isolated from Naturally Infected Rhipicephalus microplus
    Cesar A. Arreguin-Perez, Estefan Miranda-Miranda, Jorge Luis Folch-Mallol, Raquel Cossío-Bayúgar
    Microorganisms.2023; 11(8): 2107.     CrossRef
  • Are Current Aspergillus sojae Strains Originated from a Native Aflatoxigenic Aspergillus Species Population Also Present in California?
    Perng-Kuang Chang, Sui Sheng T. Hua
    Mycobiology.2023; 51(3): 139.     CrossRef
  • Investigating the origin of subtelomeric and centromeric AT-rich elements in Aspergillus flavus
    Arthur J. Lustig, Cecile Fairhead
    PLOS ONE.2023; 18(2): e0279148.     CrossRef
  • Whole-genome sequence of an Aspergillus parasiticus strain isolated from Kenyan soil
    Alexandra Schamann, Rolf Geisen, Markus Schmidt-Heydt, Antonis Rokas
    Microbiology Resource Announcements.2023;[Epub]     CrossRef
  • Ethno-microbiology of Tempe, an Indonesian fungal-fermented soybean food and Koji, a Japanese fungal starter culture
    Jyoti P Tamang, Anu Anupma, Headstar Nakibapher Jones Shangpliang
    Current Opinion in Food Science.2022; 48: 100912.     CrossRef
  • Regulation of Conidiogenesis in Aspergillus flavus
    He-Jin Cho, Sung-Hun Son, Wanping Chen, Ye-Eun Son, Inhyung Lee, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2022; 11(18): 2796.     CrossRef
  • High molecular weight DNA extraction methods lead to high quality filamentous ascomycete fungal genome assemblies using Oxford Nanopore sequencing
    Celine Petersen, Trine Sørensen, Klaus R. Westphal, Lavinia I. Fechete, Teis E. Sondergaard, Jens L. Sørensen, Kåre L. Nielsen
    Microbial Genomics .2022;[Epub]     CrossRef
  • Koji Molds for Japanese Soy Sauce Brewing: Characteristics and Key Enzymes
    Kotaro Ito, Asahi Matsuyama
    Journal of Fungi.2021; 7(8): 658.     CrossRef
Acinetobacter chinensis, a novel Acinetobacter species, carrying blaNDM-1, recovered from hospital sewage
Yiyi Hu , Yu Feng , Jiayuan Qin , Xiaoxia Zhang , Zhiyong Zong
J. Microbiol. 2019;57(5):350-355.   Published online February 26, 2019
DOI: https://doi.org/10.1007/s12275-019-8485-0
  • 56 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Two strains of the genus Acinetobacter, named WCHAc- 010005 and WCHAc010052, were isolated from hospital sewage at West China Hospital in Chengdu, China. The two strains were found to be resistant to carbapenems due to the presence of carbapenemase gene blaNDM-1. Based on the comparative analysis of the rpoB sequence, the two strains formed a strongly supported and internally coherent cluster (intracluster identity of 98.7%), which was clearly separated from all known Acinetobacter species (≤ 83.4%). The two strains also formed a tight and distinct cluster based on the genuswide comparison of whole-cell mass fingerprints generated by MALDI-TOF mass spectrometry. In addition, the combination of their ability to assimilate malonate but not benzoate, and the inability to grow at 37°C could distinguish the two strains from all known Acinetobacter species. The two strains were subjected to whole genome sequencing using both short-read Illumina HiSeq2500 platform and the longread MinION sequencer. The average nucleotide identity and in silico DNA-DNA hybridization value between the genomes of WCHAc010005 and WCHAc010052 was 96.69% and 74.3% respectively, whereas those between the two genomes and the known Acinetobacter species were < 80% and < 30%, respectively. Therefore, the two strains represent a novel species of the genus Acinetobacter, for which the name Acinetobacter chinensis sp. nov. is proposed, and the type strain is WCHAc- 010005T (= GDMCC 1.1232T = KCTC 62813T).

Citations

Citations to this article as recorded by  
  • Evolution of RND efflux pumps in the development of a successful pathogen
    Varsha Naidu, Amelia Bartczak, Anthony J. Brzoska, Peter Lewis, Bart A. Eijkelkamp, Ian T. Paulsen, Liam D.H. Elbourne, Karl A. Hassan
    Drug Resistance Updates.2023; 66: 100911.     CrossRef
  • NDM-1 and OXA-48-Like Carbapenemases (OXA-48, OXA-181 and OXA-252) Co-Producing Shewanella xiamenensis from Hospital Wastewater, China
    Yicheng Wen, Xiaofang Xie, Ping Xu, Chengcheng Yang, Zhichen Zhu, Jie Zhu, Jingnan Lv, Haifang Zhang, Liang Chen, Hong Du
    Infection and Drug Resistance.2022; Volume 15: 6927.     CrossRef
  • Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review
    Zineb Cherak, Lotfi Loucif, Abdelhamid Moussi, Jean-Marc Rolain
    Journal of Global Antimicrobial Resistance.2021; 25: 287.     CrossRef
  • Whole-Genomic Analysis of NDM-5-Producing Enterobacteriaceae Recovered from an Urban River in China
    Ying Li, Min Tang, Xiaoyi Dai, Yingshun Zhou, Zhikun Zhang, Yichuan Qiu, Chengwen Li, Luhua Zhang
    Infection and Drug Resistance.2021; Volume 14: 4427.     CrossRef
  • β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review
    Rajeev Ranjan, Shashidhar Thatikonda
    Current Microbiology.2021; 78(10): 3634.     CrossRef
  • Whole-Genome Analysis of Two Copies of blaNDM-1 Gene Carrying Acinetobacter johnsonii Strain Acsw19 Isolated from Sichuan, China


    Lingtong Tang, Wei Shen, Zhikun Zhang, Jingping Zhang, Guangxi Wang, Li Xiang, Junping She, Xiaoyan Hu, Guoyuan Zou, Baoli Zhu, Yingshun Zhou
    Infection and Drug Resistance.2020; Volume 13: 855.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(9): 2627.     CrossRef
Research Support, Non-U.S. Gov'ts
Full Sequence Analysis and Characterization of a Human Astrovirus Type 1 Isolate from South Korea
Sung-Geun Lee , Lae-Hyung Kang , Weon-Hwa Jheong , Mi-Hwa Oh , Gyu-Cheol Lee , Sujeong Park , Soon-Young Paik
J. Microbiol. 2013;51(1):123-129.   Published online March 2, 2013
DOI: https://doi.org/10.1007/s12275-013-2505-2
  • 31 View
  • 0 Download
  • 2 Scopus
AbstractAbstract
Human astroviruses are recognized as an important cause of infantile gastroenteritis around the world. In South Korea, sporadic cases of HAstV infection have been reported since 2002. However, hitherto, there have been no studies reporting the whole genome sequence of an HAstV isolate from South Korea. Hence, we sequenced and analyzed the entire genome of an HAstV-1 strain (lhar) that was isolated in Seoul, South Korea. The whole-genome sequence analysis revealed 3 open reading frames comprising the whole genome: ORF1a (2,763 bp), ORF1b (1,548 bp), and ORF2 (2,364 bp). The lhar strain showed amino acid identities with 8 other reference strains of 87.6–98.7%, 94.2–98.8%, and 62.6–99.0% in the ORF1a, ORF1b, and ORF2 regions, respectively. The amino acid sequence of the capsid region encoded by ORF2 was compared with a total of 19 HAstV-1 strains and 8 HAstVs reference strains isolated in various countries. This revealed 1 amino acid substitution, at aa412 (Pro → Arg) in ORF2. This study, the first to report the fulllength sequence of an HAstV isolated in South Korea, is meaningful in that it can be used as a full-length HAstV sequence standard for future comparison studies. It may also prove useful to the field of public health field by facilitating the diagnosis and the prediction of new emerging variants.
Comparative Analysis of the Genomes of Bombyx mandarina and Bombyx mori Nucleopolyhedroviruses
Yi-Peng Xu , Zheng-Pei Ye , Chang-Ying Niu , Yan-Yuan Bao , Wen-Bing Wang , Wei-De Shen , Chuan-Xi Zhang
J. Microbiol. 2010;48(1):102-110.   Published online March 11, 2010
DOI: https://doi.org/10.1007/s12275-009-0197-4
  • 31 View
  • 0 Download
  • 20 Scopus
AbstractAbstract
The Bombyx mandarina nucleopolyhedrovirus (BomaNPV) S1 strain can infect the silkworm, Bombyx mori, but is significantly less virulent than B. mori nucleopolyhedrovirus (BmNPV) T3 strain. The complete nucleotide sequence of the S1 strain of BomaNPV was determined and compared with the BmNPV T3 strain. The circular, double stranded DNA genome of the S1 strain was 126,770 nucleotides long (GenBank accession no. FJ882854), with a G+C content of 40.23%. The genome contained 133 potential ORFs. Most of the putative proteins were more than 96% identical to homologs in the BmNPV T3 strain, except for bro-a, lef-12, bro-c, and bro-d. Compared with the BmNPV T3 strain, however, this genome did not encode the bro-b and bro-e genes. In addition, hr1 lacked two repeat units, while hr2L, hr2R, hr3, hr4L, hr4R, and hr5 were similar to the corresponding hrs in the T3 strain. The sequence strongly suggested that BomaNPV and BmNPV are variants with each other, and supported the idea that baculovirus strain heterogeneity may often be caused by variation in the hrs and bro genes.

Journal of Microbiology : Journal of Microbiology
TOP