Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Phage therapy"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Characterization of novel bacteriophages for effective phage therapy against Vibrio infections in aquaculture
Kira Moon, Sangdon Ryu, Seung Hui Song, Se Won Chun, Nakyeong Lee, Aslan Hwanhwi Lee
J. Microbiol. 2025;63(5):e2502009.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2502009
  • 4,159 View
  • 153 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

The widespread use of antibiotics in aquaculture has led to the emergence of multidrug-resistant pathogens and environmental concerns, highlighting the need for sustainable, eco-friendly alternatives. In this study, we isolated and characterized three novel bacteriophages from aquaculture effluents in Korean shrimp farms that target the key Vibrio pathogens, Vibrio harveyi, and Vibrio parahaemolyticus. Bacteriophages were isolated through environmental enrichment and serial purification using double-layer agar assays. Transmission electron microscopy revealed that the phages infecting V. harveyi, designated as vB_VhaS-MS01 and vB_VhaS-MS03, exhibited typical Siphoviridae morphology with long contractile tails and icosahedral heads, whereas the phage isolated from V. parahaemolyticus (vB_VpaP-MS02) displayed Podoviridae characteristics with an icosahedral head and short tail.

Whole-genome sequencing produced complete, circularized genomes of 81,710 bp for vB_VhaS-MS01, 81,874 bp for vB_VhaS-MS03, and 76,865 bp for vB_VpaP-MS02, each showing a modular genome organization typical of Caudoviricetes. Genomic and phylogenetic analyses based on the terminase large subunit gene revealed that although vB_VhaS-MS01 and vB_VhaS-MS03 were closely related, vB_VpaP-MS02 exhibited a distinct genomic architecture that reflects its unique morphology and host specificity. Collectively, these comparative analyses demonstrated that all three phages possess genetic sequences markedly different from those of previously reported bacteriophages, thereby establishing their novelty. One-step growth and multiplicity of infection (MOI) experiments demonstrated significant differences in replication kinetics, such as burst size and lytic efficiency, among the phages, with vB_VhaS-MS03 maintaining the most effective bacterial control, even at an MOI of 0.01. Additionally, host range assays showed that vB_VhaS-MS03 possessed a broader spectrum of activity, supporting its potential use as a stand-alone agent or key component of phage cocktails. These findings highlight the potential of region-specific phage therapy as a targeted and sustainable alternative to antibiotics for controlling Vibrio infections in aquaculture.

Citations

Citations to this article as recorded by  
  • Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
    Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe, Reuben Okocha
    Fishes.2025; 10(9): 471.     CrossRef
Journal Article
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 342 View
  • 6 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.

Citations

Citations to this article as recorded by  
  • Evaluation of Bacteriophage and Antibiotic Synergy Against Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates
    Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
    Journal of Bacteriology and Virology.2025; 55(2): 131.     CrossRef
  • Possible regulatory network and associated pathways governing the expression of ADH2 in Saccharomyces cerevisiae
    Pratima Sarkar, Rohan Nath, Prity Adhikary, Arindam Bhattacharjee
    Current Genetics.2025;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Antibacterial Efficacy of Lytic Pseudomonas Bacteriophage in Normal and Neutropenic Mice Models
Birendra R. Tiwari , Shukho Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2011;49(6):994-999.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1512-4
  • 190 View
  • 0 Download
  • 72 Crossref
AbstractAbstract PDF
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.

Citations

Citations to this article as recorded by  
  • Isolation and characterization of a potent bacteriophage KA targeting an antibiotic-resistant human pathogenic strain of Klebsiella pneumoniae KP1
    Aneela Nawaz, Nauman Ahmed Khalid, Sidra Zaheer, Muhammad Ismail Khan, Ali Khalid, Aamer Ali Shah, Malik Badshah, Samiullah Khan
    Microbial Pathogenesis.2026; 210: 108150.     CrossRef
  • Phage-induced protection against lethal bacterial reinfection
    Yikun Xing, Haroldo J. Hernandez Santos, Ling Qiu, Samantha R. Ritter, Jacob J. Zulk, Rachel Lahowetz, Kathryn A. Patras, Austen L. Terwilliger, Anthony W. Maresso
    Proceedings of the National Academy of Sciences.2025;[Epub]     CrossRef
  • Bacteriophages as an alternative strategy for the treatment of drug resistant bacterial infections: Current approaches and future perspectives
    Abayeneh Girma
    The Cell Surface.2025; 14: 100149.     CrossRef
  • Multi-strain phage induced clearance of bacterial infections
    Jacopo Marchi, Chau Nguyen Ngoc Minh, Laurent Debarbieux, Joshua S Weitz, Rob J De Boer
    PLOS Computational Biology.2025; 21(2): e1012793.     CrossRef
  • Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy
    Jagdev Singh, Melinda Solomon, Jonathan Iredell, Hiran Selvadurai
    Antibiotics.2025; 14(5): 427.     CrossRef
  • Isolation and identification of a newly discovered broad-spectrum Acinetobacter baumannii phage and therapeutic validation against pan-resistant Acinetobacter baumannii
    Miaomiao Lin, Lele Xiong, Wen Li, Lingyan Xiao, Wei Zhang, Xiaogui Zhao, Yishan Zheng
    Virologica Sinica.2025; 40(4): 587.     CrossRef
  • Overcoming antimicrobial resistance: Phage therapy as a promising solution to combat ESKAPE pathogens
    Ritu Raj Patel, Pandey Priya Arun, Sudhir Kumar Singh, Meenakshi Singh
    International Journal of Antimicrobial Agents.2025; 66(6): 107640.     CrossRef
  • Phage-mediated TLR2 signaling attenuates intracellular Mycobacterium abscessus survival in macrophages
    Hannah Kapoor, Aaron M. Maves, Madeline A. Bowder, Lia Danelishvili
    Scientific Reports.2025;[Epub]     CrossRef
  • Neutrophils, not macrophages, aid phage-mediated control of pulmonary Pseudomonas aeruginosa infection
    Chantal Weissfuss, Karen Hoffmann, Ulrike Behrendt, Magdalena Bürkle, Shailey G. Twamley, Imke H. E. Korf, Katharina Ahrens, Christine Rohde, Christian M. Zobel, Laurent Debarbieux, Jean-Damien Ricard, Martin Witzenrath, Geraldine Nouailles
    Frontiers in Immunology.2025;[Epub]     CrossRef
  • Mycobacteriophages: therapeutic approach for mycobacterial infections
    Sunil Kumar Raman, D.V. Siva Reddy, Vikas Jain, Urmi Bajpai, Amit Misra, Amit Kumar Singh
    Drug Discovery Today.2024; 29(7): 104049.     CrossRef
  • Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications
    Elaheh Alipour-Khezri, Mikael Skurnik, Gholamreza Zarrini
    Viruses.2024; 16(7): 1051.     CrossRef
  • Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo
    Eleri A. Ashworth, Rosanna C. T. Wright, Rebecca K. Shears, Janet K. L. Wong, Akram Hassan, James P. J. Hall, Aras Kadioglu, Joanne L. Fothergill
    Nature Communications.2024;[Epub]     CrossRef
  • Phage-inspired strategies to combat antibacterial resistance
    Mianzhi Wang, Junxuan Zhang, Jingyi Wei, Lei Jiang, Li Jiang, Yongxue Sun, Zhenling Zeng, Zhiqiang Wang
    Critical Reviews in Microbiology.2024; 50(2): 196.     CrossRef
  • Bacteriophages isolated from mouse feces attenuates pneumonia mice caused by Pseudomonas aeruginosa
    Nuttawut Sutnu, Wiwat Chancharoenthana, Supitcha Kamolratanakul, Pornpimol Phuengmaung, Uthaibhorn Singkham-In, Chiratchaya Chongrak, Sirikan Montathip, Dhammika Leshan Wannigama, Tanittha Chatsuwan, Puey Ounjai, Marcus J. Schultz, Asada Leelahavanichkul,
    PLOS ONE.2024; 19(7): e0307079.     CrossRef
  • Evaluation of the impact of repeated intravenous phage doses on mammalian host–phage interactions
    Xin Tan, Kai Chen, Zhihuan Jiang, Ziqiang Liu, Siyun Wang, Yong Ying, Jieqiong Zhang, Shengjian Yuan, Zhipeng Huang, Ruyue Gao, Min Zhao, Aoting Weng, Yongqing Yang, Huilong Luo, Daizhou Zhang, Yingfei Ma, Kristin N. Parent
    Journal of Virology.2024;[Epub]     CrossRef
  • The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo
    Arne Echterhof, Tejas Dharmaraj, Arya Khosravi, Robert McBride, Lynn Miesel, Ju-Hsin Chia, Patrick M. Blankenberg, Kun-Yuan Lin, Chien-Chang Shen, Yu-Ling Lee, Yu-Chuan Yeh, Wei Ting Liao, Francis G. Blankenberg, Krystyna Dąbrowska, Derek F. Amanatullah,
    JCI Insight.2024;[Epub]     CrossRef
  • In vivo safety evaluation and tracing of arginylglycylaspartic acid-engineered phage nanofiber in murine model
    Kshitiz Raj Shrestha, Sehoon Kim, Anna Jo, Murali Ragothaman, So Young Yoo
    Journal of Materials Chemistry B.2024; 12(40): 10258.     CrossRef
  • Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection
    Rogelio A. Rodriguez-Gonzalez, Quentin Balacheff, Laurent Debarbieux, Jacopo Marchi, Joshua S. Weitz, Oleg A. Igoshin
    mSystems.2024;[Epub]     CrossRef
  • Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy
    Dayeon Kang, Damayanti Bagchi, Irene A. Chen
    Advanced Therapeutics.2024;[Epub]     CrossRef
  • Phage therapy: A primer for orthopaedic trauma surgeons
    Baixing Chen, T.Fintan Moriarty, Willem-Jan Metsemakers, Marco Chittò
    Injury.2024; 55: 111847.     CrossRef
  • Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections
    Maria Siopi, Dimitrios Skliros, Paschalis Paranos, Nikoletta Koumasi, Emmanouil Flemetakis, Spyros Pournaras, Joseph Meletiadis, Graeme N. Forrest
    Clinical Microbiology Reviews.2024;[Epub]     CrossRef
  • Phage-Based Therapy in Combination with Antibiotics: A Promising Alternative against Multidrug-Resistant Gram-Negative Pathogens
    Cleo Anastassopoulou, Stefanos Ferous, Aikaterini Petsimeri, Georgia Gioula, Athanasios Tsakris
    Pathogens.2024; 13(10): 896.     CrossRef
  • Leveraging mathematical modeling framework to guide regimen strategy for phage therapy
    Zhiyuan Yu, Tiffany Luong, Selenne Banuelos, Andrew Sue, Hwayeon Ryu, Rebecca Segal, Dwayne R. Roach, Qimin Huang, Jaehee Kim
    PLOS Complex Systems.2024; 1(3): e0000015.     CrossRef
  • Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens
    Subhash Lal Karn, Mayank Gangwar, Rajesh Kumar, Satyanam Kumar Bhartiya, Gopal Nath
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa
    Aliaa Abdelghafar, Amira El-Ganiny, Ghada Shaker, Momen Askoura
    European Journal of Clinical Microbiology & Infectious Diseases.2023; 42(10): 1207.     CrossRef
  • Phage-host-immune system dynamics in bacteriophage therapy: basic principles and mathematical models
    Dongwoo Chae
    Translational and Clinical Pharmacology.2023; 31(4): 167.     CrossRef
  • BACTERIOPHAGE M13 MODULATES THE SEPSIS-RELATED INFLAMMATORY RESPONSES AND ORGAN DAMAGE IN A CLP MODEL
    Arezou Rahimi, Sara Soudi, Saeid Vakilian, Fatemeh Jamshidi-Adegani, Majid Sadeghizadeh, Sulaiman Al-Hashmi
    Shock.2023; 59(3): 493.     CrossRef
  • Human Neutrophil Response to Pseudomonas Bacteriophage PAK_P1, a Therapeutic Candidate
    Dwayne R. Roach, Benoît Noël, Sylvie Chollet-Martin, Mathieu de Jode, Vanessa Granger, Laurent Debarbieux, Luc de Chaisemartin
    Viruses.2023; 15(8): 1726.     CrossRef
  • Translating phage therapy into the clinic: Recent accomplishments but continuing challenges
    Aleksandra Petrovic Fabijan, Jonathan Iredell, Katarzyna Danis-Wlodarczyk, Razieh Kebriaei, Stephen T. Abedon
    PLOS Biology.2023; 21(5): e3002119.     CrossRef
  • Phage therapy for hidradenitis suppurativa: a unique challenge and possible opportunity for personalized treatment of a complex, inflammatory disease
    Lene Bens, Sabrina I Green, Daan Jansen, Tom Hillary, Tine Vanhoutvin, Jelle Matthijnssens, João Sabino, Séverine Vermeire, An Van Laethem, Jeroen Wagemans, Rob Lavigne
    Clinical and Experimental Dermatology.2023; 48(11): 1221.     CrossRef
  • Determination of phage load and administration time in simulated occurrences of antibacterial treatments
    Steffen Plunder, Markus Burkard, Ulrich M. Lauer, Sascha Venturelli, Luigi Marongiu
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Phage therapy for pulmonary infections: lessons from clinical experiences and key considerations
    Georgia Mitropoulou, Angela Koutsokera, Chantal Csajka, Sylvain Blanchon, Alain Sauty, Jean-Francois Brunet, Christophe von Garnier, Grégory Resch, Benoit Guery
    European Respiratory Review.2022; 31(166): 220121.     CrossRef
  • Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection
    Tomoya Suda, Tomoko Hanawa, Mayuko Tanaka, Yasunori Tanji, Kazuhiko Miyanaga, Sanae Hasegawa-Ishii, Ken Shirato, Takako Kizaki, Takeaki Matsuda
    Scientific Reports.2022;[Epub]     CrossRef
  • Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases
    Daniel R. Laucirica, Stephen M. Stick, Luke W. Garratt, Anthony Kicic
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans
    Panagiotis Zagaliotis, Jordyn Michalik-Provasek, Jason Gill, Thomas Walsh
    Pathogens and Immunity.2022; 7(2): 1.     CrossRef
  • Circulation of Fluorescently Labelled Phage in a Murine Model
    Zuzanna Kaźmierczak, Joanna Majewska, Magdalena Milczarek, Barbara Owczarek, Krystyna Dąbrowska
    Viruses.2021; 13(2): 297.     CrossRef
  • Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections
    Dana Holger, Razieh Kebriaei, Taylor Morrisette, Katherine Lev, Jose Alexander, Michael Rybak
    Antibiotics.2021; 10(5): 556.     CrossRef
  • Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia
    Ping Li, Yangheng Zhang, Fuhua Yan, Xin Zhou
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections
    Alan A. Schmalstig, Soha Freidy, Patrick O. Hanafin, Miriam Braunstein, Gauri G. Rao
    Clinical Pharmacology & Therapeutics.2021; 109(6): 1443.     CrossRef
  • A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa
    Iqbal Ahmad Alvi, Muhammad Asif, Shafiq ur Rehman
    Virus Research.2021; 292: 198250.     CrossRef
  • Antiviral effect of a bacteriophage on murine norovirus replication via modulation of the innate immune response
    Lili Zhang, Chang Ma, Jie Liu, Khashayar Shahin, Xiang Hou, Lichang Sun, Heye Wang, Ran Wang
    Virus Research.2021; 305: 198572.     CrossRef
  • Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens
    Mohammed Mijbas Mohammed Alomari, Marta Dec, Renata Urban-Chmiel
    Viruses.2021; 13(12): 2348.     CrossRef
  • Formulation strategies for bacteriophages to target intracellular bacterial pathogens
    Wei Yan, Parikshit Banerjee, Miao Xu, Subhankar Mukhopadhyay, Margaret Ip, Nicholas B. Carrigy, David Lechuga-Ballesteros, Kenneth Kin Wah To, Sharon S.Y. Leung
    Advanced Drug Delivery Reviews.2021; 176: 113864.     CrossRef
  • Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics
    Xianghui Li, Tongxin Hu, Jiacun Wei, Yuhua He, Abualgasim Elgaili Abdalla, Guoying Wang, Yanzhang Li, Tieshan Teng
    Antibiotics.2021; 10(2): 174.     CrossRef
  • Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation
    Kenneth J. Dery, Andrzej Górski, Ryszard Międzybrodzki, Douglas G. Farmer, Jerzy W. Kupiec-Weglinski
    Transplantation.2021; 105(7): 1449.     CrossRef
  • How to kill Pseudomonas—emerging therapies for a challenging pathogen
    Luke N. Yaeger, Victoria E. Coles, Derek C. K. Chan, Lori L. Burrows
    Annals of the New York Academy of Sciences.2021; 1496(1): 59.     CrossRef
  • Bacteriophages and the Immune System
    Medeea Popescu, Jonas D. Van Belleghem, Arya Khosravi, Paul L. Bollyky
    Annual Review of Virology.2021; 8(1): 415.     CrossRef
  • Synergistic Killing and Re-Sensitization of Pseudomonas aeruginosa to Antibiotics by Phage-Antibiotic Combination Treatment
    Emily Engeman, Helen R. Freyberger, Brendan W. Corey, Amanda M. Ward, Yunxiu He, Mikeljon P. Nikolich, Andrey A. Filippov, Stuart D. Tyner, Anna C. Jacobs
    Pharmaceuticals.2021; 14(3): 184.     CrossRef
  • Pharmacokinetics and Pharmacodynamics of a Novel Virulent Klebsiella Phage Kp_Pokalde_002 in a Mouse Model
    Gunaraj Dhungana, Roshan Nepal, Madhav Regmi, Rajani Malla
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy
    Magdalena Podlacha, Łukasz Grabowski, Katarzyna Kosznik-Kawśnicka, Karolina Zdrojewska, Małgorzata Stasiłojć, Grzegorz Węgrzyn, Alicja Węgrzyn
    International Journal of Molecular Sciences.2021; 22(16): 8937.     CrossRef
  • A Review of Using Mathematical Modeling to Improve Our Understanding of Bacteriophage, Bacteria, and Eukaryotic Interactions
    Kathryn M. Styles, Aidan T. Brown, Antonia P. Sagona
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Impact of Frequent Administration of Bacteriophage on Therapeutic Efficacy in an A. baumannii Mouse Wound Infection Model
    Michael D. Rouse, Joshua Stanbro, Jessica A. Roman, Michelle A. Lipinski, Anna Jacobs, Biswaijt Biswas, James Regeimbal, Matthew Henry, Michael G. Stockelman, Mark P. Simons
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Phage therapy efficacy: a review of the last 10 years of preclinical studies
    Luís D. R. Melo, Hugo Oliveira, Diana P. Pires, Krystyna Dabrowska, Joana Azeredo
    Critical Reviews in Microbiology.2020; 46(1): 78.     CrossRef
  • RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa
    Iqbal Ahmad Alvi, Muhammad Asif, Rabia Tabassum, Rehan Aslam, Zaigham Abbas, Shafiq ur Rehman
    Archives of Virology.2020; 165(6): 1289.     CrossRef
  • Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections
    Patrick R. Secor, Elizabeth B. Burgener, M. Kinnersley, Laura K. Jennings, Valery Roman-Cruz, Medeea Popescu, Jonas D. Van Belleghem, Naomi Haddock, Conner Copeland, Lia A. Michaels, Christiaan R. de Vries, Qingquan Chen, Julie Pourtois, Travis J. Wheeler
    Frontiers in Immunology.2020;[Epub]     CrossRef
  • Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies
    Mihnea R. Mangalea, Breck A. Duerkop, Karen M. Ottemann
    Infection and Immunity.2020;[Epub]     CrossRef
  • Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review
    Krystyna Dąbrowska
    Medicinal Research Reviews.2019; 39(5): 2000.     CrossRef
  • Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies
    Krystyna Dąbrowska, Stephen T. Abedon
    Microbiology and Molecular Biology Reviews.2019;[Epub]     CrossRef
  • Biological challenges of phage therapy and proposed solutions: a literature review
    Katherine M Caflisch, Gina A Suh, Robin Patel
    Expert Review of Anti-infective Therapy.2019; 17(12): 1011.     CrossRef
  • Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System
    Jonas D. Van Belleghem, Krystyna Dąbrowska, Mario Vaneechoutte, Jeremy J. Barr, Paul L. Bollyky
    Viruses.2018; 11(1): 10.     CrossRef
  • Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation
    Rachel Yoon Kyung Chang, Ke Chen, Jiping Wang, Martin Wallin, Warwick Britton, Sandra Morales, Elizabeth Kutter, Jian Li, Hak-Kim Chan
    Antimicrobial Agents and Chemotherapy.2018;[Epub]     CrossRef
  • Challenges and Promises for Planning Future Clinical Research Into Bacteriophage Therapy Against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review
    Martina Rossitto, Ersilia V. Fiscarelli, Paola Rosati
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
    Ewa Jończyk-Matysiak, Beata Weber-Dąbrowska, Barbara Owczarek, Ryszard Międzybrodzki, Marzanna Łusiak-Szelachowska, Norbert Łodej, Andrzej Górski
    Viruses.2017; 9(6): 150.     CrossRef
  • Modeling the synergistic elimination of bacteria by phage and the innate immune system
    Chung Yin (Joey) Leung, Joshua S. Weitz
    Journal of Theoretical Biology.2017; 429: 241.     CrossRef
  • Characterization and complete genome sequence analysis of two Myoviral bacteriophages infecting clinical carbapenem‐resistant Acinetobacter baumannii isolates
    J. Jeon, R. D'Souza, N. Pinto, C.‐M. Ryu, J. Park, D. Yong, K. Lee
    Journal of Applied Microbiology.2016; 121(1): 68.     CrossRef
  • Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections
    Diana P. Pires, Diana Vilas Boas, Sanna Sillankorva, Joana Azeredo, S. P. Goff
    Journal of Virology.2015; 89(15): 7449.     CrossRef
  • The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes
    Ewa Jończyk-Matysiak, Marzanna Łusiak-Szelachowska, Marlena Kłak, Barbara Bubak, Ryszard Międzybrodzki, Beata Weber-Dąbrowska, Maciej Żaczek, Wojciech Fortuna, Paweł Rogóż, Sławomir Letkiewicz, Krzysztof Szufnarowski, Andrzej Górski
    Journal of Immunology Research.2015; 2015: 1.     CrossRef
  • Bacteriophages and Biofilms
    David Harper, Helena Parracho, James Walker, Richard Sharp, Gavin Hughes, Maria Werthén, Susan Lehman, Sandra Morales
    Antibiotics.2014; 3(3): 270.     CrossRef
  • Phage fitness may help predict phage therapy efficacy
    Heather M Lindberg, Kurt A McKean, Ing-Nang Wang
    Bacteriophage.2014; 4(4): e964081.     CrossRef
  • Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment
    Mohamed Elbreki, R. Paul Ross, Colin Hill, Jim O'Mahony, Olivia McAuliffe, Aidan Coffey
    Journal of Viruses.2014; 2014: 1.     CrossRef
  • Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model
    Gabriela Trigo, Teresa G. Martins, Alexandra G. Fraga, Adhemar Longatto-Filho, António G. Castro, Joana Azeredo, Jorge Pedrosa, Christian Johnson
    PLoS Neglected Tropical Diseases.2013; 7(4): e2183.     CrossRef
  • Use of bacteriophages in the treatment ofPseudomonas aeruginosainfections
    James Soothill
    Expert Review of Anti-infective Therapy.2013; 11(9): 909.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP