- Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems
-
Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park
-
J. Microbiol. 2024;62(11):933-950. Published online October 8, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00172-7
-
-
Abstract
-
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges.
Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
- Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms
-
Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park
-
J. Microbiol. 2024;62(3):249-260. Published online April 8, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00115-2
-
-
125
View
-
1
Download
-
8
Web of Science
-
8
Crossref
-
Abstract
-
The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
-
Citations
Citations to this article as recorded by 
- Strong inhibitory effects of Desmodesmus sp. on Microcystis blooms: Potential as a biological control agent in aquaculture
Bo Yang, Yuhua Li, Zihan Wang, Zhiguang Yue, Junqi Wen, Xueqin Zhao, Hu Zhang, Xianfeng Wang, Xiufen Wang, Man Zhang Aquaculture Reports.2025; 40: 102579. CrossRef - Field-scale artificial floating islands reduces cyanotoxin from residential raw sewage treatment basin
Zhaozhe Chen, Jiyoung Lee, Molly Mills, Abigail Volk, Ozeas S. Costa Ecological Engineering.2025; 212: 107543. CrossRef - HABS-BLOCKS© Inhibited Microcystis and Planktothrix and Reduced Microcystin Concentrations in a Lake Water Mesocosm Study
Cameron Gastaldo, Stephen Vesper Microorganisms.2025; 13(5): 1074. CrossRef - Artificial Intelligence-Based Microfluidic Platform for Detecting Contaminants in Water: A Review
Yihao Zhang, Jiaxuan Li, Yu Zhou, Xu Zhang, Xianhua Liu Sensors.2024; 24(13): 4350. CrossRef - Alleviation of H2O2 toxicity by extracellular catalases in the phycosphere of Microcystis aeruginosa
Yerim Park, Wonjae Kim, Yeji Cha, Minkyung Kim, Woojun Park Harmful Algae.2024; 137: 102680. CrossRef - Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems
Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park Journal of Microbiology.2024; 62(11): 933. CrossRef - Laboratory-Simulated Inhibitory Effects of the Floating-Bed Plants on Microcystis aeruginosa and Their Microbial Communities’ Responses to Microcystins
Shuwen Zhang, Yuanpu Sha, Yuanyuan Tang, Longjie Li, Feihu Wang, Jing Dong, Xuejun Li, Yunni Gao, Xiaofei Gao, Huatao Yuan, Jingxiao Zhang Microorganisms.2024; 12(10): 2035. CrossRef - Host-Associated Microbiome
Woo Jun Sul Journal of Microbiology.2024; 62(3): 135. CrossRef
|