Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Ying Hu 1 Article
Down-regulation of microRNA-155 suppressed Candida albicans induced acute lung injury by activating SOCS1 and inhibiting inflammation response
Xiaohua Li , Yuanzhong Gong , Xin Lin , Qiong Lin , Jianxiong Luo , Tianxing Yu , Junping Xu , Lifang Chen , Liyu Xu , Ying Hu
J. Microbiol. 2022;60(4):402-410.   Published online February 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1663-5
  • 397 View
  • 0 Download
  • 8 Web of Science
  • 6 Crossref
AbstractAbstract PDF
Acute lung injury caused by Candida albicans could result in high mortality and morbidity. MicroRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) have been believed to play a key in the regulation of inflammatory response. Whether miR-155/SOCS1 axis could regulate the acute lung injury caused by C. albicans has not been reported. The acute lung injury animal model was established with acute infection of C. albicans. miR-155 inhibitor, miR-155 mimic, and sh-SOCS1 were constructed. The binding site between miR- 155 and SOCS1 was identified with dual luciferase reporter assay. Knockdown of miR-155 markedly inhibited the germ tube formation of C. albicans. Knockdown of miR-155 significantly up-regulated the expression of SOCS1, and the binding site between miR-155 and SOCS1 was identified. Knockdown of miR-155 improved the acute lung injury, suppressed inflammatory factors and fungus loading through SOCS1. Knockdown of SOCS1 greatly reversed the influence of miR- 155 inhibitor on the cell apoptosis in vitro. The improvement of acute lung injury caused by C. albicans, suppression of inflammatory response and C. albicans infection, and inhibitor of cell apoptosis were achieved by knocking down miR-155 through SOCS1. This research might provide a new thought for the prevention and treatment of acute lung injury caused by C. albicans through targeting miR-155/SOCS1 axis.

Citations

Citations to this article as recorded by  
  • Role of microRNAs in Immune Regulation with Translational and Clinical Applications
    Zsuzsanna Gaál
    International Journal of Molecular Sciences.2024; 25(3): 1942.     CrossRef
  • miR‑186‑5p regulates the inflammatory response of chronic obstructive pulmonary disorder by targeting HIF‑1α
    Yihui Fu, Jie Zhao, Jie Chen, Yamei Zheng, Rubing Mo, Lei Zhang, Bingli Zhang, Qi Lin, Chanyi He, Siguang Li, Lingsang Lin, Tian Xie, Yipeng Ding
    Molecular Medicine Reports.2024;[Epub]     CrossRef
  • Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer
    Hamed Kazemi Shariat Panahi, Mona Dehhaghi, Gilles J. Guillemin, Wanxi Peng, Mortaza Aghbashlo, Meisam Tabatabaei
    Cancer and Metastasis Reviews.2024; 43(2): 657.     CrossRef
  • MicroRNAs: Regulators of the host antifungal immune response
    Yanchen Lin, Ping Li, Jinliang Teng, Chunhua Liao
    Perioperative Precision Medicine.2023;[Epub]     CrossRef
  • Total saponins from Panax japonicus reduce inflammation in adipocytes through the miR155/SOCS1/NFκB signaling pathway
    Yan Gao, Rui Wang, Luoying Li, Yumin He, Ding Yuan, Yifan Zhang, Yaqi Hu, Shuwen Wang, Chengfu Yuan
    Phytomedicine.2023; 115: 154827.     CrossRef
  • Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer
    Osama Sweef, Elsayed Zaabout, Ahmed Bakheet, Mohamed Halawa, Ibrahim Gad, Mohamed Akela, Ehab Tousson, Ashraf Abdelghany, Saori Furuta
    Pharmaceutics.2023; 15(8): 2061.     CrossRef
Ying Hu 1 Article
Multi-omics to evaluate the protective mechanisms during Akkermansia muciniphila treatment of Candida albicans colonization and subsequent infection
Qiulin Luo, Huan Zhang, Youming Pu, Yingpu Wei, Jiangkun Yu, Xiaoshen Wang, Qin Cai, Ying Hu, Wenli Yuan
J. Microbiol. 2025;63(8):e2502007.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2502007
  • 1,562 View
  • 53 Download
AbstractAbstract PDFSupplementary Material

Akkermansia muciniphila (AKK, A. muciniphila) fortifies the intestinal barrier, inhibits the colonization of pathogenic bacteria, and protects the host’s health. Nevertheless, the existing literature offers inadequate evidence to ascertain whether A. muciniphila can effectively treat Candida albicans (C. albicans) infections in vitro, and the underlying mechanisms remain ambiguous. This study, animal models were established through gavage with clinical isolates of C. albicans to induce gastrointestinal tract colonization and subsequent translocation infection. The models were subsequently administered A. muciniphila. We examined the analysis of 16S rRNA gene sequencing, metabolomics of colonic contents, and transcriptomics of colonic tissue. The intestinal barrier, inflammatory responses, and immune cell infiltration are analyzed. This study revealed that A. muciniphila markedly mitigated C. albicans translocation infection and modified the intestinal microbial community structure and metabolic attributes in model mice. After administering A. muciniphila to the translocation infection group, there was a notable increase in the prevalence of bacteria that produce short-chain fatty acids, including Eubacterium_F. Moreover, there was a significant increase in the levels of specific pathogens, including Faecalibaculum, Turicibacter, and Turicimonas. The study demonstrated that A. muciniphila treatment can improve the composition of intestinal microbiota and metabolites, augment the tight junctions of colonic tissue and diminish systemic inflammatory response. This presents an innovative therapeutic approach for the potential treatment of intestinal C. albicans infection using A. muciniphila.


Journal of Microbiology : Journal of Microbiology
TOP