Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Si Chen 1 Article
Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China
Xing Chen , Hong Du , Si Chen , Xiaoli Li , Huaxian Zhao , Qiangsheng Xu , Jinli Tang , Gonglingxia Jiang , Shuqi Zou , Ke Dong , Jonathan M. Adams , Nan Li , Chengjian Jiang
J. Microbiol. 2020;58(12):998-1009.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0293-z
  • 464 View
  • 1 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.

Citations

Citations to this article as recorded by  
  • Environmental factors that regulate Vibrio spp. abundance and community structure in tropical waters
    Yi You Wong, Choon Weng Lee, Chui Wei Bong, Joon Hai Lim, Ching Ching Ng, Kumaran Narayanan, Edmund Ui Hang Sim, Ai-jun Wang
    Anthropocene Coasts.2024;[Epub]     CrossRef
  • Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf
    Qiangsheng Xu, Pengbin Wang, Jinghua Huangleng, Huiqi Su, Panyan Chen, Xing Chen, Huaxian Zhao, Zhenjun Kang, Jinli Tang, Gonglingxia Jiang, Zhuoting Li, Shuqi Zou, Ke Dong, Yuqing Huang, Nan Li
    Science of The Total Environment.2022; 805: 150303.     CrossRef
  • Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data
    Weiwei Zhang, Chenghua Li
    Reviews in Aquaculture.2021; 13(4): 2004.     CrossRef
Si Chen 1 Article
Multi-omic profiling reveals the impact of keratinase kerZJ on mouse gut homeostasis
Xueqing Gan, Yijiao Wen, Si Chen, Famin Ke, Siyuan Liu, Zening Wang, Chunhua Zhang, Xuanting Wang, Qin Wang, Xiaowei Gao
J. Microbiol. 2025;63(12):e2509011.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509011
  • 674 View
  • 16 Download
AbstractAbstract PDF

Keratinase kerZJ is a multifunctional protease with potential as a feed additive and functional ingredient. Here we performed an integrated multi‑omics evaluation of its biosafety and impact on gut homeostasis in mice. Our findings confirm that kerZJ is well-tolerated, with no evidence of systemic toxicity or intestinal epithelial damage. Integrated transcriptomic and proteomic analyses revealed that kerZJ reinforces intestinal barrier integrity by upregulating extracellular matrix components, including collagen IV, and modulates mucosal immunity by enhancing B-cell activation and antimicrobial peptide defenses without inducing inflammation. Furthermore, kerZJ administration led to a significant upregulation of digestive enzymes and a dose-dependent increase in short-chain fatty acids production. Microbiome analysis showed that while high-dose kerZJ altered community composition, it enriched for beneficial taxa like Lactobacillaceae and did not induce dysbiosis. These results demonstrate that kerZJ safely enhances gut barrier function, promotes a favorable immune and metabolic environment, and fosters a resilient gut ecosystem, supporting its development as a safe feed additive and nutraceutical component.


Journal of Microbiology : Journal of Microbiology
TOP