Journal Articles
- Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
-
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
-
J. Microbiol. 2022;60(4):364-374. Published online January 7, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1531-3
-
-
61
View
-
0
Download
-
1
Web of Science
-
2
Crossref
-
Abstract
-
Cytophaga hutchinsonii can efficiently degrade crystalline
cellulose, in which the cell surface cellulases secreted by the
type IX secretion system (T9SS) play important roles, but
the degradation mechanism remains unclear, and the anchor
mechanism of cellulases on the outer membrane in C.
hutchinsonii has not been studied. Here, chu_2177 was identified
by transposon mutagenesis and was proved to be indispensable
for cellulose utilization in C. hutchinsonii. Disruption
of chu_2177 resulted in O-antigen deficiency and chu_
177 could confer O-antigen ligase activity upon an Escherichia
coli waal mutant, indicating that chu_2177 encoded the Ontigen
ligase. Moreover, deletion of chu_2177 caused defects
in cellulose utilization, cell motility, biofilm formation, and
stress resistance. Further study showed that the endoglucanase
activity was markedly decreased in the outer membrane
but was increased in the culture fluid without chu_2177.
Western blot proved that endoglucanase CHU_1336 was not
located on the outer membrane but was released in the culture
fluid of the Δ2177 mutant. Further proteomics analysis
showed that many cargo proteins of T9SS were missing in
the outer membrane of the Δ2177 mutant. Our study revealed
that the deletion of chu_2177 affected the localization of
many T9SS cargo proteins including cellulases on the outer
membrane of C. hutchinsonii.
-
Citations
Citations to this article as recorded by

- Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil
Tianjiao Zhang, Shuli Wei, Yajie Liu, Chao Cheng, Jie Ma, Linfang Yue, Yanrong Gao, Yuchen Cheng, Yongfeng Ren, Shaofeng Su, Xiaoqing Zhao, Zhanyuan Lu
Frontiers in Microbiology.2023;[Epub] CrossRef - The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii
Wenxia Song, Xueke Zhuang, Yahong Tan, Qingsheng Qi, Xuemei Lu
Engineering Microbiology.2022; 2(3): 100038. CrossRef
- The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
-
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
-
J. Microbiol. 2020;58(8):687-695. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9630-5
-
-
61
View
-
0
Download
-
8
Web of Science
-
8
Crossref
-
Abstract
-
The saprophytic fungus Trichoderma reesei has long been used
as a model to study microbial degradation of lignocellulosic
biomass. The major cellulolytic enzymes of T. reesei are the
cellobiohydrolases CBH1 and CBH2, which constitute more
than 70% of total proteins secreted by the fungus. However,
their physiological functions and effects on enzymatic hydrolysis
of cellulose substrates are not sufficiently elucidated.
Here, the cellobiohydrolase-encoding genes cbh1 and cbh2
were deleted, individually or combinatively, by using an auxotrophic
marker-recycling technique in T. reesei. When cultured
on media with different soluble carbon sources, all three
deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited
no dramatic variation in morphological phenotypes, but their
growth rates increased apparently when cultured on soluble
cellulase-inducing carbon sources. In addition, Δcbh1 showed
dramatically reduced growth and Δcbh1Δcbh2 could hardly
grew on microcrystalline cellulose (MCC), whereas all strains
grew equally on sodium carboxymethyl cellulose (CMC-Na),
suggesting that the influence of the CBHs on growth was carbon
source-dependent. Moreover, five representative cellulose
substrates were used to analyse the influence of the absence
of CBHs on saccharification efficiency. CBH1 deficiency
significantly affected the enzymatic hydrolysis rates of various
cellulose substrates, where acid pre-treated corn stover
(PCS) was influenced the least. CBH2 deficiency reduced the
hydrolysis of MCC, PCS, and acid pre-treated and delignified
corncob but improved the hydrolysis ability of filter paper.
These results demonstrate the specific contributions of
CBHs to the hydrolysis of different types of biomass, which
could facilitate the development of tailor-made strains with
highly efficient hydrolysis enzymes for certain biomass types
in the biofuel industry.
-
Citations
Citations to this article as recorded by

- An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production
Jiaxin Zhang, Kehang Li, Yu Sun, Cheng Yao, Weifeng Liu, Hong Liu, Yaohua Zhong
Biotechnology for Biofuels and Bioproducts.2024;[Epub] CrossRef - Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5–18 revealed active lignocellulosic degrading genes
Shuang Hu, Pei Han, Bao-Teng Wang, Long Jin, Hong-Hua Ruan, Feng-Jie Jin
Archives of Microbiology.2024;[Epub] CrossRef - Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass
Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasb
Microbial Cell Factories.2024;[Epub] CrossRef - Constitutive overexpression of cellobiohydrolase 2 in Trichoderma reesei reveals its ability to initiate cellulose degradation
Yubo Wang, Meibin Ren, Yifan Wang, Lu Wang, Hong Liu, Mei Shi, Yaohua Zhong
Engineering Microbiology.2023; 3(1): 100059. CrossRef - Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source
Toshiharu Arai, Mayumi Wada, Hiroki Nishiguchi, Yasushi Takimura, Jun Ishii
Microbial Cell Factories.2023;[Epub] CrossRef - The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers
Yudian Chen, Yushan Gao, Zancheng Wang, Nian Peng, Xiaoqin Ran, Tingting Chen, Lulu Liu, Yonghao Li
Fermentation.2023; 9(8): 746. CrossRef - The effect of cellobiohydrolase 1 gene knockout for composition and hydrolytic activity of the enzyme complex secreted by filamentous fungus Penicillium verruculosum
Valeriy Yu. Kislitsin, Andrey M. Chulkin, Ivan N. Zorov, Yuri А. Denisenko, Arkadiy P. Sinitsyn, Alexandra M. Rozhkova
Bioresource Technology Reports.2022; 18: 101023. CrossRef - Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases
Xing Qin, Jiahuan Zou, Kun Yang, Jinyang Li, Xiaolu Wang, Tao Tu, Yuan Wang, Bin Yao, Huoqing Huang, Huiying Luo
Bioresource Technology.2022; 364: 128027. CrossRef
- Antagonistic effect of peptidoglycan of Streptococcus sanguinis on lipopolysaccharide of major periodontal pathogens
-
Sung-Hoon Lee
-
J. Microbiol. 2015;53(8):553-560. Published online July 31, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5319-6
-
-
56
View
-
0
Download
-
15
Crossref
-
Abstract
-
Streptococcus sanguinis is often found in subgingival biofilm
including periodontopathogens, and is correlated with
a delay in colonization by periodontopathogens. However,
the effect of S. sanguinis on inflammation induced by periodontopathogens
is poorly understood. Thus, this study investigated
the effect of S. sanguinis peptidoglycan (PGN) on
induction of TNF-α, IL-6, and IL-8 expression by lipopolysaccharide
(LPS) of periodontal pathogens. LPS was extracted
from Aggregatibacter actinomycetemcomitans, Porphyromonas
gingivalis, and Tannerella forsythia, and PGN was isolated
from S. sanguinis. THP-1 cells, a monocytic cell-line, were cotreated
with LPS of the periodontal pathogens and S. sanguinis
PGN, and then the expression of inflammatory cytokines
was analyzed by real-time RT-PCR. To analyze the underlying
mechanism, the binding assay of the LPS to CD14
or LPS-binding protein (LBP) was performed in the presence
or absence of the PGN after coating recombinant human
CD14 and LBP on EIA plate. The PGN inhibited the binding
of LPS to CD14 and LBP in a dose-dependent manner.
Also, THP-1 cells were co-treated with the LPS in the presence
of N-acetylmuramic acid and N-acetylglucosamine,
as components of PGN, and the competition binding assay
to CD14 and LBP was performed. N-acetylmuramic acid inhibited
the induction of inflammatory cytokine expression
by LPS and the binding of LPS to CD14 or LBP whereas Nacetylglucosamine
did not show such effect. Collectively, the
results
suggest that S. sanguinis PGN inhibited the cytokine
expression induced by the LPS of periodontopathogens due
to the inhibition of LPS binding to LBP and CD14. N-acetylmuramic
acid of PGN may play a role in inhibition of
the LPS binding of periodontopathogens to CD14 and LBP.
-
Citations
Citations to this article as recorded by

- Inflammasome regulation by the cell surface ecto-5′-nucleotidase of the oral commensal, Streptococcus oralis
Natsuno Nakamura, Hirobumi Morisaki, Momoe Itsumi, Nobuo Okahashi, Haruka Fukamachi, Ayako Sato, Miki Kadena, Mariko Kikuchi, Shohei Matsui, Takahiro Funatsu, Hirotaka Kuwata
Biochemical and Biophysical Research Communications.2025; 744: 151206. CrossRef - New putative periodontopathogens and periodontal health‐associated species: A systematic review and meta‐analysis
Angéline Antezack, Damien Etchecopar‐Etchart, Bernard La Scola, Virginie Monnet‐Corti
Journal of Periodontal Research.2023; 58(5): 893. CrossRef - Correlation and mechanism between cardiac magnetic resonance imaging and oral streptococcus count in patients with primary microvascular angina pectoris
Qi Huang, Shi Sheng Wang, Rong Hua Luo
Medicine.2022; 101(12): e29060. CrossRef - Oral ecological environment modifications by hard-cheese: from pH to microbiome: a prospective cohort study based on 16S rRNA metabarcoding approach
Erna Cecilia Lorenzini, Barbara Lazzari, Gianluca Martino Tartaglia, Giampietro Farronato, Valentina Lanteri, Sara Botti, Filippo Biscarini, Paolo Cozzi, Alessandra Stella
Journal of Translational Medicine.2022;[Epub] CrossRef - Biofilm growth and IL-8 & TNF-α-inducing properties of Candida albicans in the presence of oral gram-positive and gram-negative bacteria
Radhika G. Bhardwaj, Arjuna Ellepolla, Hana Drobiova, Maribasappa Karched
BMC Microbiology.2020;[Epub] CrossRef - Genetics ofsanguinis-Group Streptococci in Health and Disease
Angela Nobbs, Jens Kreth, Vincent A. Fischetti, Richard P. Novick, Joseph J. Ferretti, Daniel A. Portnoy, Miriam Braunstein, Julian I. Rood
Microbiology Spectrum.2019;[Epub] CrossRef - Influence of a light‐activated glaze on the adhesion of Streptococcus sanguinis to the surface of polymers used in fabrication of interim prostheses
Daniela Micheline dos Santos, Betina Chiarelo Commar, Emily Vivianne Freitas da Silva, Valentim Adelino Ricardo Barão, Adaias Oliveira Matos, Marcelo Coelho Goiato
Journal of Investigative and Clinical Dentistry.2019;[Epub] CrossRef - Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium
Manlin Qi, Xue Li, Xiaolin Sun, Chunyan Li, Franklin R. Tay, Michael D. Weir, Biao Dong, Yanmin Zhou, Lin Wang, Hockin H.K. Xu
Dental Materials.2019; 35(11): 1665. CrossRef - A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues
Hao Wu, Li Xie, Min He, Ruitao Zhang, Yuan Tian, Suru Liu, Tao Gong, Fangjun Huo, Ting Yang, Qingyuan Zhang, Shujuan Guo, Weidong Tian
Acta Biomaterialia.2019; 97: 597. CrossRef - Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models
Jingjing Xu, Hang Yang, Yongli Bi, Wuyou Li, Hongping Wei, Yuhong Li
Viruses.2018; 10(7): 380. CrossRef - Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions
Daniela Micheline dos Santos, Emily Vivianne Freitas da Silva, Adaias Oliveira Matos, Beatriz Cristiane Zuin Monteiro, Rodrigo Antonio de Medeiros, Sandro Basso Bitencourt, Valentim Adelino Ricardo Barão, Elidiane Cipriano Rangel, Marcelo Coelho Goiato
Ceramics.2018; 1(1): 145. CrossRef - Inhibitory effect of Lactococcus lactis on the bioactivity of periodontopathogens
Hyun-Seung Shin, Dong-Heon Baek, Sung-Hoon Lee
The Journal of General and Applied Microbiology.2018; 64(2): 55. CrossRef - The road less traveled – defining molecular commensalism with Streptococcus sanguinis
J. Kreth, R.A. Giacaman, R. Raghavan, J. Merritt
Molecular Oral Microbiology.2017; 32(3): 181. CrossRef - Buckyballs conjugated with nucleic acid sequences identifies microorganisms in live cell assays
Qingsu Cheng, Bahram Parvin
Journal of Nanobiotechnology.2017;[Epub] CrossRef - Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes
Alison Marshall, Antonio Celentano, Nicola Cirillo, Michele D. Mignogna, Michael McCullough, Stephen Porter
European Journal of Oral Sciences.2016; 124(5): 433. CrossRef
Research Support, Non-U.S. Gov't
- Acinetobacter baumannii Outer Membrane Protein A Modulates the Biogenesis of Outer Membrane Vesicles
-
Dong Chan Moon , Chul Hee Choi , Jung Hwa Lee , Chi-Won Choi , Hye-Yeon Kim , Jeong Soon Park , Seung Il Kim , Je Chul Lee
-
J. Microbiol. 2012;50(1):155-160. Published online February 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1589-4
-
-
39
View
-
0
Download
-
94
Crossref
-
Abstract
-
Acinetobacter baumannii secretes outer membrane vesicles
(OMVs) during both in vitro and in vivo growth, but the
biogenesis mechanism by which A. baumannii produces
OMVs remains undefined. Outer membrane protein A of
A. baumannii (AbOmpA) is a major protein in the outer
membrane and the C-terminus of AbOmpA interacts with
diaminopimelate of peptidoglycan. This study investigated
the role of AbOmpA in the biogenesis of A. baumannii
OMVs. Quantitative and qualitative approaches were used
to analyze OMV biogenesis in A. baumannii ATCC 19606T
and an isogenic ΔAbOmpA mutant. OMV production was
significantly increased in the ΔAbOmpA mutant compared
to wild-type bacteria as demonstrated by quantitation of
proteins and lipopolysaccharides (LPS) packaged in OMVs.
LPS profiles prepared from OMVs from wild-type bacteria
and the ΔAbOmpA mutant had identical patterns, but
proteomic analysis showed different protein constituents in
OMVs from wild-type bacteria compared to the ΔAbOmpA
mutant. In conclusion, AbOmpA influences OMV biogenesis
by controlling OMV production and protein composition.
-
Citations
Citations to this article as recorded by

- Brucella suis ΔmapB outer membrane vesicles as an acellular vaccine against systemic and mucosal B. suis infection
Florencia Muñoz González, Magali G. Bialer, Maria L. Cerutti, Silvia M. Estein, Lila Y. Ramis, Pablo C. Baldi, Ángeles Zorreguieta, Mariana C. Ferrero
Frontiers in Immunology.2025;[Epub] CrossRef - Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter
Tsvetana Muleshkova, Inga Bazukyan, Konstantinos Papadimitriou, Velitchka Gotcheva, Angel Angelov, Svetoslav G. Dimov
Journal of Microbiology and Biotechnology.2025;[Epub] CrossRef - The aryl hydrocarbon receptor and FOS mediate cytotoxicity induced by Acinetobacter baumannii
Chun Kew, Cristian Prieto-Garcia, Anshu Bhattacharya, Manuela Tietgen, Craig R. MacNair, Lindsey A. Carfrae, João Mello-Vieira, Stephan Klatt, Yi-Lin Cheng, Rajeshwari Rathore, Elise Gradhand, Ingrid Fleming, Man-Wah Tan, Stephan Göttig, Volkhard A. J. Ke
Nature Communications.2024;[Epub] CrossRef -
Pathogenicity and virulence of
Acinetobacter baumannii
: Factors contributing to the fitness in healthcare settings and the infected host
Massimiliano Lucidi, Daniela Visaggio, Antonella Migliaccio, Giulia Capecchi, Paolo Visca, Francesco Imperi, Raffaele Zarrilli
Virulence.2024;[Epub] CrossRef - Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii
Theodoros Karampatakis, Katerina Tsergouli, Payam Behzadi
Antibiotics.2024; 13(3): 257. CrossRef - Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages
Jiaying Sun, Yee Huang, Xuefeng Li, Xiangfei Xu, Xuemei Cui, Fangjiao Hao, Quanan Ji, Chun Chen, Guolian Bao, Yan Liu
Applied Microbiology and Biotechnology.2024;[Epub] CrossRef - An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms
Anna Sophia Feix, Emily Z. Tabaie, Aarshi N. Singh, Nathan J. Wittenberg, Emma H. Wilson, Anja Joachim, Melissa Bruckner Lodoen
Microbiology and Molecular Biology Reviews.2024;[Epub] CrossRef - Antimicrobial Resistance in Acinetobacter baumannii: A Challenge to Clinical Settings
Shilpa Sharma, Amandeep Kaur, Renuka Bajaj, Kanwardeep Singh, Sarika Sharma, Sandeep Sharma
Molecular Genetics, Microbiology and Virology.2024; 39(3): 219. CrossRef -
Outer membrane vesicles from genetically engineered
Salmonella enterica
serovar Typhimurium presenting
Helicobacter pylori
antigens UreB and CagA induce protection against
Helicobact
Qiong Liu, Yinpan Shang, Lu Shen, Xiaomin Yu, Yanli Cao, Lingbing Zeng, Hanchi Zhang, Zirong Rao, Yi Li, Ziwei Tao, Zhili Liu, Xiaotian Huang
Virulence.2024;[Epub] CrossRef - The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases
Cai-Hua Zhang, Ding-Ci Lu, Ying Liu, Lingzhi Wang, Gautam Sethi, Zhaowu Ma
International Immunopharmacology.2024; 138: 112633. CrossRef - Loss of Lipooligosaccharide Synthesis in Acinetobacter baumannii Produces Changes in Outer Membrane Vesicle Protein Content
Beatriz Cano-Castaño, Andrés Corral-Lugo, Eva Gato, María C. Terrón, Antonio J. Martín-Galiano, Javier Sotillo, Astrid Pérez, Michael J. McConnell
International Journal of Molecular Sciences.2024; 25(17): 9272. CrossRef - The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities
Eliud S. Peregrino, Jessica Castañeda-Casimiro, Luis Vázquez-Flores, Sergio Estrada-Parra, Carlos Wong-Baeza, Jeanet Serafín-López, Isabel Wong-Baeza
International Journal of Molecular Sciences.2024; 25(11): 6210. CrossRef - A genetic engineering strategy to enhance outer membrane vesicle-mediated extracellular electron transfer of Geobacter sulfurreducens
Yanlun Fang, Guiqin Yang, Xian Wu, Canfen Lin, Baoli Qin, Li Zhuang
Biosensors and Bioelectronics.2024; 250: 116068. CrossRef - Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications
Sangiliyandi Gurunathan, Jin-Hoi Kim
Microbial Pathogenesis.2023; 183: 106308. CrossRef - Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application
Zheqi Weng, Ning Yang, Shujun Shi, Zining Xu, Zixu Chen, Chen Liang, Xiuwei Zhang, Xingran Du
Vaccines.2023; 12(1): 49. CrossRef - Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host
Yu-Ching Su, Mahendar Kadari, Megan L. Straw, Martina Janoušková, Sandra Jonsson, Oskar Thofte, Farshid Jalalvand, Erika Matuschek, Linda Sandblad, Ákos Végvári, Roman A. Zubarev, Kristian Riesbeck
Frontiers in Cellular and Infection Microbiology.2023;[Epub] CrossRef - Acinetobacter baumannii in the critically ill: complex infections get complicated
Ilaria Cavallo, Alessandra Oliva, Rebecca Pages, Francesca Sivori, Mauro Truglio, Giorgia Fabrizio, Martina Pasqua, Fulvia Pimpinelli, Enea Gino Di Domenico
Frontiers in Microbiology.2023;[Epub] CrossRef - Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria
Gang Zhou, Qian Wang, Yingsi Wang, Xia Wen, Hong Peng, Ruqun Peng, Qingshan Shi, Xiaobao Xie, Liangqiu Li
Microorganisms.2023; 11(7): 1690. CrossRef - Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection
Afreen Shadan, Avik Pathak, Ying Ma, Ranjana Pathania, Rajnish Prakash Singh
Frontiers in Cellular and Infection Microbiology.2023;[Epub] CrossRef -
Bacterial outer membrane vesicles provide an alternative pathway for trafficking of
Escherichia coli
O157 type III secreted effectors to epithelial cells
Natalie Sirisaengtaksin, Eloise J. O'Donoghue, Sara Jabbari, Andrew J. Roe, Anne Marie Krachler, Craig D. Ellermeier
mSphere.2023;[Epub] CrossRef - Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome
Guanting Niu, Tunyu Jian, Yanan Gai, Jian Chen
Advanced Drug Delivery Reviews.2023; 196: 114774. CrossRef - Bacterial extracellular vesicles and their interplay with the immune system
Etienne Doré, Eric Boilard
Pharmacology & Therapeutics.2023; 247: 108443. CrossRef - An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation
F Mohamad, Raghad R Alzahrani, Ahlam Alsaadi, Bahauddeen M Alrfaei, Alaa Eldeen B Yassin, Manal M Alkhulaifi, Majed Halwani
Infection and Drug Resistance.2023; Volume 16: 19. CrossRef - The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities
Himadri B. Thapa, Stephan P. Ebenberger, Stefan Schild
Antibiotics.2023; 12(6): 1045. CrossRef - Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application
Deming Li, Lisi Zhu, Yuxiao Wang, Xiangyu Zhou, Yan Li
Biomedicine & Pharmacotherapy.2023; 165: 115120. CrossRef - Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways
Sunhyo Ryu, Kareemah Ni, Chenghao Wang, Ayyanar Sivanantham, Jonathan M. Carnino, Hong-Long Ji, Yang Jin
Biomedicines.2023; 11(2): 568. CrossRef - Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review
Ravinder Singh, Neena Capalash, Prince Sharma
3 Biotech.2022;[Epub] CrossRef - Advances of bacteria-based delivery systems for modulating tumor microenvironment
Shuping Li, Hua Yue, Shuang Wang, Xin Li, Xiaojun Wang, Peilin Guo, Guanghui Ma, Wei Wei
Advanced Drug Delivery Reviews.2022; 188: 114444. CrossRef - Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy
Qiong Long, Peng Zheng, Xiao Zheng, Weiran Li, Liangqun Hua, Zhongqian Yang, Weiwei Huang, Yanbing Ma
Advanced Drug Delivery Reviews.2022; 186: 114321. CrossRef -
Outer Membrane Vesicles of
Acinetobacter baumannii
DS002 Are Selectively Enriched with TonB-Dependent Transporters and Play a Key Role in Iron Acquisition
Ganeshwari Dhurve, Ashok Kumar Madikonda, Medicharla Venkata Jagannadham, Dayananda Siddavattam, Ayush Kumar
Microbiology Spectrum.2022;[Epub] CrossRef - Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii
Nowrosh Islam, Misha I. Kazi, Katie N. Kang, Jacob Biboy, Joe Gray, Feroz Ahmed, Richard D. Schargel, Cara C. Boutte, Tobias Dörr, Waldemar Vollmer, Joseph M. Boll, Vanessa Sperandio
mBio.2022;[Epub] CrossRef - Outer Membrane Vesicles: Biogenesis, Functions, and Issues
Rokas Juodeikis, Simon R. Carding
Microbiology and Molecular Biology Reviews.2022;[Epub] CrossRef - Thioredoxin-mediated alteration of protein content and cytotoxicity of Acinetobacter baumannii outer membrane vesicles
Swathi Shrihari, Holly C May, Jieh-Juen Yu, Sara B Papp, James P Chambers, M Neal Guentzel, Bernard P Arulanandam
Experimental Biology and Medicine.2022; 247(3): 282. CrossRef - Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum
Ashok Zachariah Samuel, Shumpei Horii, Takuji Nakashima, Naoko Shibata, Masahiro Ando, Haruko Takeyama
Advanced Biology.2022;[Epub] CrossRef - The Discovery of the Role of Outer Membrane Vesicles against Bacteria
Sofia Combo, Sérgio Mendes, Kaare Magne Nielsen, Gabriela Jorge da Silva, Sara Domingues
Biomedicines.2022; 10(10): 2399. CrossRef - Enhancement of Acinetobacter baumannii biofilm growth by cephem antibiotics via enrichment of protein and extracellular DNA in the biofilm matrices
Kaoru Yamabe, Yukio Arakawa, Masaki Shoji, Katsushiro Miyamoto, Takahiro Tsuchiya, Katsuhiko Minoura, Yukihiro Akeda, Kazunori Tomono, Mitsuko Onda
Journal of Applied Microbiology.2022; 133(3): 2002. CrossRef - The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii
Nayeong Kim, Hyo Jeong Kim, Man Hwan Oh, Se Yeon Kim, Mi Hyun Kim, Joo Hee Son, Seung Il Kim, Minsang Shin, Yoo Chul Lee, Je Chul Lee
BMC Microbiology.2021;[Epub] CrossRef - Host immunity and cellular responses to bacterial outer membrane vesicles
Varnesh Tiku, Man-Wah Tan
Trends in Immunology.2021; 42(11): 1024. CrossRef - Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli
Weichuan Qiao, Lianjie Wang, Yang Luo, Jiahui Miao
Biodegradation.2021; 32(4): 435. CrossRef - Comparative Analysis of Outer Membrane Vesicle Isolation Methods With an Escherichia coli tolA Mutant Reveals a Hypervesiculating Phenotype With Outer-Inner Membrane Vesicle Content
Shelby L. Reimer, Daniel R. Beniac, Shannon L. Hiebert, Timothy F. Booth, Patrick M. Chong, Garrett R. Westmacott, George G. Zhanel, Denice C. Bay
Frontiers in Microbiology.2021;[Epub] CrossRef - Engineered Remolding and Application of Bacterial Membrane Vesicles
Li Qiao, Yifan Rao, Keting Zhu, Xiancai Rao, Renjie Zhou
Frontiers in Microbiology.2021;[Epub] CrossRef - Inhibition of Virulence Factors and Biofilm Formation ofAcinetobacter Baumanniiby Naturally-derived and Synthetic Drugs
Nilushi Indika Bamunuarachchi, Fazlurrahman Khan, Young-Mog Kim
Current Drug Targets.2021; 22(7): 734. CrossRef - Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications
Salma Sultan, Walid Mottawea, JuDong Yeo, Riadh Hammami
International Journal of Molecular Sciences.2021; 22(23): 13166. CrossRef - Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods
Roghayeh Mohammadzadeh, Kiarash Ghazvini, Hadi Farsiani, Saman Soleimanpour
Critical Reviews in Microbiology.2021; 47(1): 13. CrossRef - Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression
Dušan Ušjak, Miroslav Dinić, Katarina Novović, Branka Ivković, Nenad Filipović, Magdalena Stevanović, Marina T. Milenković
Chemistry & Biodiversity.2021;[Epub] CrossRef -
New Provisional Function of OmpA from
Acinetobacter
sp. Strain SA01 Based on Environmental Challenges
Shahab Shahryari, Mahbubeh Talaee, Kamahldin Haghbeen, Lorenz Adrian, Hojatollah Vali, Hossein Shahbani Zahiri, Kambiz Akbari Noghabi, Jack A. Gilbert
mSystems.2021;[Epub] CrossRef - The extracellular vesicle generation paradox: a bacterial point of view
Hannah M McMillan, Meta J Kuehn
The EMBO Journal.2021;[Epub] CrossRef - Bacteria- and host-derived extracellular vesicles – two sides of the same coin?
Jeffrey S. Schorey, Yong Cheng, William R. McManus
Journal of Cell Science.2021;[Epub] CrossRef - INSIGHTS INTO THE VIRULENCE FACTORS OF ACINETOBACTER BAUMANNII AND THEIR ROLES IN PERSISTENCE AND INFECTIOUS PROCESS
Al Shaikhli Nawfal Haitham, Irina Gheorghe, Andreea Gheorghe
Romanian Archives of Microbiology and Immunology.2021; 80(2): 141. CrossRef - Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
Seok Hyeon Na, Hyejin Jeon, Man Hwan Oh, Yoo Jeong Kim, Je Chul Lee
Journal of Microbiology.2021; 59(9): 871. CrossRef - Membrane Vesicle Production as a Bacterial Defense Against Stress
Negar Mozaheb, Marie-Paule Mingeot-Leclercq
Frontiers in Microbiology.2020;[Epub] CrossRef - Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria
Steeve Lima, Jorge Matinha-Cardoso, Paula Tamagnini, Paulo Oliveira
Life.2020; 10(8): 129. CrossRef - The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen
Siva R. Uppalapati, Abhiroop Sett, Ranjana Pathania
Frontiers in Microbiology.2020;[Epub] CrossRef - Microevolution in the major outer membrane protein OmpA of Acinetobacter baumannii
Alejandro M. Viale, Benjamin A. Evans
Microbial Genomics
.2020;[Epub] CrossRef - Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions
Sara Ahmadi Badi, Stefania Paola Bruno, Arfa Moshiri, Samira Tarashi, Seyed Davar Siadat, Andrea Masotti
Frontiers in Microbiology.2020;[Epub] CrossRef - Engineered Bacterial Outer Membrane Vesicles as Multifunctional Delivery Platforms
Ruizhen Li, Qiong Liu
Frontiers in Materials.2020;[Epub] CrossRef - Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria
Nicole P. Giordano, Melina B. Cian, Zachary D. Dalebroux, Anthony R. Richardson
Infection and Immunity.2020;[Epub] CrossRef - The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery
Md Jalal Uddin, Jirapat Dawan, Gibeom Jeon, Tao Yu, Xinlong He, Juhee Ahn
Microorganisms.2020; 8(5): 670. CrossRef - The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple Acinetobacter baumannii Virulence Characteristics
Jūratė Skerniškytė, Emilija Karazijaitė, Julien Deschamps, Renatas Krasauskas, Romain Briandet, Edita Sužiedėlienė
Molecules.2019; 24(10): 1972. CrossRef - Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance
Mark Lindholm, Kyaw Min Aung, Sun Nyunt Wai, Jan Oscarsson
Journal of Oral Microbiology.2019; 11(1): 1536192. CrossRef - Studies on the mechanism of multidrug resistance of Acinetobacter baumannii by proteomic analysis of the outer membrane vesicles of the bacterium
Bina Agarwal, Raman Karthikeyan, P. Gayathri, B. RameshBabu, G. Ahmed, M. V. Jagannadham
Journal of Proteins and Proteomics.2019; 10(1): 1. CrossRef - Toll-Like Receptors 2 and 4 Modulate Pulmonary Inflammation and Host Factors Mediated by Outer Membrane Vesicles Derived from Acinetobacter baumannii
Chad R. Marion, Jaewook Lee, Lokesh Sharma, Kyong-Su Park, Changjin Lee, Wei Liu, Pei Liu, Jingjing Feng, Yong Song Gho, Charles S. Dela Cruz, Vincent B. Young
Infection and Immunity.2019;[Epub] CrossRef - The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii
Se Yeon Kim, Mi Hyun Kim, Seung Il Kim, Joo Hee Son, Shukho Kim, Yoo Chul Lee, Minsang Shin, Man Hwan Oh, Je Chul Lee
BMC Microbiology.2019;[Epub] CrossRef - The Mechanisms of Disease Caused by Acinetobacter baumannii
Faye C. Morris, Carina Dexter, Xenia Kostoulias, Muhammad Ikhtear Uddin, Anton Y. Peleg
Frontiers in Microbiology.2019;[Epub] CrossRef - Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress
Jasmine Martinez, Jennifer S. Fernandez, Christine Liu, Amparo Hoard, Anthony Mendoza, Jun Nakanouchi, Nyah Rodman, Robert Courville, Marisel R. Tuttobene, Carolina Lopez, Lisandro J. Gonzalez, Parvin Shahrestani, Krisztina M. Papp-Wallace, Alejandro J. V
Scientific Reports.2019;[Epub] CrossRef - Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii: mechanistic analysis and in vivo efficacy
Raquel Parra-Millán, Xavier Vila-Farrés, Rafael Ayerbe-Algaba, Monica Varese, Viviana Sánchez-Encinales, Nuría Bayó, María Eugenia Pachón-Ibáñez, Meritxell Teixidó, Jordi Vila, Jerónimo Pachón, Ernest Giralt, Younes Smani
Journal of Antimicrobial Chemotherapy.2018;[Epub] CrossRef -
Acinetobacter
: an emerging pathogen with a versatile secretome
Noha M. Elhosseiny, Ahmed S. Attia
Emerging Microbes & Infections.2018; 7(1): 1. CrossRef - Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?
Charlotte Volgers, Paul H. M. Savelkoul, Frank R. M. Stassen
Critical Reviews in Microbiology.2018; 44(3): 258. CrossRef - Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases
You-jiang Yu, Xiao-hong Wang, Guo-Chang Fan
Acta Pharmacologica Sinica.2018; 39(4): 514. CrossRef - Tug of war betweenAcinetobacter baumanniiand host immune responses
Fei-Ju Li, Lora Starrs, Gaetan Burgio
Pathogens and Disease.2018;[Epub] CrossRef - Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update
Arif Tasleem Jan
Frontiers in Microbiology.2017;[Epub] CrossRef - The Secrets of Acinetobacter Secretion
Brent S. Weber, Rachel L. Kinsella, Christian M. Harding, Mario F. Feldman
Trends in Microbiology.2017; 25(7): 532. CrossRef - Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options
Chang-Ro Lee, Jung Hun Lee, Moonhee Park, Kwang Seung Park, Il Kwon Bae, Young Bae Kim, Chang-Jun Cha, Byeong Chul Jeong, Sang Hee Lee
Frontiers in Cellular and Infection Microbiology.2017;[Epub] CrossRef -
LPS Remodeling Triggers Formation of Outer Membrane Vesicles in
Salmonella
Wael Elhenawy, Michael Bording-Jorgensen, Ezequiel Valguarnera, M. Florencia Haurat, Eytan Wine, Mario F. Feldman, John J. Mekalanos
mBio.2016;[Epub] CrossRef - Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets
Afreenish Hassan, Anam Naz, Ayesha Obaid, Rehan Zafar Paracha, Kanwal Naz, Faryal Mehwish Awan, Syed Aun Muhmmad, Hussnain Ahmed Janjua, Jamil Ahmad, Amjad Ali
BMC Genomics.2016;[Epub] CrossRef - Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: Current perspectives
Jaewook Lee, Oh Youn Kim, Yong Song Gho
PROTEOMICS – Clinical Applications.2016; 10(9-10): 897. CrossRef - Outer membrane Protein A plays a role in pathogenesis ofAcinetobacter nosocomialis
Sang Woo Kim, Man Hwan Oh, So Hyun Jun, Hyejin Jeon, Seung Il Kim, Kwangho Kim, Yoo Chul Lee, Je Chul Lee
Virulence.2016; 7(4): 413. CrossRef - Bacterial membrane vesicles: Biogenesis, immune regulation and pathogenesis
Rishi D. Pathirana, Maria Kaparakis-Liaskos
Cellular Microbiology.2016; 18(11): 1518. CrossRef - Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry
Carla Pérez-Cruz, María-Alexandra Cañas, Rosa Giménez, Josefa Badia, Elena Mercade, Laura Baldomà, Laura Aguilera, Maria Kaparakis-Liaskos
PLOS ONE.2016; 11(12): e0169186. CrossRef - Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects
Irina V. Kudryakova, Nina A. Shishkova, Natalia V. Vasilyeva
Applied Microbiology and Biotechnology.2016; 100(11): 4791. CrossRef - Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii
Weiwei Huang, Yufeng Yao, Shijie Wang, Ye Xia, Xu Yang, Qiong Long, Wenjia Sun, Cunbao Liu, Yang Li, Xiaojie Chu, Hongmei Bai, Yueting Yao, Yanbing Ma
Scientific Reports.2016;[Epub] CrossRef - Bacterial outer membrane vesicles: New insights and applications
Deepak Anand, Arunima Chaudhuri
Molecular Membrane Biology.2016; 33(6-8): 125. CrossRef - Pathogenic Acinetobacter: from the Cell Surface to Infinity and Beyond
Brent S. Weber, Christian M. Harding, Mario F. Feldman, W. Margolin
Journal of Bacteriology.2016; 198(6): 880. CrossRef - Biogenesis ofLysobactersp. XL1 vesicles
Irina V. Kudryakova, Natalia E. Suzina, Natalia V. Vasilyeva, Klaus Hantke
FEMS Microbiology Letters.2015; 362(18): fnv137. CrossRef - Roles of bacterial membrane vesicles
Eric Daniel Avila-Calderón, Minerva Georgina Araiza-Villanueva, Juan Carlos Cancino-Diaz, Edgar Oliver López-Villegas, Nammalwar Sriranganathan, Stephen M. Boyle, Araceli Contreras-Rodríguez
Archives of Microbiology.2015; 197(1): 1. CrossRef - Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions
Carmen Schwechheimer, Meta J. Kuehn
Nature Reviews Microbiology.2015; 13(10): 605. CrossRef - OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii
Ming-Feng Lin, Pei-Wen Tsai, Jeng-Yi Chen, Yun-You Lin, Chung-Yu Lan, Surajit Bhattacharjya
PLOS ONE.2015; 10(10): e0141107. CrossRef - Bacterial outer membrane nanovesicles: Structure, biogenesis, functions, and application in biotechnology and medicine (Review)
K. A. Lusta
Applied Biochemistry and Microbiology.2015; 51(5): 485. CrossRef - Outer membrane vesicles as platform vaccine technology
Leo van der Pol, Michiel Stork, Peter van der Ley
Biotechnology Journal.2015; 10(11): 1689. CrossRef - Modulation of bacterial outer membrane vesicle production by envelope structure and content
Carmen Schwechheimer, Adam Kulp, Meta J Kuehn
BMC Microbiology.2014;[Epub] CrossRef - Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation
Shweta Fulsundar, Klaus Harms, Gøril E. Flaten, Pål J. Johnsen, Balu Ananda Chopade, Kaare M. Nielsen, M. Kivisaar
Applied and Environmental Microbiology.2014; 80(11): 3469. CrossRef - Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins
So Hyun Jun, Jung Hwa Lee, Bo Ra Kim, Seung Il Kim, Tae In Park, Je Chul Lee, Yoo Chul Lee, Özlem Yilmaz
PLoS ONE.2013; 8(8): e71751. CrossRef - Molecular paleontology and complexity in the last eukaryotic common ancestor
V. Lila Koumandou, Bill Wickstead, Michael L. Ginger, Mark van der Giezen, Joel B. Dacks, Mark C. Field
Critical Reviews in Biochemistry and Molecular Biology.2013; 48(4): 373. CrossRef - Host-microbe interactions that shape the pathogenesis ofAcinetobacter baumanniiinfection
Brittany L. Mortensen, Eric P. Skaar
Cellular Microbiology.2012; 14(9): 1336. CrossRef
- Staphylococcal methicillin resistance expression under various growth conditions
-
Lee, Yoo Nik , Poo Ha Ryoung , Lee, Young Ik
-
J. Microbiol. 1997;35(2):103-108.
-
-
-
Abstract
-
To improve the detection of methicillin resistant staphylococci, lowered incubation temperature (30℃) and inclusion of sodium chloride in media have been empirically recommended. However, in this study, we found that sodium chloride in Peptone-Yeast Extract-K₂HPO₄(PYK) medium decreased methicillin minimum inhibitory concentrations. Divalent cations were shown to restore the expression of staphylococcal methicillin resistance. However, when it was determined by efficiency of plating, sodium chloride increased methicillin resistance expression on agar medium in which higher divalent cations were contained in the agar medium. The decrease of minimum inhibitory concentrations at 30℃ by sodium chloride occurred in Brain Heart Infusion but did not occur in other media investigated. Interestingly, both PYK and Brain Heart Infusion media had peptone, which contain cholic acids having detergent activities. Inclusion of sodium chloride in PYK caused a higher rate of autolysis. Penicillin binding protein 2a that has a low affinity to beta-lactam antibiotics, was highly inducible in methicillin resistant Staphylococcus epidermidis strains. In this study, we found that autolysins that are activated by the sodium chloride decreased the minimum inhibitory concentration at 30℃, and peptidoglycan is weakened due to the presence of methicillin. Peptone in the media may aggravate the fragile cells. However, stabilization due to the presence of divalent cations and production of penicilin binding protein 2a increase the survival of staphylococci.