Research Support, Non-U.S. Gov'ts
- NOTE] Copper Resistance and Its Relationship to Erythromycin Resistance in Enterococcus Isolates from Bovine Milk Samples in Korea
-
JiHoon Kim , SangJin Lee , SungSook Choi
-
J. Microbiol. 2012;50(3):540-543. Published online June 30, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1579-6
-
-
32
View
-
0
Download
-
16
Scopus
-
Abstract
-
Antibiotic resistance in animal isolates of enterococci is a public health concern, because of the risk of transmission of antibiotic-resistant strains or resistance genes to humans through the food chain. This study investigated copper resistance and its relationship with erythromycin resistance in 245 enterococcal isolates from bovine milk. Phenotypic and genotypic resistance to erythromycin and copper sulfate were investigated. Of the 245 enterococcal isolates, 79.2% (n=194) displayed erythromycin resistance (≥8 μg/ml). Of the erythromycin-resistant isolates, 97.4% (n=189) possessed erm(B), 73.7% (n=143) possessed mef(A), and 71.6% (n=139) possessed both genes. Of the 245 enterococcal isolates, only 4.5% (n=11) displayed copper resistance (≥28 mM) and the copper resistance gene, tcr(B), was detected in seven isolates that all possessed erm(B). This study is the first to report the tcr(B) gene in enterococci isolated from Korean bovine milk and its relationship to erythromycin resistance.
- A Comparison of Adult and Pediatric Methicillin-Resistant Staphylococcus aureus Isolates Collected from Patients at a University Hospital in Korea
-
Jin Yeol Park , Jong Sook Jin , Hee Young Kang , Eun Hee Jeong , Je Chul Lee , Yoo Chul Lee , Sung Yong Seol , Dong Taek Cho , Jungmin Kim
-
J. Microbiol. 2007;45(5):447-452.
-
DOI: https://doi.org/2591 [pii]
-
-
Abstract
-
In this study, we compared the phenotypic and genotypic characteristics of 138 MRSA isolates obtained from adult and pediatric patients (adult, 50; children, 88). The resistance rates against gentamicin, clindamycin, and ciprofloxacin were much higher in the adult MRSA isolates than in the pediatric MRSA isolates. The ermC gene, which is responsible for inducible clindamycin resistance, was detected in 52(59.1%) of the 88 pediatric MRSA isolates but in only 5(10.0%) of the 50 adult MRSA isolates. MRSA isolates of clonal type ST5 with an integration of SCCmec type II/II variants was the most predominant clone among the adult isolates, while clonal type ST72 with an integration of SCCmec IV/IVA was the most predominant clone among the pediatric MRSA isolates. Staphylococcal enterotoxin A and toxic shock syndrome toxin-1 were prevalent among the adult MRSA isolates but not among the pediatric MRSA isolates. The results of this study demonstrated remarkable differences between adult and pediatric MRSA isolates in terms of their antimicrobial susceptibility profiles, SCCmec type, multilocus sequence type, staphylococcal toxin genes, and erythromycin resistance genes.
Journal Article
- In vitro Activity of Kaempferol Isolated from the Impatiens balsamina alone and in Combination with Erythromycin or Clindamycin against Propionibacterium acnes
-
Young-Hee Lim , In-Hwan Kim , Jung-Ju Seo
-
J. Microbiol. 2007;45(5):473-477.
-
DOI: https://doi.org/2587 [pii]
-
-
Abstract
-
The in vitro antibacterial activity against antibiotic-resistant Propionibacterium acnes of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin antibiotics was investigated. The antibiotic combination effect against antibiotic-resistant P. acnes was studied by checkerboard test. Kaempferol and quercetin demonstrated antibacterial activities against P. acnes. Minimum inhibitory concentrations (MICs) for both compounds were ≤32 μg/ml and ≤64 μg/ml for clindamycin-sensitive and-resistant P. acnes, respectively. The four combination formulations (kaempferol and either erythromycin or clindamycin; quercetin and either erythromycin or clindamycin) exhibited a synergic inhibition of P. acnes growth. The combination of kaempferol with quercetin showed an indifferent effect. The combination of clindamycin with kaempferol or quercetin showed a greater synergic effect than that of erythromycin with kaempferol or quercetin. Thus, these combinations demonstrated the potential to treat acne.