Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
9 "endophytic bacteria"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Tubulysins are Essential for the Preying of Ciliates by Myxobacteria
Uisang Yu , Jiha Kim , Seohui Park , Kyungyun Cho
J. Microbiol. 2023;61(6):627-632.   Published online June 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00056-2
  • 74 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
Tubulysins are bioactive secondary metabolites produced by myxobacteria that promote microtubule disassembly. Microtubules are required for protozoa such as Tetrahymena to form cilia and flagella. To study the role of tubulysins in myxobacteria, we co-cultured myxobacteria and Tetrahymena. When 4000 Tetrahymena thermophila and 5.0 × 108 myxobacteria were added to 1 ml of CYSE medium and co-cultured for 48 h, the population of T. thermophila increased to more than 75,000. However, co-culturing tubulysin-producing myxobacteria, including Archangium gephyra KYC5002, with T. thermophila caused the population of T. thermophila to decrease from 4000 to less than 83 within 48 h. Almost no dead bodies of T. thermophila were observed in the culture medium. Co-culturing of T. thermophila and the A. gephyra KYC5002 strain with inactivation of the tubulysin biosynthesis gene led to the population of T. thermophila increasing to 46,667. These results show that in nature, most myxobacteria are preyed upon by T. thermophila, but some myxobacteria prey on and kill T. thermophila using tubulysins. Adding purified tubulysin A to T. thermophila changed the cell shape from ovoid to spherical and caused cell surface cilia to disappear.

Citations

Citations to this article as recorded by  
  • Tubulysin Production by the Dead Cells of Archangium gephyra KYC5002
    Seohui Park, Chaehyeon Park, Yujin Ka, Kyungyun Cho
    Journal of Microbiology.2024; 62(6): 463.     CrossRef
  • Two reasons to kill: predation and kin discrimination in myxobacteria
    Christine Kaimer, Michael L. Weltzer, Daniel Wall
    Microbiology .2023;[Epub]     CrossRef
Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima
Rina Hidayati Pratiwi , Iman Hidayat , Muhammad Hanafi , Wibowo Mangunwardoyo
J. Microbiol. 2017;55(4):289-295.   Published online January 26, 2017
DOI: https://doi.org/10.1007/s12275-017-6311-0
  • 94 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
This study’s aim was to determine the identity of antibacte-rial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds’ me-chanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear mag-netic resonance (NMR) spectroscopy and liquid chromato-graphy mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was ob-served morphologically through scanning electron micros-copy (SEM). This study successfully identified the (2E,5E)- phenyltetradeca-2,5-dienoate antibacterial compound (mole-cular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca- 2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.

Citations

Citations to this article as recorded by  
  • Antimicrobial mechanisms and antifungal activity of compounds generated by banana rhizosphere Pseudomonas aeruginosa Gxun-2 against fusarium oxysporum f. sp. cubense
    Junming Lu, Yanbing Huang, Rui Liu, Ying Liang, Hongyan Zhang, Naikun Shen, Dengfeng Yang, Mingguo Jiang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa
    Tianbo Si, Anqi Wang, Haowen Yan, Lingcong Kong, Lili Guan, Chengguang He, Yiyi Ma, Haipeng Zhang, Hongxia Ma
    Molecules.2024; 29(18): 4400.     CrossRef
  • Antimicrobial Action Mechanisms of Natural Compounds Isolated from Endophytic Microorganisms
    Farkhod Eshboev, Nilufar Mamadalieva, Pavel Nazarov, Hidayat Hussain, Vladimir Katanaev, Dilfuza Egamberdieva, Shakhnoz Azimova
    Antibiotics.2024; 13(3): 271.     CrossRef
  • Chisocheton pentandrus (Blanco) Merr. leaf as a potential antioxidant and α-glucosidase inhibitory agent
    I P A H Wibawa, M Hanafi, Minarti, A S Li’aini, A Rahayu, C I M Semarayani, I N Lugrayasa, V M Butardo, P J Mahon
    IOP Conference Series: Earth and Environmental Science.2024; 1312(1): 012054.     CrossRef
  • Total phenolic and flavonoid contents of Aphanamixis polystachya (Wall.) R.Parker leaf extract and its potential as antioxidant and inhibitor of α-glucosidase
    I P A H Wibawa, M Hanafi, A S Li’aini, A Rahayu, I N Lugrayasa, V M Butardo, P J Mahon
    IOP Conference Series: Earth and Environmental Science.2023; 1255(1): 012016.     CrossRef
  • The dataset on the draft whole-genome sequences of two Pseudomonas aeruginosa strains isolated from urine samples of patients with urinary tract diseases
    L.R. Valeeva, D.S. Pudova, N.N. Khabipova, L.H. Shigapova, E.I. Shagimardanova, A.M. Rogov, T.R. Tagirova, Z.G. Gimadeev, M.R. Sharipova
    Data in Brief.2023; 51: 109704.     CrossRef
  • Bacterial bioactive metabolites as therapeutic agents: From production to action
    K.B. Arun, Raveendran Sindhu, Deepthy Alex, Parameswaran Binod, Arivalagan Pughazhendi, Toms C. Joseph, Ashok Pandey, Mohammed Kuddus, Santhosh Pillai, Shibitha Emmanual, Mukesh Kumar Awasthi, Aravind Madhavan
    Sustainable Chemistry and Pharmacy.2022; 27: 100650.     CrossRef
  • Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production
    Madhuree Kumari, Kamal A. Qureshi, Mariusz Jaremko, James White, Sandeep Kumar Singh, Vijay Kumar Sharma, Kshitij Kumar Singh, Gustavo Santoyo, Gerardo Puopolo, Ajay Kumar
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Antibacterial assay guided isolation of a novel hydroxy-substituted pentacyclo ketonic compound from Pseudomonas aeruginosa MBTDCMFRI Ps04
    Anusree V. Nair, Praveen N. K, Leo Antony. M, K. K. Vijayan
    Brazilian Journal of Microbiology.2021; 52(1): 335.     CrossRef
  • In vitro antimicrobial activities of several extracts endophytic Pseudomonas azotoformans UICC B-91
    E Oktarina, R H Pratiwi, W Mangunwardoyo, I Hidayat, E Saepudin
    IOP Conference Series: Earth and Environmental Science.2021; 948(1): 012068.     CrossRef
  • Biocompatible, antibacterial, polymeric hydrogels active against multidrug-resistant Staphylococcus aureus strains for food packaging applications
    Kannan Badri Narayanan, Gyu Tae Park, Sung Soo Han
    Food Control.2021; 123: 107695.     CrossRef
  • Plant Growth-promoting Microorganisms Isolated from Plants as Potential Antimicrobial Producers: A Review
    Bazilah Marzaini, Aslizah Mohd-Aris
    Pertanika Journal of Tropical Agricultural Science.2021;[Epub]     CrossRef
  • Culture-dependent analysis of seed bacterial endophyte, Pseudomonas spp. EGN 1 against the stem rot disease (Sclerotium rolfsii Sacc.) in groundnut
    T. Archana, L. Rajendran, S. K. Manoranjitham, V. P. Santhana Krishnan, M. Paramasivan, G. Karthikeyan
    Egyptian Journal of Biological Pest Control.2020;[Epub]     CrossRef
  • Antifungal activity of 3-acetylbenzamide produced by actinomycete WA23-4-4 from the intestinal tract of Periplaneta americana
    Xia Fang, Juan Shen, Jie Wang, Zhi-li Chen, Pei-bin lin, Zhi-yu Chen, Lin-yan Liu, Huan-xiong Zeng, Xiao-bao Jin
    Journal of Microbiology.2018; 56(7): 516.     CrossRef
  • Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source
    Rabia Tanvir, Aqeel Javeed, Yasir Rehman
    FEMS Microbiology Letters.2018;[Epub]     CrossRef
Research Support, Non-U.S. Gov'ts
Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens
Md. Azizul Haque , Han Dae Yun , Kye Man Cho
J. Microbiol. 2016;54(5):353-363.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-5641-7
  • 71 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

Citations

Citations to this article as recorded by  
  • Clubroot (Plasmodiophora brassicae) Suppression Under Biocontrol Agents in Pak choi with Variations in Physiological, Biochemical, and Bacterial Diversity
    Shazma Gulzar, Fiza Liaquat, Muhammad Khalid Hameed, Asad Rehman, Muhammad Salman Zahid, Muhammad Aamir Manzoor, Iftikhar Hussain Shah, Yidong Zhang
    Journal of Plant Growth Regulation.2024; 43(5): 1331.     CrossRef
  • Enhanced rice plant (BRRI-28) growth at lower doses of urea caused by diazinon mineralizing endophytic bacterial consortia and explorations of relevant regulatory genes in a Klebsiella sp. strain HSTU-F2D4R
    Md. Azizul Haque, Simo, Md. Yeasin Prodhan, Sibdas Ghosh, Md. Shohorab Hossain, Aminur Rahman, Uttam Kumar Sarker, Md. Atiqul Haque
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Problems and prospects of utilization of bacterial endophytes for the management of plant diseases
    Dhruva Kumar Jha
    Indian Phytopathology.2023; 76(1): 3.     CrossRef
  • An efficient direct screening system for microorganisms that activate plant immune responses based on plant–microbe interactions using cultured plant cells
    Mari Kurokawa, Masataka Nakano, Nobutaka Kitahata, Kazuyuki Kuchitsu, Toshiki Furuya
    Scientific Reports.2021;[Epub]     CrossRef
  • The hidden treasures of citrus: finding Huanglongbing cure where it was lost
    Shahzad Munir, Ayesha Ahmed, Yongmei Li, Pengbo He, Brajesh K. Singh, Pengfei He, Xingyu Li, Suhail Asad, Yixin Wu, Yueqiu He
    Critical Reviews in Biotechnology.2021; : 1.     CrossRef
  • Agrobacterium cavarae sp. nov., isolated from maize (Zea mays L.) roots
    José David Flores-Félix, Esther Menéndez, Martha Helena Ramírez-Bahena, Alvaro Peix, Paula García-Fraile, Encarna Velázquez
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(10): 5512.     CrossRef
  • Physiological change alters endophytic bacterial community in clubroot of tumorous stem mustard infected by Plasmodiophora brassicae
    Diandong Wang, Tingting Sun, Songyu Zhao, Limei Pan, Hongfang Liu, Xueliang Tian
    BMC Microbiology.2020;[Epub]     CrossRef
  • Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems
    Zobia Khatoon, Suiliang Huang, Mazhar Rafique, Ali Fakhar, Muhammad Aqeel Kamran, Gustavo Santoyo
    Journal of Environmental Management.2020; 273: 111118.     CrossRef
  • Origin of lactic acid bacteria in mulkimchi fermentation
    Chung Eun Hwang, Md. Azizul Haque, Su Young Hong, Su Cheol Kim, Kye Man Cho
    Journal of Applied Biological Chemistry.2019; 62(4): 441.     CrossRef
  • Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada
    Di Fan, Timothy Schwinghamer, Donald L. Smith
    Systematic and Applied Microbiology.2018; 41(6): 629.     CrossRef
  • Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis
    Zhenyu Shen, Azlin Mustapha, Mengshi Lin, Guolu Zheng
    International Journal of Food Microbiology.2017; 250: 37.     CrossRef
  • Symbiosis-inspired approaches to antibiotic discovery
    Navid Adnani, Scott R. Rajski, Tim S. Bugni
    Natural Product Reports.2017; 34(7): 784.     CrossRef
  • A endophytic fungus, Ramichloridium cerophilum, promotes growth of a non-mycorrhizal plant, Chinese cabbage
    Xie Ling, Usui Erika, Narisawa Kazuhiko
    African Journal of Biotechnology.2016; 15(25): 1299.     CrossRef
Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica
Ying-wu Shi , Kai Lou , Chun Li , Lei Wang , Zhen-yong Zhao , Shuai Zhao , Chang-yan Tian
J. Microbiol. 2015;53(10):678-685.   Published online October 2, 2015
DOI: https://doi.org/10.1007/s12275-015-5080-x
  • 73 View
  • 0 Download
  • 34 Crossref
AbstractAbstract
We used Illumina-based 16S rRNA V3 amplicon pyrosequencing to investigate the community structure of soil bacteria from the rhizosphere surrounding Salicornia europaea, and endophytic bacteria living in Salicornia europaea plants and Sueada aralocaspica seeds growing at the Fukang Desert Ecosystem Observation and Experimental Station (FDEOES) in Xinjiang Province, China, using an Illumina genome analyzer. A total of 89.23 M effective sequences of the 16S rRNA gene V3 region were obtained from the two halophyte species. These sequences revealed a number of operational taxonomic units (OTUs) in the halophytes. There were between 22–2,206 OTUs in the halophyte plant sample, at the 3% cutoff level, and a sequencing depth of 30,000 sequences. We identified 25 different phyla, 39 classes and 141 genera from the resulting 134,435 sequences. The most dominant phylum in all the samples was Proteobacteria (41.61%–99.26%; average, 43.30%). The other large phyla were Firmicutes (0%– 7.19%; average, 1.15%), Bacteroidetes (0%–1.64%; average, 0.44%) and Actinobacteria (0%–0.46%; average, 0.24%). This
result
suggested that the diversity of bacteria is abundant in the rhizosphere soil, while the diversity of bacteria was poor within Salicornia europaea plant samples. To the extent of our knowledge, this study is the first to characterize and compare the endophytic bacteria found within different halophytic plant species roots using PCR-based Illumina pyrosequencing
method
.

Citations

Citations to this article as recorded by  
  • Plant Growth‐Promoting Bacteria Associated With Some Salt‐Tolerant Plants
    Fatemeh Beitsayahi, Naeimeh Enayatizamir, Leila Nejadsadeghi, Fatemeh Nasernakhaei
    Journal of Basic Microbiology.2024;[Epub]     CrossRef
  • Insight into endophytic microbial diversity in two halophytes and plant beneficial attributes of Bacillus swezeyi
    Lei Gao, Jin-Biao Ma, Yin Huang, Murad Muhammad, Hai-Ting Lian, Vyacheslav Shurigin, Dilfuza Egamberdieva, Wen-Jun Li, Li Li
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Soil bacterial diversity and community structure of Suaeda glauca vegetation in the Hetao Irrigation District, Inner Mongolia, China
    Ruixiao Dong, Xinbo Wang, Yuyi Li, Hongyuan Zhang, Xiaobin Li, Jiashen Song, Fangdi Chang, Wenhao Feng, Huancheng Pang, Jing Wang
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Biostimulation of Salicornia europaea L. crops with plant growth-promoting bacteria in laboratory and field conditions: effects on growth and metabolite profile
    Maria J Ferreira, I Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M Rodrigues, Diana C G A Pinto, Helena Silva, Ângela Cunha
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies
    Salvadora Navarro-Torre, Pedro Garcia-Caparrós, Amaia Nogales, Maria Manuela Abreu, Erika Santos, Ana Lúcia Cortinhas, Ana Delaunay Caperta
    Environmental and Experimental Botany.2023; 212: 105397.     CrossRef
  • Domestication shapes the endophytic microbiome and metabolome ofSalicornia europaea
    Maria J Ferreira, I Natalia Sierra-Garcia, António Louvado, Newton C M Gomes, Sandro Figueiredo, Carla Patinha, Diana C G A Pinto, Javier Cremades, Helena Silva, Ângela Cunha
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Biotechnological Potential of Galophytes and Their Microbiomes for Agriculture in Russia and Kazakhstan
    V. K. Chebotar, E. P. Chizhevskaya, O. V. Khonina, R. D. Kostitsin, A. A. Kurmanbayev, B. Mukhambetov, V. N. Pishchik, M. E. Baganova, N. G. Lapenko
    Russian Journal of Plant Physiology.2023;[Epub]     CrossRef
  • Alleviation of Salt Stress via Habitat-Adapted Symbiosis
    Nour El Houda Rabhi, Hafsa Cherif-Silini, Allaoua Silini, Faizah N. Alenezi, Ali Chenari Bouket, Tomasz Oszako, Lassaȃd Belbahri
    Forests.2022; 13(4): 586.     CrossRef
  • Bacterial Community Structure and Potential Microbial Coexistence Mechanism Associated with Three Halophytes Adapting to the Extremely Hypersaline Environment
    Lei Gao, Yin Huang, Yonghong Liu, Osama Abdalla Abdelshafy Mohamed, Xiaorong Fan, Lei Wang, Li Li, Jinbiao Ma
    Microorganisms.2022; 10(6): 1124.     CrossRef
  • A comparative study of bacterial diversity based on effects of three different shade shed types in the rhizosphere of Panax quiquefolium L.
    Xianchang Wang, Xu Guo, Lijuan Hou, Jiaohong Zhang, Jing Hu, Feng Zhang, Jilei Mao, Zhifen Wang, Congjing Zhang, Jinlong Han, Yanwei Zhu, Chao Liu, Jinyue Sun, Chenggang Shan
    PeerJ.2022; 10: e12807.     CrossRef
  • Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production
    Madhuree Kumari, Kamal A. Qureshi, Mariusz Jaremko, James White, Sandeep Kumar Singh, Vijay Kumar Sharma, Kshitij Kumar Singh, Gustavo Santoyo, Gerardo Puopolo, Ajay Kumar
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens
    Ping Lu, Ke Jiang, Ya-Qiao Hao, Wan-Ying Chu, Yu-Dong Xu, Jia-Yao Yang, Jia-Le Chen, Guo-Hong Zeng, Zhou-Hang Gu, Hong-Xin Zhao
    Journal of Microbiology and Biotechnology.2021; 31(9): 1231.     CrossRef
  • The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria
    Maria J. Ferreira, Angela Cunha, Sandro Figueiredo, Pedro Faustino, Carla Patinha, Helena Silva, Isabel N. Sierra-Garcia
    Applied Sciences.2021; 11(5): 2233.     CrossRef
  • Alkalinity gradients in grasslands alter soil bacterial community composition and function
    Junliang Xiang, Jian Jin, Quan Liu, Yulan Huang, Wensi Wu, Ruixi Tang, Yuan Chen, Kuide Yin
    Soil Science Society of America Journal.2021; 85(2): 286.     CrossRef
  • Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh
    Yaqing Pan, Peng Kang, Jinpeng Hu, Naiping Song
    Science of The Total Environment.2021; 798: 149118.     CrossRef
  • Rhizosphere bacteria community and functions under typical natural halophyte communities in North China salinized areas
    Fating Yin, Fenghua Zhang, Haoran Wang, Jian Liu
    PLOS ONE.2021; 16(11): e0259515.     CrossRef
  • Mediterranean seasonality and the halophyte Arthrocnemum macrostachyum determine the bacterial community in salt marsh soils in Southwest Spain
    Miguel Camacho-Sanchez, José M. Barcia-Piedras, Susana Redondo-Gómez, Maria Camacho
    Applied Soil Ecology.2020; 151: 103532.     CrossRef
  • Dynamic changes in bacterial communities in the recirculating nutrient solution of cucumber plug seedlings cultivated in an ebb-and-flow subirrigation system
    Chun-Juan Dong, Qian Li, Ling-Ling Wang, Qing-Mao Shang, Kandasamy Ulaganathan
    PLOS ONE.2020; 15(4): e0232446.     CrossRef
  • Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth
    Frashad Alishahi, Hossein Ali Alikhani, Nayer Azam Khoshkholgh-Sima, Hassan Etesami
    International Microbiology.2020; 23(3): 415.     CrossRef
  • Morphophysiological Features of Some Cultivable Bacteria from Saline Soils of the Aral Sea Region
    Sh. A. Begmatov, O. V. Selitskaya, L. V. Vasileva, Yu. Yu. Berestovskaja, N. A. Manucharova, N. V. Drenova
    Eurasian Soil Science.2020; 53(1): 90.     CrossRef
  • Comparative Analysis of Bacterial Diversity and Community Structure in the Rhizosphere and Root Endosphere of Two Halophytes, Salicornia europaea and Glaux maritima, Collected from Two Brackish Lakes in Japan
    Kosuke Yamamoto, Minenosuke Matsutani, Yuh Shiwa, Taichiro Ishige, Hikaru Sakamoto, Hiromasa Saitoh, Seiya Tsushima
    Microbes and Environments.2020; 35(3): n/a.     CrossRef
  • A Microbiome Study Reveals Seasonal Variation in Endophytic Bacteria Among different Mulberry Cultivars
    Ting Ou, Wei-fang Xu, Fei Wang, Gary Strobel, Ze-yang Zhou, Zhong-huai Xiang, Jia Liu, Jie Xie
    Computational and Structural Biotechnology Journal.2019; 17: 1091.     CrossRef
  • Sustainability of Urban Soil Management: Analysis of Soil Physicochemical Properties and Bacterial Community Structure under Different Green Space Types
    Junda Zhang, Suyan Li, Xiangyang Sun, Jing Tong, Zhen Fu, Jing Li
    Sustainability.2019; 11(5): 1395.     CrossRef
  • Transcriptome profiling and environmental linkage to salinity across Salicornia europaea vegetation
    Bliss Ursula Furtado, Istvan Nagy, Torben Asp, Jarosław Tyburski, Monika Skorupa, Marcin Gołębiewski, Piotr Hulisz, Katarzyna Hrynkiewicz
    BMC Plant Biology.2019;[Epub]     CrossRef
  • Bacterial and Fungal Endophytic Microbiomes ofSalicornia europaea
    Bliss Ursula Furtado, Marcin Gołębiewski, Monika Skorupa, Piotr Hulisz, Katarzyna Hrynkiewicz, Emma R. Master
    Applied and Environmental Microbiology.2019;[Epub]     CrossRef
  • Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China
    Changliang Jing, Zongchang Xu, Ping Zou, Qi Tang, Yiqiang Li, Xiangwei You, Chengsheng Zhang
    Applied Soil Ecology.2019; 134: 1.     CrossRef
  • Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20
    Carolina Figueira, Maria J. Ferreira, Helena Silva, Angela Cunha
    Annals of Applied Biology.2019; 174(3): 319.     CrossRef
  • Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs
    Katarzyna Hrynkiewicz, Sascha Patz, Silke Ruppel
    Journal of Advanced Research.2019; 19: 49.     CrossRef
  • Bacterial Diversity Associated With the Rhizosphere and Endosphere of Two Halophytes: Glaux maritima and Salicornia europaea
    Kosuke Yamamoto, Yuh Shiwa, Taichiro Ishige, Hikaru Sakamoto, Keisuke Tanaka, Masataka Uchino, Naoto Tanaka, Suguru Oguri, Hiromasa Saitoh, Seiya Tsushima
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180
    Sheng Qin, Wei-Wei Feng, Yue-Ji Zhang, Tian-Tian Wang, You-Wei Xiong, Ke Xing, Isaac Cann
    Applied and Environmental Microbiology.2018;[Epub]     CrossRef
  • Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity
    Sonia Szymańska, Luigimaria Borruso, Lorenzo Brusetti, Piotr Hulisz, Bliss Furtado, Katarzyna Hrynkiewicz
    Environmental Science and Pollution Research.2018; 25(25): 25420.     CrossRef
  • The Grapevine and Wine Microbiome: Insights from High-Throughput Amplicon Sequencing
    Horatio H. Morgan, Maret du Toit, Mathabatha E. Setati
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Effect of halotolerant endophytic bacteria isolated fromSalicornia europaeaL. on the growth of fodder beet (Beta vulgarisL.) under salt stress
    Agnieszka Piernik, Katarzyna Hrynkiewicz, Anna Wojciechowska, Sonia Szymańska, Marta Izabela Lis, Adele Muscolo
    Archives of Agronomy and Soil Science.2017; 63(10): 1404.     CrossRef
  • Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte Messerschmidia sibirica
    Xue-Ying Tian, Cheng-Sheng Zhang
    Frontiers in Microbiology.2017;[Epub]     CrossRef
Symbiotic Interaction of Endophytic Bacteria with Arbuscular Mycorrhizal Fungi and Its Antagonistic Effect on Ganoderma boninense
Shamala Sundram , Sariah Meon , Idris Abu Seman , Radziah Othman
J. Microbiol. 2011;49(4):551-557.   Published online September 2, 2011
DOI: https://doi.org/10.1007/s12275-011-0489-3
  • 69 View
  • 0 Download
  • 31 Crossref
AbstractAbstract
Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UPMB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.), were tested for their presymbiotic effects on two arbuscular mycorrhizal fungi, (Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shrivelling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

Citations

Citations to this article as recorded by  
  • An In-Depth Study of Phytopathogenic Ganoderma: Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management
    Samantha C. Karunarathna, Nimesha M. Patabendige, Wenhua Lu, Suhail Asad, Kalani K. Hapuarachchi
    Journal of Fungi.2024; 10(6): 414.     CrossRef
  • Induced Biochemical Changes in Ganoderma boninense Infected Elaeis guineensis Seedlings in Response to Biocontrol Treatments
    Tuan Muhammad Syafiq Tuan Hassan, Nusaibah Syd Ali, Mohd Rafii Yusop
    Pertanika Journal of Tropical Agricultural Science.2023; 46(1): 129.     CrossRef
  • Validation of endophytic bacteria colonisation in tissue culture-derived oil palm plantlets via green fluorescent visualization
    Salwa Abdullah Sirajuddin, Intan Nur Ainni Mohamed Azni, Nur Diyana Roslan, Shamala Sundram
    Asia Pacific Journal of Molecular Biology and Biotechnology.2023; : 53.     CrossRef
  • Combined phosphate-solubilizing microorganisms jointly promote Pinus massoniana growth by modulating rhizosphere environment and key biological pathways in seedlings
    Hongyun Xu, Jun Lv, Cun Yu
    Industrial Crops and Products.2023; 191: 116005.     CrossRef
  • Arbuscular Mycorrhizal Fungi Associated with Maize (Zea mays L.) in the Formation and Stability of Aggregates in Two Types of Soil
    Juan Florencio Gómez-Leyva, Miguel Angel Segura-Castruita, Laura Verónica Hernández-Cuevas, Mayra Íñiguez-Rivas
    Microorganisms.2023; 11(11): 2615.     CrossRef
  • Ganoderma boninense: general characteristics of pathogenicity and methods of control
    Ying Wei Khoo, Khim Phin Chong
    Frontiers in Plant Science.2023;[Epub]     CrossRef
  • Improved Growth Performance of Elaeis guineensis Jacq. Through the Applications of Arbuscular Mycorrhizal (AM) Fungi and Endophytic Bacteria
    Shamala Sundram, Radziah Othman, Abu Seman Idris, Lee Pei Lee Angel, Sariah Meon
    Current Microbiology.2022;[Epub]     CrossRef
  • Antifungal Peptides from a Burkholderia Strain Suppress Basal Stem Rot Disease of Oil Palm
    Cahya Prihatna, Theodorus Eko Pramudito, Arild Ranlym Arifin, Thi Kim Ngan Nguyen, Maria Indah Purnamasari, Antonius Suwanto
    Phytopathology®.2022; 112(2): 238.     CrossRef
  • Combined inoculation of phosphate solubilizing bacteria with mycorrhizae to alleviate the phosphate deficiency in Banana
    Chandni Shah, Himanshu Mali, Sureshkumar Mesara, Hiren Dhameliya, Ramalingam Bagavathi Subramanian
    Biologia.2022; 77(9): 2657.     CrossRef
  • Edible Mushrooms Could Take Advantage of the Growth-Promoting and Biocontrol Potential of Azospirillum
    Olga Tsivileva, Andrei Shaternikov, Elena Ponomareva
    Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences..2022; 76(2): 211.     CrossRef
  • Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity
    Bouchra Nasslahsen, Yves Prin, Hicham Ferhout, Abdelaziz Smouni, Robin Duponnois
    Frontiers in Soil Science.2022;[Epub]     CrossRef
  • Unveiling the Core Effector Proteins of Oil Palm Pathogen Ganoderma boninense via Pan-Secretome Analysis
    Mohamad Hazwan Fikri Khairi, Nor Azlan Nor Muhammad, Hamidun Bunawan, Abdul Munir Abdul Murad, Ahmad Bazli Ramzi
    Journal of Fungi.2022; 8(8): 793.     CrossRef
  • Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations
    Seema Sangwan, Radha Prasanna
    Microbial Ecology.2022; 84(1): 1.     CrossRef
  • Basal stem rot of oil palm incited by Ganoderma species: A review
    Sugenendran Supramani, Nur Ardiyana Rejab, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Soumya Ghosh
    European Journal of Plant Pathology.2022; 164(1): 1.     CrossRef
  • Identification of Oil Palm’s Consistently Upregulated Genes during Early Infections of Ganoderma boninense via RNA-Seq Technology and Real-Time Quantitative PCR
    Liyana Mohd Zuhar, Ahmad Zairun Madihah, Siti Aqlima Ahmad, Zamri Zainal, Abu Seman Idris, Noor Azmi Shaharuddin
    Plants.2021; 10(10): 2026.     CrossRef
  • Contrasting effects of Rhizophagus irregularis versus bacterial and fungal seed endophytes on Trifolium repens plant-soil feedback
    Mohamed Idbella, Giuliano Bonanomi, Francesca De Filippis, Ghita Amor, Fatima Ezzahra Chouyia, Taoufiq Fechtali, Stefano Mazzoleni
    Mycorrhiza.2021; 31(1): 103.     CrossRef
  • New Antimicrobial Phenyl Alkenoic Acids Isolated from an Oil Palm Rhizosphere-Associated Actinomycete, Streptomyces palmae CMU-AB204T
    Kanaporn Sujarit, Mihoko Mori, Kazuyuki Dobashi, Kazuro Shiomi, Wasu Pathom-aree, Saisamorn Lumyong
    Microorganisms.2020; 8(3): 350.     CrossRef
  • Biocontrol and Plant-Growth-Promoting Traits of Talaromyces apiculatus and Clonostachys rosea Consortium against Ganoderma Basal Stem Rot Disease of Oil Palm
    Yit Kheng Goh, Nurul Fadhilah Marzuki, Tuan Nur Fatihah Tuan Pa, Teik-Khiang Goh, Zeng Seng Kee, You Keng Goh, Mohd Termizi Yusof, Vladimir Vujanovic, Kah Joo Goh
    Microorganisms.2020; 8(8): 1138.     CrossRef
  • Ganoderma infection of oil palm – a persistent problem in Papua New Guinea and Solomon Islands
    E. A. Gorea, I. D. Godwin, A. M. Mudge
    Australasian Plant Pathology.2020; 49(1): 69.     CrossRef
  • Streptomyces palmae CMU-AB204T, an antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense
    Kanaporn Sujarit, Wasu Pathom-aree, Mihoko Mori, Kazuyuki Dobashi, Kazuro Shiomi, Saisamorn Lumyong
    Biological Control.2020; 148: 104307.     CrossRef
  • Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase
    Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah, Redzyque Ramza Ramli, Saied Kadkhodaei
    BMC Plant Biology.2018;[Epub]     CrossRef
  • Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita
    Liangkun Long, Qunying Lin, Qing Yao, Honghui Zhu
    3 Biotech.2017;[Epub]     CrossRef
  • A review of the ecosystem functions in oil palm plantations, using forests as a reference system
    Claudia Dislich, Alexander C. Keyel, Jan Salecker, Yael Kisel, Katrin M. Meyer, Mark Auliya, Andrew D. Barnes, Marife D. Corre, Kevin Darras, Heiko Faust, Bastian Hess, Stephan Klasen, Alexander Knohl, Holger Kreft, Ana Meijide, Fuad Nurdiansyah, Fenna Ot
    Biological Reviews.2017; 92(3): 1539.     CrossRef
  • Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein
    Nisha Govender, Mui-Yun Wong
    Phytopathology®.2017; 107(4): 483.     CrossRef
  • Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea
    Amirah N. Kamarudin, Kok S. Lai, Dhilia U. Lamasudin, Abu S. Idris, Zetty N. Balia Yusof
    Frontiers in Plant Science.2017;[Epub]     CrossRef
  • An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense
    Lee Pei Lee Angel, Mohd Termizi Yusof, Intan Safinar Ismail, Bonnie Tay Yen Ping, Intan Nur Ainni Mohamed Azni, Norman Hj Kamarudin, Shamala Sundram
    Journal of Microbiology.2016; 54(11): 732.     CrossRef
  • Expression of phenylpropanoid and flavonoid pathway genes in oil palm roots during infection by Ganoderma boninense
    B.A. Tan, L.D.J. Daim, N. Ithnin, T.E.K. Ooi, N. Md-Noh, M. Mohamed, H. Mohd-Yusof, D.R. Appleton, H. Kulaveerasingam
    Plant Gene.2016; 7: 11.     CrossRef
  • Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings
    Shamala Sundram, Sariah Meon, Idris Abu Seman, Radziah Othman
    Mycorrhiza.2015; 25(5): 387.     CrossRef
  • Management of basidiomycete root‐ and stem‐rot diseases in oil palm, rubber and tropical hardwood plantation crops
    C. L. Mohammed, A. Rimbawanto, D. E. Page, S. Woodward
    Forest Pathology.2014; 44(6): 428.     CrossRef
  • Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings
    Luis G. Hernández-Montiel, Edgar O. Rueda-Puente, Miguel V. Cordoba-Matson, Jaime R. Holguín-Peña, Ramón Zulueta-Rodríguez
    Crop Protection.2013; 47: 61.     CrossRef
  • Fungal Endophytic Communities in Grapevines (Vitis vinifera L.) Respond to Crop Management
    Michael Pancher, Marco Ceol, Paola Elisa Corneo, Claudia Maria Oliveira Longa, Sohail Yousaf, Ilaria Pertot, Andrea Campisano
    Applied and Environmental Microbiology.2012; 78(12): 4308.     CrossRef
Diversity of Endophytic Bacteria in Ginseng and Their Potential for Plant Growth Promotion
Regupathy Thamizh Vendan , Young Joon Yu , Sun Hee Lee , Young Ha Rhee
J. Microbiol. 2010;48(5):559-565.   Published online November 3, 2010
DOI: https://doi.org/10.1007/s12275-010-0082-1
  • 70 View
  • 0 Download
  • 127 Crossref
AbstractAbstract
Endophytic bacteria have been found in virtually every plant studied, where they colonize the internal tissues of their host plant and can form a range of different beneficial relationships. The diversity of bacterial endophytes associated with ginseng plants of varying age levels in Korea was investigated. Fifty-one colonies were isolated from the interior of ginseng stems. Although a mixed composition of endophyte communities was recovered from ginseng based on the results of 16S rDNA analysis, bacteria of the genus Bacillus and Staphylococcus dominated in 1-year-old and 4-year-old plants, respectively. Phylogenetic analysis revealed four clusters: Firmicutes, Actinobacteria, α-Proteobacteria, and γ-Proteobacteria, with Firmicutes being predominant. To evaluate the plant growth promoting activities, 18 representative isolates were selected. Amplification of nifH gene confirmed the presence of diazotrophy in only two isolates. Half of the isolates solubilized mineral phosphate. Except four, all the other endophytic isolates produced significant amounts of indole acetic acid in nutrient broth. Iron sequestering siderophore production was detected in seven isolates. Isolates E-I-3 (Bacillus megaterium), E-I-4 (Micrococcus luteus), E-I-8 (B. cereus), and E-I-20 (Lysinibacillus fusiformis) were positive for most of the plant growth promoting traits, indicating their role in growth promotion of ginseng.

Citations

Citations to this article as recorded by  
  • Microbiome and Metabolome Illustrate the Correlations Between Endophytes and Flavor Metabolites in Passiflora ligularis Fruit Juice
    Meijun Qi, Xuedong Shi, Wenlong Huang, Qilong Wei, Zhenwei Zhang, Rongqi Zhang, Shilang Dong, Sumera Anwar, Hafiz Faiq Bakhat, Butian Wang, Yu Ge
    International Journal of Molecular Sciences.2025; 26(5): 2151.     CrossRef
  • Coating Seeds with Paenibacillus polymyxa ZF129 Microcapsule Suspension Enhanced Control Effect on Fusarium Root Rot and Promoted Seedling Growth in Cucumber
    Jiayi Ma, Jialin Liu, Yanxia Shi, Xuewen Xie, Ali Chai, Sheng Xiang, Xianhua Sun, Lei Li, Baoju Li, Tengfei Fan
    Biology.2025; 14(4): 375.     CrossRef
  • Correlation Analysis Between the Growth of Wild-Simulated Ginseng and the Soil Bacterial Community in the Central Region of South Korea
    Kiyoon Kim, Yeong-Bae Yun, Myeongbin Park, Yurry Um
    Applied Sciences.2025; 15(7): 3465.     CrossRef
  • Characterization of phosphate solubilizing rhizobacteria Lysinibacillus boronitolerans PSLR2
    Sharon Maria Jacob, Srilakshmi Lelapalli, Sripriya Paranthaman
    Vegetos.2025;[Epub]     CrossRef
  • Characterization of PGPR from rhizospheric soil of some vegetable crops cultivated at Sylhet district of Bangladesh
    Saima Sadia Jui, Rakibul Hasan, Israt Jahan Ema, Hasan Tareq Nasim, Md. Monirul Islam
    International Journal of Agriculture Environment and Food Sciences.2025; 9(1): 132.     CrossRef
  • Bacillus subtilis ge28, a potential biocontrol agent for controlling rust rot in Panax ginseng caused by Cylindrocarpon destructans
    Yuan Gao, Junchi Wang, Shan Zhong, Rong Wang, Jianhe Wei, Wanlong Ding, Yong Li
    Medicinal Plant Biology.2025;[Epub]     CrossRef
  • Potential participants and regulatory factors in ginsenoside biosynthesis of Panax ginseng C.A. Meyer: The role of endophytic fungus PBF-08
    Jinghui Yu, Dinghui Wang, Tiantian Zhao, Xiaochen Yu, Sizhang Liu, Yanfang Wang, Kangyu Wang, Mingzhu Zhao, Ping Chen, Yi Wang, Meiping Zhang
    Plant Science.2025; 358: 112553.     CrossRef
  • Ancient bayberry increased stress resistance by enriching tissue‐specific microbiome and metabolites
    Gang Li, Zhenshuo Wang, Haiying Ren, Xingjiang Qi, Hao Han, Xiangyang Ding, Li Sun, Rahila Hafeez, Qi Wang, Bin Li
    Physiologia Plantarum.2024;[Epub]     CrossRef
  • Comparative physiological and transcriptomic analyses provide induction resistance mechanisms of Bacillus tequilensis against Colletotrichum fructicola in Camellia oleifera
    Aiting Zhou, Junrong Tang, Qianjie Du, Jia Deng, Jianrong Wu, Huancheng Ma, Fang Wang
    Plant Physiology and Biochemistry.2024; 214: 108912.     CrossRef
  • Temporal patterns of endophytic microbial heterogeneity across distinct ecological compartments within the Panax ginseng root system following deforestation for cultivation
    Zhenting Shi, Limin Yang, Meiling Yang, Kexin Li, Li Yang, Mei Han
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia
    Jiayuan Jia, Shi-En Lu
    Microorganisms.2024; 12(1): 100.     CrossRef
  • The utilization of Lysinibacillus bacterial powder to induce Fe plaque formation mitigates cadmium and chromium levels in rice
    Qing Xu, Yuxiao Zhang, Ruijia Yang, Jinfang Li, Jiongxi Chen, Jingyi Wang, Gejiao Wang, Mingshun Li, Kaixiang Shi
    Journal of Hazardous Materials.2024; 463: 132825.     CrossRef
  • Plant endophytes: unveiling hidden applications toward agro-environment sustainability
    Rajeshwari Negi, Babita Sharma, Sanjeev Kumar, Kundan Kumar Chaubey, Tanvir Kaur, Rubee Devi, Ashok Yadav, Divjot Kour, Ajar Nath Yadav
    Folia Microbiologica.2024; 69(1): 181.     CrossRef
  • Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity
    Xinyue Li, Qun Liu, Yugang Gao, Pu Zang, Tong Zheng
    BMC Plant Biology.2024;[Epub]     CrossRef
  • Temporal heterogeneity of the root microbiome in Panax ginseng soils across ecological compartments under mild soil disturbance
    Zhenting Shi, Limin Yang, Meiling Yang, Kexin Li, Li Yang, Mei Han
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Isolation of endophytes from Dioscorea nipponica Makino for stimulating diosgenin production and plant growth
    Shangni Dang, Jiang Geng, Ran Wang, Yumei Feng, Youzhi Han, Runmei Gao
    Plant Cell Reports.2024;[Epub]     CrossRef
  • Lysinibacillus pinottii sp. nov., a novel species with anti-mosquito and anti-mollusk activity
    Christopher A. Dunlap, Eric T. Johnson, Marleny Burkett-Cadena, Johanna Cadena, Ephantus J. Muturi
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Evaluating Native Bacillus Strains as Potential Biocontrol Agents against Tea Anthracnose Caused by Colletotrichum fructicola
    Meixia Chen, Hui Lin, Weifan Zu, Lulu Wang, Wenbo Dai, Yulin Xiao, Ye Zou, Chengkang Zhang, Wei Liu, Xiaoping Niu
    Plants.2024; 13(20): 2889.     CrossRef
  • Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5
    Yuan-Yuan Sun, Bo Hu, Hao-Bing Yu, Jing Zhou, Xian-Chao Meng, Zhe Ning, Jin-Feng Ding, Ming-Hui Cui, Xiao-Yu Liu
    Marine Drugs.2024; 22(6): 236.     CrossRef
  • An endophytic Paenibacillus polymyxa hg18 and its biocontrol potential against Fusarium oxysporum f. sp. cucumerinum
    Fengfeng Cai, Chengde Yang, Ting Ma, Richard osei, Mengjun Jin, Cuiwen Zhang, Yidan Wang
    Biological Control.2024; 188: 105380.     CrossRef
  • Impact of Growth-Promoting Endophytic Bacteria on Ginger Plant Growth
    Dilfuza Jabborova, Kakhramon Davranov, Zafarjon Jabbarov, Yuriy Enakiev, Tokhtasin Abdrakhmanov, Rahul Datta, Sachidanand Singh, Mohammad Shah Jahan, Sezai Ercisli, Namita Singh
    Indian Journal of Microbiology.2024;[Epub]     CrossRef
  • Relationships between endophytic bacteria and medicinal plants on bioactive compounds production
    Thanh-Dung Nguyen, Thi-Tho Nguyen, Minh-Nhut Pham, Huu-Nghia Duong, Thuy-Trang Pham, Thi-Pha Nguyen, Phu-Tho Nguyen, To-Uyen Thi Nguyen, Huu-Hiep Nguyen, Huu-Thanh Nguyen
    Rhizosphere.2023; 27: 100720.     CrossRef
  • Endophytic Bacteria Isolated from Tea Leaves (Camellia sinensis var. assamica) Enhanced Plant-Growth-Promoting Activity
    Md. Humayun Kabir, Kridsada Unban, Pratthana Kodchasee, Rasiravathanahalli Kaveriyappan Govindarajan, Saisamorn Lumyong, Nakarin Suwannarach, Pairote Wongputtisin, Kalidas Shetty, Chartchai Khanongnuch
    Agriculture.2023; 13(3): 533.     CrossRef
  • A microecological research reveals seasonal variation in rhizosphere-endophytic bacteria and growth and development of Codonopsis pilosula root
    Feifan Leng, Bo Zhang, Xinqiang Zhu, Zhiqiang Kong, Xiaoli Wang, Yonggang Wang
    Rhizosphere.2023; 28: 100805.     CrossRef
  • Plants and endophytes interaction: a “secret wedlock” for sustainable biosynthesis of pharmaceutically important secondary metabolites
    Poonam Kumari, Nikky Deepa, Prabodh Kumar Trivedi, Brajesh K. Singh, Vaibhav Srivastava, Akanksha Singh
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth
    Manuel Pantoja-Guerra, Marleny Burkett-Cadena, Johanna Cadena, Christopher A. Dunlap, Camilo A. Ramírez
    Antonie van Leeuwenhoek.2023; 116(7): 615.     CrossRef
  • Antagonistic Activity and Potential Mechanisms of Endophytic Bacillus subtilis YL13 in Biocontrol of Camellia oleifera Anthracnose
    Yandong Xia, Junang Liu, Zhikai Wang, Yuan He, Qian Tan, Zhuang Du, Anqi Niu, Manman Liu, Zhong Li, Mengke Sang, Guoying Zhou
    Forests.2023; 14(5): 886.     CrossRef
  • Endophytic Bacteria; Diversity, Characterization and Role in Agriculture
    Hanaa A. Abo-Koura
    Journal of Basic & Applied Sciences.2023; 19: 116.     CrossRef
  • Rice endophytic communities are strongly dependent on microbial communities specific to each soil
    Solomon Oloruntoba Samuel, Kazuki Suzuki, Rasit Asiloglu, Naoki Harada
    Biology and Fertility of Soils.2023; 59(7): 733.     CrossRef
  • Characterization of Weizmannia ginsengihumi LGHNH from Wild-Ginseng and Anti-Aging Effects of Its Cultured Product
    Minjung Kwon, Hyejin Lee, So Young Lee, Mu Hyun Jin
    Microbiology and Biotechnology Letters.2022; 50(3): 414.     CrossRef
  • Occidiofungin Is the Key Metabolite for Antifungal Activity of the Endophytic Bacterium Burkholderia sp. MS455 Against Aspergillus flavus
    Jiayuan Jia, Emerald Ford, Sarah M. Hobbs, Sonya M. Baird, Shi-En Lu
    Phytopathology®.2022; 112(3): 481.     CrossRef
  • Diversity and Bioactivity of Endophytic Actinobacteria Associated with Grapevines
    Patanun Kanjanamaneesathian, Anish Shah, Hayley Ridgway, E. Eirian Jones
    Current Microbiology.2022;[Epub]     CrossRef
  • Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants
    Devendra Singh, Shobit Thapa, Himanshu Mahawar, Dharmendra Kumar, Neelam Geat, S. K. Singh
    Antonie van Leeuwenhoek.2022; 115(6): 699.     CrossRef
  • Plant-Growth-Promoting Potential of PGPE Isolated from Dactylis glomerata L.
    Chaowen Zhang, Kai Cai, Mengyuan Li, Jiaqi Zheng, Yuzhu Han
    Microorganisms.2022; 10(4): 731.     CrossRef
  • Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease
    Gaurav Pal, Kanchan Kumar, Anand Verma, Satish Kumar Verma
    Microbiological Research.2022; 255: 126926.     CrossRef
  • Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii
    Jing Wang, Zhibo Yang, Gaoge Wang, Shuai Shang, Xuexi Tang, Hui Xiao
    AMB Express.2022;[Epub]     CrossRef
  • Characterization of the Cultivable Endophytic Bacterial Community of Seeds and Sprouts of Cannabis sativa L. and Perspectives for the Application as Biostimulants
    Morena Gabriele, Francesco Vitali, Elisa Chelucci, Carolina Chiellini
    Microorganisms.2022; 10(9): 1742.     CrossRef
  • Bacterial Endophytes Contribute to Rice Seedling Establishment Under Submergence
    Germán Darío Ahumada, Eva María Gómez-Álvarez, Matteo Dell’Acqua, Iris Bertani, Vittorio Venturi, Pierdomenico Perata, Chiara Pucciariello
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Antifungal action and induction of resistance by Bacillus sp. strain YYC 155 against Colletotrichum fructicola for control of anthracnose disease in Camellia oleifera
    Aiting Zhou, Fang Wang, Jiabi Yin, Ruiqi Peng, Jia Deng, Dezhou Shen, Jianrong Wu, Xiaoyun Liu, Huancheng Ma
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginseng
    Chao He, Rong Wang, Wanlong Ding, Yong Li
    Applied Soil Ecology.2022; 174: 104397.     CrossRef
  • Wild Panax plants adapt to their thermal environment by harboring abundant beneficial seed endophytic bacteria
    Dong Liu, Liang Lin, Tie Zhang, Qian Xu, Mulan Wang, Minghai Gao, Parag Bhople, Hugh W. Pritchard, Xiangyun Yang, Fuqiang Yu
    Frontiers in Ecology and Evolution.2022;[Epub]     CrossRef
  • The Endosphere Microbiome of Ginseng
    Paul H. Goodwin
    Plants.2022; 11(3): 415.     CrossRef
  • Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum
    Elaheh Taheri, Saeed Tarighi, Parissa Taheri
    Biological Control.2022; 174: 105031.     CrossRef
  • Lysinibacilli: A Biological Factories Intended for Bio-Insecticidal, Bio-Control, and Bioremediation Activities
    Qazi Mohammad Sajid Jamal, Varish Ahmad
    Journal of Fungi.2022; 8(12): 1288.     CrossRef
  • Lysinibacillus xylanilyticus Strain GIC41 as a Potential Plant Biostimulant
    Nusrat Ahsan, Malek Marian, Haruhisa Suga, Masafumi Shimizu
    Microbes and Environments.2021; 36(4): n/a.     CrossRef
  • Efficiency of the Hydroponic System as an Approach to Confirm the Solubilization of CaHPO4 by Microbial Strains Using Glycine max as a Model
    Mateus Neri Oliveira Reis, Layara Alexandre Bessa, Andressa Pereira de Jesus, Fabiano Guimarães Silva, Marialva Alvarenga Moreira, Luciana Cristina Vitorino
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower
    Luis Gabriel Cueva-Yesquén, Marcela Cristina Goulart, Derlene Attili de Angelis, Marcos Nopper Alves, Fabiana Fantinatti-Garboggini
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Search for antagonists to protect plant raw materials from pathogens
    L R Valiullin, V Y Titova, E V Skvortsov, R S Muhammadiev, S Z Validov, V Y Rud, V.V. Davydov, A P Glinushkin
    IOP Conference Series: Earth and Environmental Science.2021; 663(1): 012005.     CrossRef
  • Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants
    Namita Bhutani, Rajat Maheshwari, Pradeep Kumar, Pooja Suneja
    Plant Gene.2021; 28: 100326.     CrossRef
  • Biotransformation of ginsenoside Rc to Rd by endophytic bacterium Bacillus sp. G9y isolated from Panax quinquefolius
    Chen Zhang, Yanyan Xu, Mengmeng Gu, Zhenzhen Liu, Jingyuan Zhang, Qi Zeng, Daheng Zhu
    Antonie van Leeuwenhoek.2021; 114(4): 437.     CrossRef
  • Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions
    Amr Fouda, Ahmed M. Eid, Albaraa Elsaied, Ehab F. El-Belely, Mohammed G. Barghoth, Ehab Azab, Adil A. Gobouri, Saad El-Din Hassan
    Plants.2021; 10(1): 76.     CrossRef
  • Community Analysis-based Screening of Plant Growth-promoting Bacteria for Sugar Beet
    Kazuyuki Okazaki, Hirohito Tsurumaru, Megumi Hashimoto, Hiroyuki Takahashi, Takashi Okubo, Takuji Ohwada, Kiwamu Minamisawa, Seishi Ikeda
    Microbes and Environments.2021; 36(2): n/a.     CrossRef
  • Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe
    Alessandro Passera, Marzia Rossato, John S. Oliver, Giovanna Battelli, Gul-I-Rayna Shahzad, Emanuela Cosentino, Jay M. Sage, Silvia L. Toffolatti, Giulia Lopatriello, Jennifer R. Davis, Michael D. Kaiser, Massimo Delledonne, Paola Casati
    Microbiological Research.2021; 244: 126665.     CrossRef
  • Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents
    Nusrat Ahsan, Masafumi Shimizu
    Reviews in Agricultural Science.2021; 9: 103.     CrossRef
  • Endophytic bacterial communities and spatiotemporal variations in cotton roots in Xinjiang, China
    YingWu Shi, HongMei Yang, Ming Chu, XinXiang Niu, XiangDong Huo, Yan Gao, Qing Lin, Jun Zeng, Tao Zhang, Kai Lou
    Canadian Journal of Microbiology.2021; 67(7): 506.     CrossRef
  • Endophytes from Panax species
    Rufin Marie Kouipou Toghueo, Diane Yimta Youmbi, Fabrice Fekam Boyom
    Biocatalysis and Agricultural Biotechnology.2021; 31: 101882.     CrossRef
  • Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants
    Wei Wu, Wenhua Chen, Shiyu Liu, Jianjun Wu, Yeting Zhu, Luping Qin, Bo Zhu
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview
    Ahmed M. Eid, Amr Fouda, Mohamed Ali Abdel-Rahman, Salem S. Salem, Albaraa Elsaied, Ralf Oelmüller, Mohamed Hijri, Arnab Bhowmik, Amr Elkelish, Saad El-Din Hassan
    Plants.2021; 10(5): 935.     CrossRef
  • Biotechnological potential of endophytic bacteria of bamboo Guadua sp. for promotion of growth of micropropagated yam plants (Dioscorea rotundata Poir)
    Sonia Maria Lima Santos do Vale, Amauri Siviero, Lauro Saraiva Lessa, Eduardo Pacca Luna Mattar, Paulo Arthur Almeida do Vale
    AIMS Agriculture and Food.2020; 5(4): 850.     CrossRef
  • Characterization of endophytic bacterial communities within greenhouse and field-grown rhizomes of three rare pitcher plant species (Sarracenia oreophila, S. leucophylla, and S. purpurea spp. venosa) with an emphasis on nitrogen-fixing bacteria
    W. K. Sexton, M. Fidero, J. C. Spain, L. Jiang, K. Bucalo, J. M. Cruse-Sanders, G. S. Pullman
    Plant and Soil.2020; 447(1-2): 257.     CrossRef
  • Isolation and identification of endophytic fungi in walnut
    Xiaoyue Wang, Kehang Li, Mengmeng Han, Wenyu Zhang, Xiaoyan Li, Dongshuo Ma, Fang Wang, Meixia Pang, Jinghua Qi
    IOP Conference Series: Earth and Environmental Science.2020; 508(1): 012138.     CrossRef
  • The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity
    Jakub Papik, Magdalena Folkmanova, Marketa Polivkova-Majorova, Jachym Suman, Ondrej Uhlik
    Biotechnology Advances.2020; 44: 107614.     CrossRef
  • Seasonal Variation Influence Endophytic Actinobacterial Communities of Medicinal Plants from Tropical Deciduous Forest of Meghalaya and Characterization of Their Plant Growth-Promoting Potentials
    Dina Barman, Mamtaj S. Dkhar
    Current Microbiology.2020; 77(8): 1689.     CrossRef
  • Evolutionary insights into adaptation of Staphylococcus haemolyticus to human and non-human niches
    Vasvi Chaudhry, Prabhu B. Patil
    Genomics.2020; 112(2): 2052.     CrossRef
  • Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils
    Ntuthuko S. Zungu, Samson O. Egbewale, Ademola O. Olaniran, María Pérez-Fernández, Anathi Magadlela
    Applied Soil Ecology.2020; 155: 103663.     CrossRef
  • Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora
    Ying Yang, Jian Ding, Yulang Chi, Jianjun Yuan
    Scientific Reports.2020;[Epub]     CrossRef
  • The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants
    Ramazan Çakmakçı, Goltay Mosber, Ada Hazal Milton, Fırat Alatürk, Baboo Ali
    Current Microbiology.2020; 77(4): 564.     CrossRef
  • Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72'nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi
    Betül BAYRAKLI
    Toprak Bilimi ve Bitki Besleme Dergisi.2020; 8(2): 157.     CrossRef
  • Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant
    Marleny Burkett-Cadena, Leonardo Sastoque, Johanna Cadena, Christopher A. Dunlap
    Antonie van Leeuwenhoek.2019; 112(8): 1161.     CrossRef
  • Endophytic Bacteria in Plant Salt Stress Tolerance: Current and Future Prospects
    Anukool Vaishnav, Awadhesh K. Shukla, Anjney Sharma, Roshan Kumar, Devendra K. Choudhary
    Journal of Plant Growth Regulation.2019; 38(2): 650.     CrossRef
  • Metagenomic analysis of bacterial endophyte community structure and functions in Panax ginseng at different ages
    Chi Eun Hong, Jang Uk Kim, Jung Woo Lee, Kyong Hwan Bang, Ick Hyun Jo
    3 Biotech.2019;[Epub]     CrossRef
  • Foliar Application of Iron Fortified Bacteriosiderophore Improves Growth and Grain Fe Concentration in Wheat and Soybean
    Sandeep Sharma, Subhash Chandra, Arun Kumar, Prem Bindraban, Anil Kumar Saxena, Veena Pande, Renu Pandey
    Indian Journal of Microbiology.2019; 59(3): 344.     CrossRef
  • Associative diazotrophic bacteria from forage grasses in the Brazilian semi-arid region are effective plant growth promoters
    Gabiane dos Reis Antunes, Sheilla Rios Assis Santana, Indra Elena Costa Escobar, Marivaine da Silva Brasil, Gherman Garcia Leal de Araújo, Tadeu Vinhas Voltolini, Paulo Ivan Fernandes-Júnior
    Crop and Pasture Science.2019; 70(10): 899.     CrossRef
  • Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Leontopodium nivale Subspecies alpinum
    Martina Oberhofer, Jaqueline Hess, Marlene Leutgeb, Florian Gössnitzer, Thomas Rattei, Christoph Wawrosch, Sergey B. Zotchev
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng
    Wenxiu Ji, Xue Leng, Zhengxun Jin, Hulin Li
    Acta Agriculturae Scandinavica, Section B — Soil & Plant Science.2019; 69(2): 135.     CrossRef
  • Culturable endophytic bacteria ofCamelliaspecies endowed with plant growth promoting characteristics
    A. Borah, R. Das, R. Mazumdar, D. Thakur
    Journal of Applied Microbiology.2019; 127(3): 825.     CrossRef
  • Separating and Purifying of Endophytic Fungi from Ginkgo Biloba and Screening of Flavonoid-Producing Strains
    X.Y. Zhang, X. Li, M.M. Han, Z.Y. Cai, X. Gao, M.X. Pang, J.H. Qi, F. Wang
    IOP Conference Series: Earth and Environmental Science.2019; 371(4): 042052.     CrossRef
  • Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential
    Rajat Maheshwari, Namita Bhutani, Anuradha Bhardwaj, Pooja Suneja
    Biocatalysis and Agricultural Biotechnology.2019; 20: 101229.     CrossRef
  • Lysinibacillus sphaericusas a Nutrient Enhancer during Fire-Impacted Soil Replantation
    A. M. Aguirre-Monroy, J. C. Santana-Martínez, J. Dussán
    Applied and Environmental Soil Science.2019; 2019: 1.     CrossRef
  • Comparison of specific endophytic bacterial communities in different developmental stages of Passiflora incarnata using culture‐dependent and culture‐independent analysis
    Marcela C. Goulart, Luis G. Cueva‐Yesquén, Kelly J. Hidalgo Martinez, Derlene Attili‐Angelis, Fabiana Fantinatti‐Garboggini
    MicrobiologyOpen.2019;[Epub]     CrossRef
  • Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings
    Chi Eun Hong, Sung Hee Jo, Ick-Hyun Jo, Jeong Mee Park
    Plant Biotechnology Reports.2018; 12(6): 409.     CrossRef
  • Isolation and identification of endophytic diazotrophs from lodgepole pine trees growing at unreclaimed gravel mining pits in central interior British Columbia, Canada
    Kiran Preet Padda, Akshit Puri, Chris P. Chanway
    Canadian Journal of Forest Research.2018; 48(12): 1601.     CrossRef
  • Bacterial endophytes isolated from mountain-cultivated ginseng (Panax ginseng Mayer) have biocontrol potential against ginseng pathogens
    MD. Emran Khan Chowdhury, Hanhong Bae
    Biological Control.2018; 126: 97.     CrossRef
  • Isolation and identification of bacterial endophytes from Crinum macowanii Baker
    F. Morare Rebotiloe, Ubomba-Jaswa Eunice, H. Serepa-Dlamini Mahloro
    African Journal of Biotechnology.2018; 17(33): 1040.     CrossRef
  • Diversity of bacterial endophytes in Panax ginseng and their protective effects against pathogens
    Chi Eun Hong, Jang Uk Kim, Jung Woo Lee, Sung Woo Lee, Ick-Hyun Jo
    3 Biotech.2018;[Epub]     CrossRef
  • Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding
    Sun Hee Lee, Jae Hee Kim, Chung-Wook Chung, Do Young Kim, Young Ha Rhee
    Microbial Ecology.2018; 75(3): 720.     CrossRef
  • Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species
    Emmanuel Haruna, Noraziah M. Zin, Dorsaf Kerfahi, Jonathan M. Adams
    Microbial Ecology.2018; 75(1): 88.     CrossRef
  • Diversity of commensal bacteria from mid-gut of pink stem borer (Sesamia inferens [Walker])-Lepidoptera insect populations of India
    B. Motcha Anthony Reetha, M. Mohan
    Journal of Asia-Pacific Entomology.2018; 21(3): 937.     CrossRef
  • The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacteriumspp. and Staphylococcus spp. with potential plant-growth promoting activities
    Pasquale Alibrandi, Massimiliano Cardinale, MD Mahafizur Rahman, Francesco Strati, Paolo Ciná, Marta L. de Viana, Eugenia M. Giamminola, Giuseppe Gallo, Sylvia Schnell, Carlotta De Filippo, Mirella Ciaccio, Anna Maria Puglia
    Plant and Soil.2018; 422(1-2): 81.     CrossRef
  • Corn sap bacterial endophytes and their potential in plant growth-promotion
    Shimaila Ali, Joshua Isaacson, Yulia Kroner, Soledad Saldias, Saveetha Kandasamy, George Lazarovits
    Environmental Sustainability.2018; 1(4): 341.     CrossRef
  • Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices
    Yong Tan, Yinshan Cui, Haoyu Li, Anxiu Kuang, Xiaoran Li, Yunlin Wei, Xiuling JI
    Journal of Basic Microbiology.2017; 57(4): 337.     CrossRef
  • Revealing topics and their evolution in biomedical literature using Bio-DTM: a case study of ginseng
    Qian Chen, Ni Ai, Jie Liao, Xin Shao, Yufeng Liu, Xiaohui Fan
    Chinese Medicine.2017;[Epub]     CrossRef
  • Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants
    Nazanin Ghavami, Hossein Ali Alikhani, Ahmad Ali Pourbabaei, Hossein Besharati
    Journal of Plant Nutrition.2017; 40(5): 736.     CrossRef
  • Prevalence of Bacillus in the interior tissues of Monsonia burkeana and other medicinal plants in South Africa
    L.R. Nnzeru, K. Ntushelo, F.N. Mudau
    South African Journal of Botany.2017; 113: 19.     CrossRef
  • Molecular Basis of Endophytic Bacillus megaterium-induced Growth Promotion in Arabidopsis thaliana: Revelation by Microarray-based Gene Expression Analysis
    Munjal Vibhuti, A. Kumar, Neelam Sheoran, Agisha Valiya Nadakkakath, Santhosh J. Eapen
    Journal of Plant Growth Regulation.2017; 36(1): 118.     CrossRef
  • Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.
    Saad El-Din Hassan
    Journal of Advanced Research.2017; 8(6): 687.     CrossRef
  • Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea
    MD. Emran Khan Chowdhury, Junhyun Jeon, Soon Ok Rim, Young-Hwan Park, Seung Kyu Lee, Hanhong Bae
    Scientific Reports.2017;[Epub]     CrossRef
  • Endophytes of Jatropha curcas promote growth of maize
    Santosh Ranjan Mohanty, Garima Dubey, Bharati Kollah
    Rhizosphere.2017; 3: 20.     CrossRef
  • Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control
    Marco Andreolli, Silvia Lampis, Giacomo Zapparoli, Elisa Angelini, Giovanni Vallini
    Microbiological Research.2016; 183: 42.     CrossRef
  • Genotyping and identification of broad spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17
    Vibhuti Munjal, Agisha Valiya Nadakkakath, Neelam Sheoran, Aditi Kundu, Vibina Venugopal, Kesavan Subaharan, Suseelabhai Rajamma, Santhosh J. Eapen, Aundy Kumar
    Biological Control.2016; 92: 66.     CrossRef
  • Endophytic culturable bacteria colonizing Lavandula dentata L. plants: Isolation, characterization and evaluation of their plant growth-promoting activities
    S.I.A. Pereira, C. Monteiro, A.L. Vega, P.M.L. Castro
    Ecological Engineering.2016; 87: 91.     CrossRef
  • Endophytic microorganisms from Bauhinia monandra leaves: Isolation, antimicrobial activities and interaction with galactose-specific lectin BmoLL
    A F Ramos S, C N Silva L, T S Correia M, M Ara uacute jo J, C B B Coelho L
    African Journal of Microbiology Research.2016; 10(17): 600.     CrossRef
  • Enhanced biological phosphorus removal in aerated stirred tank reactor using aerobic bacterial consortium
    Dharmender Yadav, Vikas Pruthi, Pramod Kumar
    Journal of Water Process Engineering.2016; 13: 61.     CrossRef
  • Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice
    Bishnu K. Shrestha, Hari Sharan Karki, Donald E. Groth, Nootjarin Jungkhun, Jong Hyun Ham, Adam Driks
    PLOS ONE.2016; 11(1): e0146764.     CrossRef
  • Genomic investigation reveals evolution and lifestyle adaptation of endophytic Staphylococcus epidermidis
    Vasvi Chaudhry, Prabhu B. Patil
    Scientific Reports.2016;[Epub]     CrossRef
  • The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan Plateau, China
    Ying WANG, Cheng-de YANG, Yu-ling YAO, Yu-qin WANG, Zhen-fen ZHANG, Li XUE
    Journal of Integrative Agriculture.2016; 15(9): 2153.     CrossRef
  • Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants
    Tao Ding, Ulrich Melcher, Lorenzo Brusetti
    PLOS ONE.2016; 11(3): e0150895.     CrossRef
  • An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis
    Yugang Gao, Qun Liu, Pu Zang, Xue Li, Qing Ji, Zhongmei He, Yan Zhao, He Yang, Xueliang Zhao, Lianxue Zhang
    Phytochemistry Letters.2015; 11: 132.     CrossRef
  • Determination of ginsenosides by Bacillus polymyxa conversion and evaluation on pharmacological activities of the conversion products
    Qing Ji, Yugang Gao, Yan Zhao, Zhongmei He, Pu Zang, Hongyan Zhu, He Yang, Xue Li, Lianxue Zhang
    Process Biochemistry.2015; 50(6): 1016.     CrossRef
  • Involvement of soil bacteria in ABO blood mistyping
    Naoki Takada, Chikahiro Mori, Rie Takai, Tomohiro Takayama, Yoshihisa Watanabe, Kohei Nakamura, Kazuhiro Takamizawa
    Legal Medicine.2015; 17(2): 128.     CrossRef
  • Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis
    Shyamalina Haldar, Sanghamitra Sengupta
    Journal of Basic Microbiology.2015; 55(7): 922.     CrossRef
  • Biosynthesis of Anisotropic Silver Nanoparticles by Bhargavaea indica and Their Synergistic Effect with Antibiotics against Pathogenic Microorganisms
    Priyanka Singh, Yeon Ju Kim, Hina Singh, Ramya Mathiyalagan, Chao Wang, Deok Chun Yang, An-Ya Lo
    Journal of Nanomaterials.2015;[Epub]     CrossRef
  • Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings
    Mingshuang Xu, Jiping Sheng, Lin Chen, Yejun Men, Lin Gan, Shuntang Guo, Lin Shen
    World Journal of Microbiology and Biotechnology.2014; 30(3): 835.     CrossRef
  • The phosphotransferase system geneptsIin the endophytic bacteriumBacillus cereusis required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot
    Yu-Bin Xu, Mai Chen, Ying Zhang, Miao Wang, Ying Wang, Qiu-bin Huang, Xue Wang, Gang Wang
    FEMS Microbiology Letters.2014; 354(2): 142.     CrossRef
  • Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function
    Yong Li, YiXin Ying, WanLong Ding, Shilin Chen
    Evidence-Based Complementary and Alternative Medicine.2014;[Epub]     CrossRef
  • Quorum-Sensing Regulation of Constitutive Plantaricin by Lactobacillus plantarum Strains under a Model System for Vegetables and Fruits
    Carlo G. Rizzello, Pasquale Filannino, Raffaella Di Cagno, Maria Calasso, Marco Gobbetti
    Applied and Environmental Microbiology.2014; 80(2): 777.     CrossRef
  • Population and Diversity of Endophytic Bacteria Associated with Medicinal Plant Curcuma zedoaria
    TRI RATNA SULISTIYANI, PUSPITA LISDIYANTI, YULIN LESTARI
    Microbiology Indonesia.2014; 8(2): 65.     CrossRef
  • Endophytic microorganisms—promising applications in bioremediation of greenhouse gases
    Z. Stępniewska, A. Kuźniar
    Applied Microbiology and Biotechnology.2013; 97(22): 9589.     CrossRef
  • Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex
    Li Ma, Yong Hong Cao, Ming Hui Cheng, Ying Huang, Ming He Mo, Yong Wang, Jian Zhong Yang, Fa Xiang Yang
    Antonie van Leeuwenhoek.2013; 103(2): 299.     CrossRef
  • Distribution of Endophytic Bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from Soils Contaminated by Polycyclic Aromatic Hydrocarbons
    Anping Peng, Juan Liu, Yanzheng Gao, Zeyou Chen, Raffaella Balestrini
    PLoS ONE.2013; 8(12): e83054.     CrossRef
  • Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp.) roots
    Suzane A. Souza, Adelica A. Xavier, Márcia R. Costa, Acleide M.S. Cardoso, Marlon C.T. Pereira, Silvia Nietsche
    Genetics and Molecular Biology.2013; 36(2): 252.     CrossRef
  • Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus
    YI-TAO CHEN, QIANG YUAN, LE-TIAN SHAN, MEI-AI LIN, DONG-QING CHENG, CHANG-YU LI
    Oncology Letters.2013; 5(6): 1787.     CrossRef
  • Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper
    Md. Rashedul Islam, Tahera Sultana, M. Melvin Joe, Woojong Yim, Jang‐Cheon Cho, Tongmin Sa
    Journal of Basic Microbiology.2013; 53(12): 1004.     CrossRef
  • Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea
    Tae-Ui Kim, Sung-Heun Cho, Ji-Hye Han, Young Min Shin, Hyang Burm Lee, Seung Bum Kim
    The Journal of Microbiology.2012; 50(1): 50.     CrossRef
  • Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components
    Bo Yuan, Zhe Wang, Sheng Qin, Gui-Hua Zhao, You-Jian Feng, Li-Hui Wei, Ji-Hong Jiang
    Bioresource Technology.2012; 114: 536.     CrossRef
  • Molecular Diversity of Rhizobacteria in Ginseng Soil and Their Plant Benefiting Attributes
    Eun Hye Hong, Sun Hee Lee, Regupathy Thamizh Vendan, Young Ha Rhee
    The Korean Journal of Microbiology.2012; 48(4): 246.     CrossRef
  • Biosynthesis of Copolyesters Consisting of 3-Hydroxyvalerate and Medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 Strain
    Sang-Hee Woo, Jae-Hee Kim, Yu-Yang Ni, Young-Ha Rhee
    The Korean Journal of Microbiology.2012; 48(3): 200.     CrossRef
Evaluation of Endophytic Colonization of Citrus sinensis and Catharanthus roseus Seedlings by Endophytic Bacteria
Paulo Teixeira Lacava , Welington Luiz Araujo , Joao Lucio Azevedo
J. Microbiol. 2007;45(1):11-14.
DOI: https://doi.org/2498 [pii]
  • 51 View
  • 0 Download
AbstractAbstract
Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.
Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis
Myung Soo Park , Se Ra Jung , Myoung Sook Lee , Kyoung Ok Kim , Jin Ok Do , Kang Hyun Lee , Seung Bum Kim , Kyung Sook Bae
J. Microbiol. 2005;43(3):219-227.
DOI: https://doi.org/2223 [pii]
  • 53 View
  • 0 Download
AbstractAbstract
Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal areas in Tae-An, Chungnam Province, were analyzed using a culture-dependent approach. A total of 212 bacteria were isolated from the root and rhizosphere samples of the two plants, and subjected to further analysis. Based on the analysis of the 16S rDNA sequences, all the bacterial isolates were classified into six major phyla of the domain Bacteria. Significant differences were observed between the two plant species, and also between the rhizospheric and root endophytic communities. The isolates from the rhizosphere of the two plant species were assigned to 27 different established genera, and the root endophytic bacteria were assigned to 21. Members of the phylum Gammaproteobacteria, notably the Pseudomonas species, comprised the majority of both the rhizospheric and endophytic bacteria, followed by members of Bacteroidetes and Firmicutes in the rhizosphere and Alphaproteobacteria and Bacteroidetes in the root. A number of isolates were recognized as potentially novel bacterial taxa. Fifteen out of 27 bacterial genera were commonly found in the rhizosphere of both plants, which was comparable to 3 out of 21 common genera in the root, implying the host specificity for endophytic populations. This study of the diversity of culturable rhizospheric and endophytic bacteria has provided the basis for further investigation aimed at the selection of microbes for the facilitation of plant growth.
Impact of Genetically Modified Enterobacter cloacae on Indigenous Endophytic Community of Citrus sinensis Seedlings
Fernando Dini Andreote , Marcelo Jose Mortatti Gullo , Andre Oliveira de Souza Lima , Walter Maccheroni Junior , Joao Lucio Azevedo , Welington Luiz Araujo
J. Microbiol. 2004;42(3):169-173.
  • 54 View
  • 0 Download
AbstractAbstract
Enterobacter cloacae (strain PR2/7), a genetically modified endophyte (GME) in citrus plants, carrying different plasmids (pEC3.0/18, pCelE, pEglA and pGFP), was inoculated into Citrus sinensis seedlings under greenhouse conditions. The impact of this on the indigenous bacterial endophytic community was studied by analyses of 2 different morphologic groups. The germination rates of inoculated seeds were evaluated in greenhouse, and plasmid stability under in vitro conditions. Results demonstrated a great and diverse endophytic community inside plants, and specialization in tissue colonization by some bacterial groups, in different treatments. Shifts in seed germination rate were observed among treatments: in general, the PR2/7 harboring pEglA bacterial clone significantly reduced seed germination, compared to the PR2/7 harboring pEC3.0/18 clone. This suggests that the presence of the pEglA plasmid changes bacteria-seed interactions. The endophytic community of citrus seedlings changed according to treatment. In seedlings treated with the PR2/7 with pEglA clone, the population of group II decreased significantly, within the context of the total endophytic community. These results indicate that the application of GMEs induces shifts in the endophytic bacterial community of citrus seedlings.

Journal of Microbiology : Journal of Microbiology
TOP