Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Qin Wang 1 Article
Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp
Kamin Ke, Yingjie Sun, Tingting He, Wenbo Liu, Yijiao Wen, Siyuan Liu, Qin Wang, Xiaowei Gao
J. Microbiol. 2024;62(6):473-487.   Published online February 29, 2024
DOI: https://doi.org/10.1007/s12275-024-00118-z
  • 81 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.

Citations

Citations to this article as recorded by  
  • Keratinous bioresources: their generation, microbial degradation, and value enhancement for biotechnological applications
    Vijan Lal Vikash, Numbi Ramudu Kamini, Ganesan Ponesakki, Suresh Kumar Anandasadagopan
    World Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP