Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Min-Kyu Oh"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Exploring the biosynthetic potential of Korean Actinobacteria for antibacterial metabolite discovery
Sehong Park, Hyun-Woo Je, Yujin Cha, Boncheol Gu, Yeojeong Cho, Jin-Il Kim, Ji Won Seo, Seung Bum Kim, Jino Son, Moonsuk Hur, Changmin Sung, Min-Kyu Oh, Hahk-Soo Kang
J. Microbiol. 2025;63(9):e2504002.   Published online September 30, 2025
DOI: https://doi.org/10.71150/jm.2504002
  • 804 View
  • 33 Download
AbstractAbstract PDFSupplementary Material

Actinobacteria, a phylum of Gram-positive bacteria, are renowned for their remarkable ability to produce antibacterial natural products. The National Institute of Biological Resources (NIBR) of Korea maintains a collection of Korean native actinobacteria. In this study, we explored the phylogenetic and biosynthetic diversity of the NIBR actinobacteria collection to assess its potential as a source of new antibacterial natural products. A 16S rDNA-based phylogenetic analysis revealed a high level of genetic diversity within the collection, with a predominance of Streptomyces, along with rare actinobacterial genera such as Kitasatospora and Micromonospora. Additionally, genetic network analysis of biosynthetic gene clusters (BGCs) from 15 sequenced NIBR actinobacterial strains demonstrated extensive BGC diversity, with many clusters identified as cryptic. Screening of culture extracts for antibacterial activity, followed by dereplication of active extracts, suggested the presence of potentially novel antibacterial natural products. Activity-guided isolation and whole-genome sequencing of the active strain KU57 led to the isolation of one new and three known svetamycin congeners along with their BGC. Overall, our findings highlight the NIBR actinobacteria collection as a valuable source for the discovery of new antibacterial natural products.

Journal Article
Medium Chain Length Polyhydroxyalkanoate Production by Engineered Pseudomonas gessardii Using Acetate-formate as Carbon Sources
Woo Young Kim, Seung-Jin Kim, Hye-Rin Seo, Yoonyong Yang, Jong Seok Lee, Moonsuk Hur, Byoung-Hee Lee, Jong-Geol Kim, Min-Kyu Oh
J. Microbiol. 2024;62(7):569-579.   Published online May 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00136-x
  • 331 View
  • 7 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Production of medium chain length polyhydroxyalkanoate (mcl-PHA) was attempted using Pseudomonas gessardii NIBRBAC000509957, which was isolated from Sunchang, Jeollabuk-do, Republic of Korea (35°24'27.7"N, 127°09'13.0"E) and effectively utilized acetate and formate as carbon sources. We first evaluated the utilization of acetate as a carbon source, revealing optimal growth at 5 g/L acetate. Then, formate was supplied to the acetate minimal medium as a carbon source to enhance cell growth. After overexpressing the acetate and formate assimilation pathway enzymes, this strain grew at a significantly higher rate in the medium. As this strain naturally produces PHA, it was further engineered metabolically to enhance mcl-PHA production. The engineered strain produced 0.40 g/L of mcl-PHA with a biomass content of 30.43% in fed-batch fermentation. Overall, this strain can be further developed to convert acetate and formate into valuable products.

Citations

Citations to this article as recorded by  
  • Formate-driven photoautotrophic growth and biopolymer storage in anaerobic purple bacteria
    Mohammad Adib Ghazali Abdul Rahman, Bronwyn Laycock, Steven Pratt, Damien J. Batstone
    Bioresource Technology.2025; 434: 132753.     CrossRef
  • Sulphide and oleic acid synergism in accelerating mcl-PHA biopolymer production in Pseudomonas aeruginosa MCC 5300 by modulating electron transport system
    Raghavendra Paduvari, Divyashree Somashekara
    Biochemistry and Biophysics Reports.2025; 44: 102286.     CrossRef
  • Unlocking efficient polyhydroxyalkanoate production by Gram-positive Priestia megaterium using waste-derived feedstocks
    Xinyi Bai, Libo Xu, Kang Li, Guangbao Zhang, Mengjun Zhang, Yi Huang
    Microbial Cell Factories.2025;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP