Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Glyceraldehyde triphosphate dehydrogenase"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces
Do-Won Park , Jong-Hyun Park
J. Microbiol. 2021;59(11):1002-1009.   Published online October 6, 2021
DOI: https://doi.org/10.1007/s12275-021-1413-0
  • 65 View
  • 0 Download
  • 9 Web of Science
  • 6 Crossref
AbstractAbstract
The increasing prevalence of foodborne diseases caused by Escherichia coli O157:H7 as well as its ability to form biofilms poses major threats to public health worldwide. With increasing concerns about the limitations of current disinfectant treatments, phage-derived depolymerases may be used as promising biocontrol agents. Therefore, in this study, the characterization, purification, and application of a novel phage depolymerase, Dpo10, specifically targeting the lipopolysaccharides of E. coli O157, was performed. Dpo10, with a molecular mass of 98 kDa, was predicted to possess pectate lyase activity via genome analysis and considered to act as a receptor- binding protein of the phage. We confirmed that the purified Dpo10 showed O-polysaccharide degrading activity only for the E. coli O157 strains by observing its opaque halo. Dpo10 maintained stable enzymatic activities across a wide range of temperature conditions under 55°C and mild basic pH. Notably, Dpo10 did not inhibit bacterial growth but significantly increased the complement-mediated serum lysis of E. coli O157 by degrading its O-polysaccharides. Moreover, Dpo10 inhibited the biofilm formation against E. coli O157 on abiotic polystyrene by 8-fold and stainless steel by 2.56 log CFU/coupon. This inhibition was visually confirmed via fieldemission scanning electron microscopy. Therefore, the novel depolymerase from E. coli siphophage exhibits specific binding and lytic activities on the lipopolysaccharide of E. coli O157 and may be used as a promising anti-biofilm agent against the E. coli O157:H7 strain.

Citations

Citations to this article as recorded by  
  • Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces
    Ana Brás, Márcia Braz, Inês Martinho, João Duarte, Carla Pereira, Adelaide Almeida
    Microorganisms.2024; 12(2): 366.     CrossRef
  • Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages
    Leon M. T. Dicks, Wian Vermeulen
    Viruses.2024; 16(3): 478.     CrossRef
  • Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections
    Rashmita Biswas, Bhawana Jangra, Ganapathy Ashok, Velayutham Ravichandiran, Utpal Mohan
    Indian Journal of Microbiology.2024; 64(3): 781.     CrossRef
  • Phage Adsorption to Gram-Positive Bacteria
    Audrey Leprince, Jacques Mahillon
    Viruses.2023; 15(1): 196.     CrossRef
  • Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity
    Jaein Choe, Su-Hyeon Kim, Ji Min Han, Jong-Hoon Kim, Mi-Sun Kwak, Do-Won Jeong, Mi-Kyung Park
    Journal of Microbiology.2023; 61(12): 1063.     CrossRef
  • Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review
    Siyu Liu, Hongyun Lu, Shengliang Zhang, Ying Shi, Qihe Chen
    Pharmaceutics.2022; 14(2): 427.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP