Pathogenic fungi pose major threats to both global food security and human health, yet the molecular basis of their virulence remains only partially understood. Beyond genetic and transcriptional control, emerging evidence highlights protein glycosylation as a key post-translational modification that governs fungal development, stress adaptation, and host interactions. Glycosylation regulates protein folding, stability, trafficking, and immune evasion, thereby shaping infection processes across diverse pathogens. While extensively studied in model organisms, our understanding of glycosylation in pathogenic fungi remains fragmented and lacks a coherent framework linking glycosylation dynamics to fungal development and pathogenicity. This review synthesizes recent advances from proteomic, transcriptomic, and glycomic studies in pathogenic fungi, focusing on interspecific variation in glycogenes and enzymes, hierarchical regulatory networks, and glycoprotein-mediated mechanisms of virulence. Finally, we outline current challenges and highlight glycosylation-targeted strategies as promising avenues for antifungal intervention.