Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "Streptococcus suis"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses
Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(7):491-509.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00159-4
  • 251 View
  • 0 Download
  • 10 Web of Science
  • 9 Crossref
AbstractAbstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.

Citations

Citations to this article as recorded by  
  • Engineering an oncolytic adenoviral platform for precise delivery of antisense peptide nucleic acid to modulate PD-L1 overexpression in cancer cells
    Andrea Patrizia Falanga, Francesca Greco, Monica Terracciano, Stefano D’Errico, Maria Marzano, Sara Feola, Valentina Sepe, Flavia Fontana, Ilaria Piccialli, Vincenzo Cerullo, Hélder A. Santos, Nicola Borbone
    International Journal of Pharmaceutics.2025; 668: 124941.     CrossRef
  • Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology
    Emile Youssef, Brandon Fletcher, Dannelle Palmer
    Frontiers in Medicine.2025;[Epub]     CrossRef
  • Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics
    Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen, Laura M. K. Dassama
    Chemical Reviews.2025; 125(4): 2120.     CrossRef
  • Intestinal mucus: the unsung hero in the battle against viral gastroenteritis
    Waqar Saleem, Ateeqa Aslam, Mehlayl Tariq, Hans Nauwynck
    Gut Pathogens.2025;[Epub]     CrossRef
  • Chromatin structure and gene transcription of recombinant p53 adenovirus vector within host
    Duo Ning, Yuqing Deng, Simon Zhongyuan Tian
    Frontiers in Molecular Biosciences.2025;[Epub]     CrossRef
  • Multi-level ROS regulation to activate innate and adaptive immune therapies
    Ke-Ke Feng, Cheng-Lei Li, Yi-Fan Tu, Shi-Cheng Tian, Rui Xiong, Bai-Sheng Sa, Jing-Wei Shao
    Chemical Engineering Journal.2025; 515: 163429.     CrossRef
  • Genetically modified cell membrane proteins in tissue engineering and regenerative medicine
    Yilin Bao, Yue Hu, Mengxuan Hao, Qinmeng Zhang, Guoli Yang, Zhiwei Jiang
    Biofabrication.2025; 17(3): 032004.     CrossRef
  • Molecular Engineering of Virus Tropism
    Bo He, Belinda Wilson, Shih-Heng Chen, Kedar Sharma, Erica Scappini, Molly Cook, Robert Petrovich, Negin P. Martin
    International Journal of Molecular Sciences.2024; 25(20): 11094.     CrossRef
  • Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration
    Andrey Vyacheslavovich Vasilyev, Irina Alekseevna Nedorubova, Viktoria Olegovna Chernomyrdina, Anastasiia Yurevna Meglei, Viktoriia Pavlovna Basina, Anton Vladimirovich Mironov, Valeriya Sergeevna Kuznetsova, Victoria Alexandrovna Sinelnikova, Olga Anatol
    International Journal of Molecular Sciences.2024; 25(24): 13300.     CrossRef
Journal Articles
Lactobacillus rhamnosus KBL2290 Ameliorates Gut Inflammation in a Mouse Model of Dextran Sulfate Sodium‑Induced Colitis
Woon-ki Kim , Sung-gyu Min , Heeun Kwon , SungJun Park , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2023;61(7):673-682.   Published online June 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00061-5
  • 83 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.

Citations

Citations to this article as recorded by  
  • Dietary supplementation with proanthocyanidins and rutin alleviates the symptoms of type 2 diabetes mice and regulates gut microbiota
    Yue Gao, Binbin Huang, Yunyi Qin, Bing Qiao, Mengfei Ren, Liqing Cao, Yan Zhang, Maozhen Han
    Frontiers in Microbiology.2025;[Epub]     CrossRef
  • Lacticaseibacillus rhamnosus G7 alleviates DSS-induced ulcerative colitis by regulating the intestinal microbiota
    Jianlong Lao, Man Chen, Shuping Yan, Han Gong, Zhaohai Wen, Yanhong Yong, Dan Jia, Shuting Lv, Wenli Zou, Junmei Li, Huiming Tan, Hong Yin, Xiangying Kong, Zengyuan Liu, Fucheng Guo, Xianghong Ju, Youquan Li
    BMC Microbiology.2025;[Epub]     CrossRef
  • Probiotics: Shaping the gut immunological responses
    Eirini Filidou, Leonidas Kandilogiannakis, Anne Shrewsbury, George Kolios, Katerina Kotzampassi
    World Journal of Gastroenterology.2024; 30(15): 2096.     CrossRef
  • Synergistic effects of probiotics with soy protein alleviate ulcerative colitis by repairing the intestinal barrier and regulating intestinal flora
    Rentang Zhao, Bingqing Shang, Luyan Sun, Suyuan Lv, Guolong Liu, Qiu Wu, Yue Geng
    Journal of Functional Foods.2024; 122: 106514.     CrossRef
  • Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation
    Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun
    Journal of Microbiology.2024; 62(10): 907.     CrossRef
  • Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide
    Yeji You, Sung-Hwan Kim, Chul-Hong Kim, In-Hwan Kim, YoungSup Shin, Tae-Rahk Kim, Minn Sohn, Jeseong Park
    Microorganisms.2023; 11(9): 2312.     CrossRef
Antibacterial pathway of cefquinome against Staphylococcus aureus based on label-free quantitative proteomics analysis
Linglin Gao , Hao Zhu , Yun Chen , Yuhui Yang
J. Microbiol. 2021;59(12):1112-1124.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1201-x
  • 81 View
  • 0 Download
  • 5 Web of Science
  • 1 Crossref
AbstractAbstract
Cefquinome (CEQ) is a novel β-lactam antibiotic that exhibits excellent antibacterial activity against Staphylococcus aureus. However, the bacterial protein targets of CEQ are unclear. To evaluate the relationship between the pharmacokinetic/ pharmacodynamic (PK/PD) parameters of CEQ and strains with varying degrees of resistance and to elucidate bacterial protein responses to CEQ treatment, label-free quantitative proteomics analysis was conducted. The sensitive S. aureus ATCC6538 and the resistant 2MIC and 8MIC were tested for differentially expressed proteins. An in vitro model was treated with different concentrations of CEQ (3, 5, or 10 μg/ml) with different terminal half-lives (2.5 or 5 h) at different intervals (12 or 24 h). Differentially expressed proteins were evaluated using Gene Ontology analysis followed by KEGG pathway enrichment analysis and STRING network analysis. RT-qPCR was performed to validate the differentially expressed proteins at the molecular level. The results showed that the degree of resistance increased in a cumulative manner and increased gradually with the extension of administration time. The resistant strain would not have appeared in the model only if %T > mutant prevention concentration ≥ 50%. The expression of 45 proteins significantly changed following CEQ treatment, among which 42 proteins were obviously upregulated and 3 were downregulated. GO analysis revealed that the differentially expressed proteins were mainly present on cells and the cell membrane, participated in metabolic and intracellular processes, and had catalytic and binding activities. The RPSO, SDHB, CITZ, ADK, and SAOUHSC 00113 genes in S. aureus may play important roles in the development of resistance to CEQ. These results provided important reference candidate proteins as targets for overcoming S. aureus resistance to CEQ.

Citations

Citations to this article as recorded by  
  • Detection of Antibiotic Resistance in Feline-Origin ESBL Escherichia coli from Different Areas of China and the Resistance Elimination of Garlic Oil to Cefquinome on ESBL E. coli
    Yin-Chao Tong, Peng-Cheng Li, Yang Yang, Qing-Yi Lin, Jin-Tong Liu, Yi-Nuo Gao, Yi-Ning Zhang, Shuo Jin, Su-Zhu Qing, Fu-Shan Xing, Yun-Peng Fan, Ying-Qiu Liu, Wei-Ling Wang, Wei-Min Zhang, Wu-Ren Ma
    International Journal of Molecular Sciences.2023; 24(11): 9627.     CrossRef
Research Support, Non-U.S. Gov'ts
The Identification of Six Novel Proteins with Fibronectin or Collagen Type І Binding Activity from Streptococcus suis Serotype 2
Hui Zhang , Junxi Zheng , Li Yi , Yue Li , Zhe Ma , Hongjie Fan , Chengping Lu
J. Microbiol. 2014;52(11):963-969.   Published online October 31, 2014
DOI: https://doi.org/10.1007/s12275-014-4311-x
  • 71 View
  • 0 Download
  • 12 Crossref
AbstractAbstract
Streptococcus suis, a major swine pathogen, is an emerging zoonotic agent that causes meningitis and septic shock. Bacterial cell wall and secreted proteins are often involved in interactions with extracellular matrix proteins (ECMs), which play important roles in the initial steps of pathogenesis. In this study, 2D SDS-PAGE, western blotting-based binding affinity measurements, and microtiter plate binding assays were used to identify cell wall and secreted proteins from S. suis that interact with fibronectin and collagen type І. We identified six proteins from S. suis, including three proteins (translation elongation factor G, oligopeptide-binding protein OppA precursor, and phosphoglycerate mutase) that show both fibronectin and collagen type І binding activity. To the best of our knowledge, these three newly identified proteins had no previously reported fibronectin or collagen type І binding activity. Overall, the aim in this study was to identify proteins with ECM binding activity from S. suis and it represents the first report of six new proteins from S. suis that interact with fibronectin or collagen type І.

Citations

Citations to this article as recorded by  
  • Orphan response regulator CovR plays positive regulative functions in the survivability and pathogenicity of Streptococcus suis serotype 2 isolated from a pig
    Yanyan Zhang, Rui Li, Qian Li, Yongwei Zhu, Xiaopei Yang, Di Zhao, Bingbing Zong
    BMC Veterinary Research.2023;[Epub]     CrossRef
  • Schistosoma mansoni phosphoglycerate mutase: a glycolytic ectoenzyme with thrombolytic potential
    David B. Pirovich, Akram A. Da’dara, Patrick J. Skelly
    Parasite.2022; 29: 41.     CrossRef
  • Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions
    Haodan Zhu, Junming Zhou, Dandan Wang, Zhengyu Yu, Bin Li, Yanxiu Ni, Kongwang He
    Archives of Microbiology.2021; 203(7): 4715.     CrossRef
  • Identification of novel pig and human immunoglobulin G-binding proteins and characterization of the binding regions of enolase from Streptococcus suis serotype 2
    Quan Li, Yang Fu, Genglin Guo, Zhuohao Wang, Wei Zhang
    AMB Express.2020;[Epub]     CrossRef
  • Identification of two adhesins of Actinobacillus seminis
    J. Fernando Montes-García, Delil A. Chincoya Martinez, Sergio Vaca Pacheco, Candelario Vázquez Cruz, Patricia Sanchez Alonso, Juan Xicohtencatl Cortes, Hector Trujillo-Ruiz, Erasmo Negrete-Abascal
    Small Ruminant Research.2018; 167: 100.     CrossRef
  • Characterization and functional analysis of PnuC that is involved in the oxidative stress tolerance and virulence of Streptococcus suis serotype 2
    Quan Li, Yuhang Zhang, Du Dechao, Yu Yanfei, Wei Zhang
    Veterinary Microbiology.2018; 216: 198.     CrossRef
  • Understanding the virulence of Streptococcus suis : A veterinary, medical, and economic challenge
    B. Haas, D. Grenier
    Médecine et Maladies Infectieuses.2018; 48(3): 159.     CrossRef
  • Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria
    Quan Li, Caifeng Ma, Yang Fu, Yanan He, Yanfei Yu, Dechao Du, Huochun Yao, Chengping Lu, Wei Zhang
    Microbiological Research.2017; 196: 17.     CrossRef
  • The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix
    Lisa Hagemann, Anne Gründel, Enno Jacobs, Roger Dumke
    Pathogens and Disease.2017;[Epub]     CrossRef
  • Initial steps of the pathogenesis of the infection caused byStreptococcus suis: fighting against nonspecific defenses
    Mariela Segura, Cynthia Calzas, Daniel Grenier, Marcelo Gottschalk
    FEBS Letters.2016; 590(21): 3772.     CrossRef
  • Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix
    Anne Gründel, Enno Jacobs, Roger Dumke
    International Journal of Medical Microbiology.2016; 306(8): 675.     CrossRef
  • Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2
    Quan Li, Hanze Liu, Dechao Du, Yanfei Yu, Caifeng Ma, Fangfang Jiao, Huochun Yao, Chengping Lu, Wei Zhang
    Frontiers in Cellular and Infection Microbiology.2015;[Epub]     CrossRef
Functional Definition of LuxS, an Autoinducer-2 (AI-2) Synthase and Its Role in Full Virulence of Streptococcus suis Serotype 2
Min Cao , Youjun Feng , Changjun Wang , Feng Zheng , Ming Li , Hui Liao , Yinghua Mao , Xiuzhen Pan , Jing Wang , Dan Hu , Fuquan Hu , Jiaqi Tang
J. Microbiol. 2011;49(6):1000-1011.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1523-1
  • 45 View
  • 0 Download
  • 34 Crossref
AbstractAbstract
Quorum sensing is a widespread chemical communication in response to fluctuation of bacterial population density, and has been implicated into bacterial biofilm formation and regulation of expression of virulence factors. The luxS gene product, S-ribosylhomocysteinase, catalizes the last committed step in biosynthetic pathway of autoinducer 2 (AI-2), a signaling molecule for inter-species quorum sensing. We found a luxS homologue in 05ZYH33, an epidemic strain of Streptococcus suis serotype 2 (SS2) in China. A luxS null mutant (ΔluxS) of 05ZYH33 strain was obtained using an approach of homologous recombination. LuxS was determined to be required for AI-2 production in 05ZYH33 strain of S. suis 2. Inactivation of luxS gene led to a wide range of phenotypic changes including thinner capsular walls, increased tolerance to H2O2, reduced adherence capacity to epithelial cells, etc. In particular, loss of LuxS impaired dramatically its full virulence of SS2 in experimental model of piglets, and functional complementation restored it nearly to the level of parent strain. Genome-wide transcriptome analyses suggested that some known virulence factors such as CPS are down-regulated in the ΔluxS mutant, which might in part explain virulence attenuation by luxS deletion. Similarly, 29 of 71 genes with different expression level were proposed to be targets candidate regulated by LuxS/AI-2-dependent quorum sensing.

Citations

Citations to this article as recorded by  
  • Effects of vitamin B 12 supply on cellular processes of the facultative vitamin B 12 consumer Vibrio campbellii
    Luna-Agrippina Groon, Stefan Bruns, Leon Dlugosch, Heinz Wilkes, Gerrit Wienhausen, Isaac Cann
    Applied and Environmental Microbiology.2025;[Epub]     CrossRef
  • Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria
    Shuji Gao, Yuxin Wang, Shuo Yuan, Jing Zuo, Wenjie Jin, Yamin Shen, Daniel Grenier, Li Yi, Yang Wang
    Microbiological Research.2024; 282: 127655.     CrossRef
  • Collateral sensitivity to gamithromycin in ciprofloxacin-resistant Streptococcus suis is driven by increasing intracellular antibiotic accumulation
    Yuejun Zhang, Mengting Tao, Ruiling Wang, Zilin Shi, Peipei Li, Sijia Tang, Jian Sun, Xiaoping Liao, Yufeng Zhou
    Journal of Integrative Agriculture.2024;[Epub]     CrossRef
  • Characterization of AI-2/LuxS quorum sensing system in biofilm formation, pathogenesis of Streptococcus equi subsp. zooepidemicus
    Honglin Xie, Riteng Zhang, Ruhai Guo, Yining Zhang, Jingya Zhang, Hui Li, Qiang Fu, Xinglong Wang
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Whole-Genome Sequencing and Phenotypic Analysis of Streptococcus equi subsp. zooepidemicus Sequence Type 147 Isolated from China
    Yan Su, Zehua Zhang, Li Wang, Baojiang Zhang, Lingling Su
    Microorganisms.2024; 12(4): 824.     CrossRef
  • A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies
    Carolin Liedel, Karoline Rieckmann, Christoph G. Baums
    BMC Veterinary Research.2023;[Epub]     CrossRef
  • The Antibacterial Effect of Cannabigerol toward Streptococcus mutans Is Influenced by the Autoinducers 21-CSP and AI-2
    Muna Aqawi, Ronit Vogt Sionov, Michael Friedman, Doron Steinberg
    Biomedicines.2023; 11(3): 668.     CrossRef
  • Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria
    Qingying Fan, Jing Zuo, Haikun Wang, Daniel Grenier, Li Yi, Yang Wang
    Biotechnology Advances.2022; 59: 107965.     CrossRef
  • mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2
    Jinpeng Li, Yuxin Wang, Yanbin Du, Hui Zhang, Qingying Fan, Liyun Sun, Li Yi, Shaohui Wang, Yang Wang
    BMC Microbiology.2021;[Epub]     CrossRef
  • LsrR, the effector of AI-2 quorum sensing, is vital for the H2O2 stress response in mammary pathogenic Escherichia coli
    Hui Wang, Fei Shang, Jiawei Shen, Jingyi Xu, Xiaolin Chen, Jingtian Ni, Lumin Yu, Ting Xue
    Veterinary Research.2021;[Epub]     CrossRef
  • Effect of Quorum Sensing Inhibitor Agents against Pseudomonas aeruginosa
    M. Asif, M. Imran
    Russian Journal of Bioorganic Chemistry.2020; 46(2): 149.     CrossRef
  • Involvement of Various Enzymes in the Physiology and Pathogenesis of Streptococcus suis
    Chengkun Zheng, Man Wei, Mengdie Jia, ManMan Cao
    Veterinary Sciences.2020; 7(4): 143.     CrossRef
  • How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses
    Xiaojing Xia, Wanhai Qin, Huili Zhu, Xin Wang, Jinqing Jiang, Jianhe Hu
    Journal of Microbiology, Immunology and Infection.2019; 52(4): 516.     CrossRef
  • Quorum Sensing Inhibition: Current Advances of the Natural Antimicrobial Agents
    M. Asif, M. Imran
    Russian Journal of Bioorganic Chemistry.2019; 45(6): 488.     CrossRef
  • Does the Endocannabinoid Anandamide Affect Bacterial Quorum Sensing, Vitality, and Motility?
    Liat Friedman, Reem Smoum, Mark Feldman, Raphael Mechoulam, Doron Steinberg
    Cannabis and Cannabinoid Research.2019; 4(2): 102.     CrossRef
  • The LuxS/AI-2 system of Streptococcus suis
    Yang Wang, Yuxin Wang, Liyun Sun, Daniel Grenier, Li Yi
    Applied Microbiology and Biotechnology.2018; 102(17): 7231.     CrossRef
  • Role of two-component regulatory systems in the virulence of Streptococcus suis
    Chengkun Zheng, Lingzhi Li, Haojie Ge, Hongmei Meng, Yang Li, Weicheng Bei, Xiaohui Zhou
    Microbiological Research.2018; 214: 123.     CrossRef
  • Critical Streptococcus suis Virulence Factors: Are They All Really Critical?
    Mariela Segura, Nahuel Fittipaldi, Cynthia Calzas, Marcelo Gottschalk
    Trends in Microbiology.2017; 25(7): 585.     CrossRef
  • Stress Physiology of Lactic Acid Bacteria
    Konstantinos Papadimitriou, Ángel Alegría, Peter A. Bron, Maria de Angelis, Marco Gobbetti, Michiel Kleerebezem, José A. Lemos, Daniel M. Linares, Paul Ross, Catherine Stanton, Francesca Turroni, Douwe van Sinderen, Pekka Varmanen, Marco Ventura, Manuel Z
    Microbiology and Molecular Biology Reviews.2016; 80(3): 837.     CrossRef
  • Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans
    Lin Lin, Tao Li, Shang Dai, Jiangliu Yu, Xiuqin Chen, Liangyan Wang, Yunguang Wang, Yuejin Hua, Bing Tian
    Archives of Microbiology.2016; 198(1): 43.     CrossRef
  • Initial steps of the pathogenesis of the infection caused byStreptococcus suis: fighting against nonspecific defenses
    Mariela Segura, Cynthia Calzas, Daniel Grenier, Marcelo Gottschalk
    FEBS Letters.2016; 590(21): 3772.     CrossRef
  • Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS
    Yang Wang, Li Yi, Shaohui Wang, Hongjie Fan, Chan Ding, Xiang Mao, Chengping Lu, Eric Cascales
    PLOS ONE.2015; 10(10): e0138826.     CrossRef
  • First human case report of sepsis due to infection with Streptococcus suis serotype 31 in Thailand
    Rujirat Hatrongjit, Anusak Kerdsin, Marcelo Gottschalk, Dan Takeuchi, Shigeyuki Hamada, Kazunori Oishi, Yukihiro Akeda
    BMC Infectious Diseases.2015;[Epub]     CrossRef
  • Two novel regulators of N‐acetyl‐galactosamine utilization pathway and distinct roles in bacterial infections
    Huimin Zhang, Dmitry A. Ravcheev, Dan Hu, Fengyu Zhang, Xiufang Gong, Lina Hao, Min Cao, Dmitry A. Rodionov, Changjun Wang, Youjun Feng
    MicrobiologyOpen.2015; 4(6): 983.     CrossRef
  • Functional analysis of AI-2/LuxS from bacteria in Chinese fermented meat after high nitrate concentration shock
    Mei Lin, Guang-Hong Zhou, Zhi-Geng Wang, Bai Yun
    European Food Research and Technology.2015; 240(1): 119.     CrossRef
  • Two Spx Regulators Modulate Stress Tolerance and Virulence in Streptococcus suis Serotype 2
    Chengkun Zheng, Jiali Xu, Jinquan Li, Luohong Hu, Jiandong Xia, Jingyan Fan, Weina Guo, Huanchun Chen, Weicheng Bei, José A. Lemos
    PLoS ONE.2014; 9(9): e108197.     CrossRef
  • The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence
    Dan Hu, Fengyu Zhang, Huimin Zhang, Lina Hao, Xiufang Gong, Meiling Geng, Min Cao, Feng Zheng, Jin Zhu, Xiuzhen Pan, Jiaqi Tang, Youjun Feng, Changjun Wang
    Scientific Reports.2014;[Epub]     CrossRef
  • The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid
    Zongfu Wu, Chunyan Wu, Jing Shao, Zhenzhen Zhu, Weixue Wang, Wenwei Zhang, Min Tang, Na Pei, Hongjie Fan, Jiguang Li, Huochun Yao, Hongwei Gu, Xun Xu, Chengping Lu
    RNA.2014; 20(6): 882.     CrossRef
  • Biofilm Formation, Host-Cell Adherence, and Virulence Genes Regulation of Streptococcus suis in Response to Autoinducer-2 Signaling
    Yang Wang, Li Yi, Zhicheng Zhang, Hongjie Fan, Xiangchao Cheng, Chengping Lu
    Current Microbiology.2014; 68(5): 575.     CrossRef
  • Increased Constituent Ratios of Klebsiella sp., Acinetobacter sp., and Streptococcus sp. and a Decrease in Microflora Diversity May Be Indicators of Ventilator-Associated Pneumonia: A Prospective Study in the Respiratory Tracts of Neonates
    Wei Lu, Jialin Yu, Qing Ai, Dong Liu, Chao Song, Luquan Li, Katriina Aalto-Setala
    PLoS ONE.2014; 9(2): e87504.     CrossRef
  • Streptococcus suisinfection
    Youjun Feng, Huimin Zhang, Zuowei Wu, Shihua Wang, Min Cao, Dan Hu, Changjun Wang
    Virulence.2014; 5(4): 477.     CrossRef
  • Overexpression of luxS Cannot Increase Autoinducer‐2 Production, Only Affect the Growth and Biofilm Formation in Streptococcus suis
    Yang Wang, Li Yi, Zhicheng Zhang, Hongjie Fan, Xiangchao Cheng, Chengping Lu, E. T. Johnson, D. Ustek
    The Scientific World Journal.2013;[Epub]     CrossRef
  • Heterologous Expression of sahH Reveals That Biofilm Formation Is Autoinducer-2-independent in Streptococcus sanguinis but Is Associated with an Intact Activated Methionine Cycle
    Sylvio Redanz, Kerstin Standar, Andreas Podbielski, Bernd Kreikemeyer
    Journal of Biological Chemistry.2012; 287(43): 36111.     CrossRef
  • Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture
    Youjun Feng, Min Cao, Jie Shi, Huimin Zhang, Dan Hu, Jing Zhu, Xianyun Zhang, Meiling Geng, Feng Zheng, Xiuzhen Pan, Xianfu Li, Fuquan Hu, Jiaqi Tang, Changjun Wang
    Scientific Reports.2012;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP