Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Bioplastic"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 541 View
  • 35 Download
  • 1 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Journal Article
Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
Seok Hyeon Na , Hyejin Jeon , Man Hwan Oh , Yoo Jeong Kim , Je Chul Lee
J. Microbiol. 2021;59(9):871-878.   Published online August 27, 2021
DOI: https://doi.org/10.1007/s12275-021-1394-z
  • 63 View
  • 0 Download
  • 12 Web of Science
  • 12 Crossref
AbstractAbstract
Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.

Citations

Citations to this article as recorded by  
  • A peptide targeting outer membrane protein A of Acinetobacter baumannii exhibits antibacterial activity by reducing bacterial pathogenicity
    Hui Zhao, Yue Hu, Dan Nie, Na Li, Zhou Chen, Shan Zhou, Mingkai Li, Xiaoyan Xue, James E. Leggett
    Antimicrobial Agents and Chemotherapy.2024;[Epub]     CrossRef
  • Acinetobacter baumannii OmpA-like porins: functional characterization of bacterial physiology, antibiotic-resistance, and virulence
    Daniela Scribano, Elena Cheri, Arianna Pompilio, Giovanni Di Bonaventura, Manuel Belli, Mario Cristina, Luigi Sansone, Carlo Zagaglia, Meysam Sarshar, Anna Teresa Palamara, Cecilia Ambrosi
    Communications Biology.2024;[Epub]     CrossRef
  • Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells
    Hamideh Barati, Zahra Fekrirad, Mohammadreza Jalali Nadoushan, Iraj Rasooli
    Microbial Pathogenesis.2024; 186: 106473.     CrossRef
  • Current and novel therapies for management of Acinetobacter baumannii -associated pneumonia
    Aye Mya Sithu Shein, Parichart Hongsing, O’Rorke Kevin Smith, Phatthranit Phattharapornjaroen, Kazuhiko Miyanaga, Longzhu Cui, Hitoshi Ishikawa, Mohan Amarasiri, Peter N. Monk, Anthony Kicic, Tanittha Chatsuwan, Daniel Pletzer, Paul G. Higgins, Shuichi Ab
    Critical Reviews in Microbiology.2024; : 1.     CrossRef
  • Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii
    Vishwani Jamwal, Tashi Palmo, Kuljit Singh
    RSC Medicinal Chemistry.2024; 15(12): 3925.     CrossRef
  • Acinetobacter baumannii outer membrane protein A induces autophagy in bone marrow‐derived dendritic cells involving the PI3K/mTOR pathway
    Hongyi Tan, Liyan Cao
    Immunity, Inflammation and Disease.2023;[Epub]     CrossRef
  • Advances in research on virulence factors ofAcinetobacter baumanniiand their potential as novel therapeutic targets
    Jian-Xia Zhou, Ding-Yun Feng, Xia Li, Jia-Xin Zhu, Wen-Bin Wu, Tian-tuo Zhang
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Famotidine Enhances Rifampicin Activity against Acinetobacter baumannii by Affecting OmpA
    Meng-na Zhang, Xiao-ou Zhao, Qi Cui, Dao-mi Zhu, Muhammad Asif Wisal, Han-dong Yu, Ling-cong Kong, Hong-xia Ma, Laurie E. Comstock
    Journal of Bacteriology.2023;[Epub]     CrossRef
  • Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics
    Kirti Upmanyu, Qazi Mohd. Rizwanul Haq, Ruchi Singh
    Current Research in Microbial Sciences.2022; 3: 100131.     CrossRef
  • Evaluation the reactivity of a peptide-based monoclonal antibody derived from OmpA with drug resistant pulsotypes of Acinetobacter baumannii as a potential therapeutic approach
    Omid Yeganeh, Mahdi Shabani, Parviz Pakzad, Nariman Mosaffa, Ali Hashemi
    Annals of Clinical Microbiology and Antimicrobials.2022;[Epub]     CrossRef
  • Therapeutic Effects of Inhibitor of ompA Expression against Carbapenem-Resistant Acinetobacter baumannii Strains
    Seok-Hyeon Na, Hyejin Jeon, Man-Hwan Oh, Yoo-Jeong Kim, Mingi Chu, Ill-Young Lee, Je-Chul Lee
    International Journal of Molecular Sciences.2021; 22(22): 12257.     CrossRef
  • DksA Modulates Antimicrobial Susceptibility of Acinetobacter baumannii
    Nayeong Kim, Joo-Hee Son, Kyeongmin Kim, Hyo-Jeong Kim, Minsang Shin, Je-Chul Lee
    Antibiotics.2021; 10(12): 1472.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP