Recently, floating membrane filter cultivation was adopted to simulate solid surface and enrich surface-adapted soil ammonia-oxidizing archaea (AOA) communities from agricultural soil, as opposed to the conventional liquid medium. Here, we conducted metagenomic sequencing to recover nitrifier bins from the floating membrane filter cultures and reveal their genomic properties. Phylogenomic analysis showed that AOA bins recovered from this study, designated FF_bin01 and FF_bin02, are affiliated with the Nitrososphaeraceae family, while the third bin, FF_bin03, is a nitrite-oxidizing bacterium affiliated with the Nitrospiraceae family. Based on the ANI/AAI analysis, FF_bin01 and FF_bin02 are identified as novel species within the genera “Candidatus Nitrosocosmicus” and Nitrososphaera, respectively, while FF_bin03 represents a novel species within the genus Nitrospira. The pan and core genome analysis for the 29 AOA genomes considered in this study revealed 5,784 orthologous clusters, out of which 653 were core orthologous clusters. Additionally, 90 unique orthologous clusters were conserved among the Nitrososphaeraceae family, suggesting their potential role in enhancing culturability and adaptation to diverse environmental conditions. Intriguingly, FF_bin01 and FF_bin02 harbor a gene encoding manganese catalase and FF_bin03 also possesses a heme catalase gene, which might enhance their growth on the floating membrane filter. Overall, the floating membrane filter cultivation has proven to be a promising approach for isolating distinct soil AOA, and further modifications to this technique could stimulate the growth of a broader range of uncultivated nitrifiers from diverse soil environments.
Lysis inhibition (LIN) in bacteriophage is a strategy to maximize progeny production. A clear plaque-forming mutant, CSP1C, was isolated from the turbid plaque-forming CSP1 phage. CSP1C exhibited an adsorption rate and replication dynamics similar to CSP1. Approximately 90% of the phages were adsorbed to the host cell within 12 min, and both phages had a latent period of 25 min. Burst sizes were 171.42 ± 31.75 plaque-forming units (PFU) per infected cell for CSP1 and 168.94 ± 51.67 PFU per infected cell for CSP1C. Both phages caused comparable reductions in viable E. coli cell counts at a low multiplicity of infection (MOI). However, CSP1 infection did not reduce turbidity, suggesting a form of LIN distinct from the well-characterized LIN of T4 phage. Genomic analysis revealed that a 4,672-base pairs (bp) DNA region, encompassing part of the tail fiber gene, CSP1_020, along with three hypothetical genes, CSP1_021, CSP1_022, and part of CSP1_023, was deleted from CSP1 to make CSP1C. Complementation analysis in CSP1C identified CSP1_020, CSP1_021, and CSP1_022 as a minimal gene set required for the lysis suppression in CSP1. Co-expression of these genes in E. coli with holin (CSP1_092) and endolysin (CSP1_091) resulted in lysis suppression. Lysis suppression was abolished by disrupting the proton motive force (PMF), supporting their potential role as antiholin. Additionally, CSP1_021 directly interacts with holin, suggesting that it may function as an antiholin. These findings identify new genetic factors involved in lysis suppression in CSP1, providing broader insights into phage strategies for modulating host cell lysis.
Evolution has been systematically exploited to engineer biological systems to obtain improved or novel functionalities by selecting beneficial mutations. Recent innovations in continuous targeted mutagenesis within living cells have emerged to generate large sequence diversities without requiring multiple steps. This review comprehensively introduces recent advancements in this field, categorizing them into three approaches depending on methods to create mutations: orthogonal error-prone DNA polymerases, site-specific base editors, and homologous recombination of mutagenic DNA fragments. Combined with high-throughput screening methods, these advances expedited evolution processes with significant reduction of labor and time. These approaches promise broader industrial and research applications, including enzyme improvement, metabolic engineering, and drug resistance studies.
Citations
Phage specificity primarily relies on host cell-surface receptors. However, integrating cas genes and guide RNAs into phage genomes could enhance their target specificity and regulatory effects. In this study, we developed a CRISPR-Cas12f1 system-equipped bacteriophage λ model capable of detecting Escherichia coli target genes. We demonstrated that synthetic λ phages carrying Cas12f1-sgRNA can effectively prevent lysogen formation. Furthermore, we showcased that truncating the 3'-end of sgRNA enables precise identification of single-nucleotide variations in the host genome. Moreover, infecting E. coli strains carrying various stx2 gene subtypes encoding Shiga toxin with bacteriophages harboring Cas12f1 and truncated sgRNAs resulted in the targeted elimination of strains with matching subtype genes. These findings underscore the ability of phages equipped with the CRISPR-Cas12f1 system to precisely control microbial hosts by recognizing genomic sequences with high resolution.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations