Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Na-Ri Shin 5 Articles
Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome
Dong-Wook Hyun , Jae-Yun Lee , Min-Soo Kim , Na-Ri Shin , Tae Woong Whon , Kyung Hyun Kim , Pil Soo Kim , Euon Jung Tak , Mi-Ja Jung , June Young Lee , Hyun Sik Kim , Woorim Kang , Hojun Sung , Che Ok Jeon , Jin-Woo Bae
J. Microbiol. 2021;59(8):793-806.
DOI: https://doi.org/10.1007/s12275-021-1165-x
  • 70 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.

Citations

Citations to this article as recorded by  
  • Microbiota analysis of perimenopausal women experiencing recurrent vaginitis in conjunction with urinary tract infection
    Yingying Bi, Yuezhu Wang, Wu Li, Yuhang Chen, Jinlong Qin, Huajun Zheng
    BMC Microbiology.2025;[Epub]     CrossRef
  • Characterization of blood microbial population in beef calves with clinical signs of sepsis using 16S rRNA gene sequencing
    Giuliano Borriello, Flaminia Valentini, Sara Ferrini, Giorgia Di Muro, Giulia Cagnotti, Elena Grego, Angela Maria Catania, Maria Cristina Stella, Ugo Ala, Patrizia Nebbia, Antonio D’Angelo, Claudio Bellino, Ulrike Gertrud Munderloh
    PLOS One.2025; 20(5): e0324469.     CrossRef
  • Molecular characterization of a novel putative pathogen, Streptococcus nakanoensis sp. nov., isolated from sputum culture
    Takeaki Wajima, Takashi Sugawara, Emi Tanaka, Kei-ichi Uchiya, Justin R. Kaspar
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • Streptococcus raffinosi sp. nov., isolated from human breast milk samples
    Ha Viet Nguyen, Anh Thi Van Trinh, Linh Nguyen Hai Bui, Anh Thi Lan Hoang, Quyen Thi Le Tran, Trung Thanh Trinh
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities
    Beom-Jin Goo, Young-Sik Choi, Do-Hun Gim, Su-Won Jeong, Jee-Won Choi, Hojun Sung, Jae-Yun Lee, Jin-Woo Bae
    Journal of Microbiology.2024; 62(11): 973.     CrossRef
  • Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022
    Erik Munson, Arianna Carella, Karen C. Carroll, Romney M. Humphries
    Journal of Clinical Microbiology.2023;[Epub]     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice
    Lin Ding, Shan Ren, Yaoxin Song, Chuangang Zang, Yuchao Liu, Hao Guo, Wenqing Yang, Hong Guan, Jicheng Liu
    Frontiers in Nutrition.2022;[Epub]     CrossRef
  • Reclassification of Streptococcus ilei as a later heterotypic synonym of Streptococcus koreensis based on whole-genome sequence analysis
    Sanjeet Kumar, Kanika Bansal, Santosh Kumar Sethi
    Archives of Microbiology.2022;[Epub]     CrossRef
Omics in gut microbiome analysis
Tae Woong Whon , Na-Ri Shin , Joon Yong Kim , Seong Woon Roh
J. Microbiol. 2021;59(3):292-297.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1004-0
  • 62 View
  • 0 Download
  • 38 Web of Science
  • 38 Crossref
AbstractAbstract
Our understanding of the interactions between microbial communities and their niche in the host gut has improved owing to recent advances in environmental microbial genomics. Integration of metagenomic and metataxonomic sequencing data with other omics data to study the gut microbiome has become increasingly common, but downstream analysis after data integration and interpretation of complex omics data remain challenging. Here, we review studies that have explored the gut microbiome signature using omics approaches, including metagenomics, metataxonomics, metatranscriptomics, and metabolomics. We further discuss recent analytics programs to analyze and integrate multi-omics datasets and further utilization of omics data with other advanced techniques, such as adaptive immune receptor repertoire sequencing, microbial culturomics, and machine learning, to evaluate important microbiome characteristics in the gut.

Citations

Citations to this article as recorded by  
  • Effect of alfalfa supplementary change dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio on rumen fermentation and microbial function in Gansu alpine fine wool sheep ( Ovis aries )
    Qian Chen, Yun-feng Cui, Zhao-xi Zhang, Fu-cheng Jiang, Xiang-yu Meng, Jin-jin Li, Da-yong Cui, Jian-lei Jia
    Animal Biotechnology.2024;[Epub]     CrossRef
  • Effect of Pharmaceutically Active Antibiotics on Gut Metagenome of Mother and Infant
    Ruchi Yadav
    Journal of Preventive, Diagnostic and Treatment Strategies in Medicine.2024; 3(4): 284.     CrossRef
  • Effects of gnotobiotic fermentation on global gene expression of germ‐free vegetables
    Yujin Kim, Hojun Sung, Yeon Bee Kim, Hye Seon Song, Mi‐Ja Jung, Jisu Lee, Min Ji Lee, Se Hee Lee, Seong Woon Roh, Jin‐Woo Bae, Tae Woong Whon
    Physiologia Plantarum.2024;[Epub]     CrossRef
  • Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities
    Bernhard Jandl, Satish Dighe, Christoph Gasche, Athanasios Makristathis, Markus Muttenthaler, Christopher Staley, Giovanni Di Bonaventura
    Clinical Microbiology Reviews.2024;[Epub]     CrossRef
  • The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation
    U. Shamjana, Deepa Azhchath Vasu, Preety Sweta Hembrom, Karunakar Nayak, Tony Grace
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Effect of florfenicol administered through feed on Atlantic salmon (Salmo salar) gut and its microbiome
    Giovanna Monticelli, Joseph H. Bisesi, Jason T. Magnuson, Daniel Schlenk, Carlos Zarza, David Peggs, Daniela M. Pampanin
    Aquaculture.2024; 580: 740310.     CrossRef
  • Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery
    Hye Seon Song, Yeon Bee Kim, Joon Yong Kim, Seong Woon Roh, Tae Woong Whon
    Journal of Microbiology and Biotechnology.2024; 34(4): 757.     CrossRef
  • Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder
    Shrutikirti Vashishth, Rashmi K. Ambasta, Pravir Kumar
    Ageing Research Reviews.2024; 100: 102466.     CrossRef
  • Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology
    Parul Mehra, Anil Kumar
    Cell Biochemistry and Function.2024;[Epub]     CrossRef
  • Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis
    Zhibo Zeng, Chuxian Quan, Shimeng Zhou, Saisai Gong, Mudassar Iqbal, Muhammad Fakhar-e-Alam Kulyar, Shah Nawaz, Kewei Li, Jiakui Li
    International Journal of Biological Macromolecules.2024; 254: 127808.     CrossRef
  • The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses
    In-Young Chung, Jihyun Kim, Ara Koh
    Journal of Microbiology.2024; 62(3): 137.     CrossRef
  • Deciphering the gut microbiome: The revolution of artificial intelligence in microbiota analysis and intervention
    Mohammad Abavisani, Alireza Khoshrou, Sobhan Karbas Foroushan, Negar Ebadpour, Amirhossein Sahebkar
    Current Research in Biotechnology.2024; 7: 100211.     CrossRef
  • Should Routine Diagnostics Implement Gut Microbiota Analysis?
    Giuseppe Guido Maria Scarlata, Ludovico Abenavoli
    The International Journal of Gastroenterology and Hepatology Diseases.2024;[Epub]     CrossRef
  • Microbiome and pancreatic cancer: time to think about chemotherapy
    Juliana de Castilhos, Katharina Tillmanns, Jana Blessing, Arnelyn Laraño, Vadim Borisov, Christoph K. Stein-Thoeringer
    Gut Microbes.2024;[Epub]     CrossRef
  • Microbiota in Irritable Bowel Syndrome and Endometriosis: Birds of a Feather Flock Together—A Review
    Noemi Salmeri, Emanuele Sinagra, Carolina Dolci, Giovanni Buzzaccarini, Giulio Sozzi, Miriam Sutera, Massimo Candiani, Federica Ungaro, Luca Massimino, Silvio Danese, Francesco Vito Mandarino
    Microorganisms.2023; 11(8): 2089.     CrossRef
  • Revelation of the sciences of traditional foods
    Zhen Jia, Boce Zhang, Arnav Sharma, Nathalie S. Kim, Sonia M. Purohit, Madison M. Green, Michelle R. Roche, Emma Holliday, Hongda Chen
    Food Control.2023; 145: 109392.     CrossRef
  • The gut microbiota: A new perspective for tertiary prevention of hepatobiliary and gallbladder diseases
    Xiaoyu Huang, Yi Yang, Xueli Li, Xiaoya Zhu, Dan Lin, Yueran Ma, Min Zhou, Xiangyi Cui, Bingyu Zhang, Dongmei Dang, Yuhong Lü, Changwu Yue
    Frontiers in Nutrition.2023;[Epub]     CrossRef
  • Environmental factors and gut microbiota: Toward better conservation of deer species
    Yu Wang, Bo Xu, Huan Chen, Fang Yang, Jinlin Huang, Xin’an Jiao, Yunzeng Zhang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Potential role of gut microbes in the efficacy and toxicity of immune checkpoints inhibitors
    Jingxin Ma, Qi Wei, Xin Cheng, Jie Zhang, Zhongtao Zhang, Jianrong Su
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Microbiota-Gut-Brain Axis in Neurological Disorders: From Leaky Barriers Microanatomical Changes to Biochemical Processes
    Irene Neri, Elisa Boschetti, Matilde Yung Follo, Roberto De Giorgio, Lucio Ildebrando Cocco, Lucia Manzoli, Stefano Ratti
    Mini-Reviews in Medicinal Chemistry.2023; 23(3): 307.     CrossRef
  • Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends
    Alireza Sadeghi, Maryam Ebrahimi, Mohammad Saeed Kharazmi, Seid Mahdi Jafari
    Food Chemistry.2023; 411: 135478.     CrossRef
  • Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses
    Lisa J Kahl, Nina Stremmel, M Alejandra Esparza-Mora, Rachel M Wheatley, R Craig MacLean, Markus Ralser
    Current Opinion in Microbiology.2023; 75: 102368.     CrossRef
  • Molecular Insights Into the Role of Gut Microbiota in Antibiotic Therapy Selection and Resistance Mitigation
    Mihaela Andreescu
    Cureus.2023;[Epub]     CrossRef
  • Gut Microbiota Composition and Cardiovascular Disease: A Potential New Therapeutic Target?
    Martina Belli, Lucy Barone, Susanna Longo, Francesca Romana Prandi, Dalgisio Lecis, Rocco Mollace, Davide Margonato, Saverio Muscoli, Domenico Sergi, Massimo Federici, Francesco Barillà
    International Journal of Molecular Sciences.2023; 24(15): 11971.     CrossRef
  • Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome
    Silvia Saturio, Alejandra Rey, Anna Samarra, Maria Carmen Collado, Marta Suárez, Laura Mantecón, Gonzalo Solís, Miguel Gueimonde, Silvia Arboleya
    Microorganisms.2023; 11(8): 1907.     CrossRef
  • A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine
    Sijia Zheng, Lina Zhou, Miriam Hoene, Andreas Peter, Andreas L. Birkenfeld, Cora Weigert, Xinyu Liu, Xinjie Zhao, Guowang Xu, Rainer Lehmann
    Metabolites.2023; 13(10): 1061.     CrossRef
  • Causal discovery for the microbiome
    Jukka Corander, William P Hanage, Johan Pensar
    The Lancet Microbe.2022; 3(11): e881.     CrossRef
  • Play the plug: How bacteria modify recognition by host receptors?
    Suma Tiruvayipati, Dharjath S. Hameed, Niyaz Ahmed
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Intestinal virome: An important research direction for alcoholic and nonalcoholic liver diseases
    Yan Li, Wen-Cheng Liu, Bing Chang
    World Journal of Gastroenterology.2022; 28(26): 3279.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Long-term high loading intensity of aerobic exercise improves skeletal muscle performance via the gut microbiota-testosterone axis
    Lidong Zhang, Hedong Lang, Li Ran, Guoliang Tian, Hui Shen, Jundong Zhu, Qianyong Zhang, Long Yi, Mantian Mi
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • In sickness and in health: Insights into the application of omics in aquaculture settings under a microbiological perspective
    Anna Luiza Bauer Canellas, Wellington Felipe Costa, Jéssyca Freitas-Silva, Isabelle Rodrigues Lopes, Bruno Francesco Rodrigues de Oliveira, Marinella Silva Laport
    Aquaculture.2022; 554: 738132.     CrossRef
  • The gut microbiome in human health and disease—Where are we and where are we going? A bibliometric analysis
    Zhiqiang Huang, Kun Liu, Wenwen Ma, Dezhi Li, Tianlu Mo, Qing Liu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Standards for Collection, Preservation, and Transportation of Fecal Samples in TCM Clinical Trials
    Wenquan Su, Yawei Du, Fengmei Lian, Hui Wu, Xinrong Zhang, Wenli Yang, Yunfeng Duan, Yuanming Pan, Weijng Liu, Aiming Wu, Bowen Zhao, Chongming Wu, Shengxian Wu
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study
    Boxun Zhang, Zishan Jin, Tiangang Zhai, Qiyou Ding, Haoyu Yang, Jia Wang, Lili Zhang, Linhua Zhao
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
  • Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data
    Anurag Passi, Juan D. Tibocha-Bonilla, Manish Kumar, Diego Tec-Campos, Karsten Zengler, Cristal Zuniga
    Metabolites.2021; 12(1): 14.     CrossRef
Acinetobacter apis sp. nov., Isolated from the Intestinal Tract of a Honey Bee, Apis mellifera
Pil Soo Kim , Na-Ri Shin , Joon Yong Kim , Ji-Hyun Yun , Dong-Wook Hyun , Jin-Woo Bae
J. Microbiol. 2014;52(8):639-645.   Published online August 1, 2014
DOI: https://doi.org/10.1007/s12275-014-4078-0
  • 87 View
  • 0 Download
  • 39 Crossref
AbstractAbstract
A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18T, was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidasenegative and catalase-positive. Strain HYN18T showed optimum growth at 25°C, pH 6–7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18T was most closely related to Acinetobacter nectaris SAP 763.2T and A. boissieri SAP 284.1T with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2T (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c/C16:1ω6c), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18T were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNADNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2T. Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18T is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18T (=KACC 16906T =JCM 18575T).

Citations

Citations to this article as recorded by  
  • Tiny but mighty? Overview of a decade of research on nectar bacteria
    Sergio Quevedo‐Caraballo, Clara de Vega, Bart Lievens, Tadashi Fukami, Sergio Álvarez‐Pérez
    New Phytologist.2025; 245(5): 1897.     CrossRef
  • Genome evolution following an ecological shift in nectar-dwelling Acinetobacter
    Vivianna A. Sanchez, Tanya Renner, Lydia J. Baker, Tory A. Hendry, Michael J. Imperiale
    mSphere.2025;[Epub]     CrossRef
  • Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter
    Tsvetana Muleshkova, Inga Bazukyan, Konstantinos Papadimitriou, Velitchka Gotcheva, Angel Angelov, Svetoslav G. Dimov
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • The Latitudinal Biotic Interaction Hypothesis revisited: contrasting latitudinal richness gradients in actively vs. passively accumulated interaction partners of honey bees
    Alyssa R. Cirtwill, Tomas Roslin, Pablo Peña-Aguilera, Agathe Agboto, William Bercê, Svetlana N. Bondarchuk, Robert Brodschneider, Behzad Heidari, Camara Kaizirege, Justine Muhoro Nyaga, Ojonugwa Ekpah, Gonzalo Ossa Gomez, Claudia Paz, Christian Pirk, Ami
    BMC Ecology and Evolution.2025;[Epub]     CrossRef
  • DNA in honey could describe the changes in flower visits and microbe encounters of honey bees over decades
    Alyssa R. Cirtwill, Helena Wirta
    Scientific Reports.2025;[Epub]     CrossRef
  • STRATEGIES AND MECHANISMS OF PLANT-MICROBIOME-POLLINATOR COADAPTATION
    Rustem Ilyasov, Alla Ilyasova, Valery Danilenko, Meral Kekeçoğlu, Rašić Slađan, Pham Hong Thaı, Svetlana Khrapova, Alfir Mannapov, Sofia Prokudina, Vener Sattarov, Dmitry Boguslavsky
    Uludağ Arıcılık Dergisi.2025; 25(1): 171.     CrossRef
  • Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission
    Alan Emanuel Silva Cerqueira, Helena Santiago Lima, Lívia Carneiro Fidélis Silva, Tomás Gomes Reis Veloso, Sérgio Oliveira de Paula, Weyder Cristiano Santana, Cynthia Canêdo da Silva
    FEMS Microbiology Ecology.2024;[Epub]     CrossRef
  • A quantitative survey of the blueberry (Vacciniumspp.) culturable nectar microbiome: variation between cultivars, locations, and farm management approaches
    Caitlin C Rering, Arthur B Rudolph, Qin-Bao Li, Quentin D Read, Patricio R Muñoz, John J Ternest, Charles T Hunter
    FEMS Microbiology Ecology.2024;[Epub]     CrossRef
  • Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments
    Arne Weinhold, Elisabeth Grüner, Alexander Keller
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • New insights into honey bee viral and bacterial seasonal infection patterns using third-generation nanopore sequencing on honey bee haemolymph
    Cato Van Herzele, Sieglinde Coppens, Nick Vereecke, Sebastiaan Theuns, Dirk C. de Graaf, Hans Nauwynck
    Veterinary Research.2024;[Epub]     CrossRef
  • Purification and characterization of proteins from Manuka honey
    Anu Jose, Alanta Maria Binu, Eleeswa Celin Syrus, Joyal Elizabeth Baiju, Neema, Susan Jose, Aneena Mariya Abraham, Julie Jacob
    Materials Today: Proceedings.2023;[Epub]     CrossRef
  • Sugar Concentration, Nitrogen Availability, and Phylogenetic Factors Determine the Ability of Acinetobacter spp. and Rosenbergiella spp. to Grow in Floral Nectar
    José R. Morales-Poole, Clara de Vega, Kaoru Tsuji, Hans Jacquemyn, Robert R. Junker, Carlos M. Herrera, Chris Michiels, Bart Lievens, Sergio Álvarez-Pérez
    Microbial Ecology.2023; 86(1): 377.     CrossRef
  • Molecular identification of major bacteria in honey and the effect of microwave treatment on its microbial quality and antibacterial activity
    Ziad Jaradat, Batool Khataybeh, Abdull Majid Al Ghzawi, Qutaiba Ababneh, Anas Al Nabusli
    AIMS Agriculture and Food.2022; 7(3): 594.     CrossRef
  • Collection Time, Location, and Mosquito Species Have Distinct Impacts on the Mosquito Microbiota
    Daniel W. Pérez-Ramos, Martina M. Ramos, Kyle C. Payne, Bryan V. Giordano, Eric P. Caragata
    Frontiers in Tropical Diseases.2022;[Epub]     CrossRef
  • Potential effects of nectar microbes on pollinator health
    Valerie N. Martin, Robert N. Schaeffer, Tadashi Fukami
    Philosophical Transactions of the Royal Society B: Biological Sciences.2022;[Epub]     CrossRef
  • Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee
    Helena Kristiina Wirta, Mohammad Bahram, Kirsten Miller, Tomas Roslin, Eero Vesterinen, Wolfgang Blenau
    PLOS ONE.2022; 17(7): e0268250.     CrossRef
  • The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3
    Bruno Alejandro Steimbrüch, Mariana Gabriela Sartorio, Néstor Cortez, Daniela Albanesi, María-Natalia Lisa, Guillermo Daniel Repizo
    Scientific Reports.2022;[Epub]     CrossRef
  • Parasphingorhabdus cellanae sp. nov., isolated from the gut of a Korean limpet, Cellana toreuma
    Ji-Ho Yoo, Jeong Eun Han, June-Young Lee, Su-Won Jeong, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Hojun Sung, Euon Jung Tak, Hyun Sik Kim, Pil Soo Kim, Jee-Won Choi, Do-Yeon Kim, In Chul Jeong, Do-Hun Gim, Seo Min Kang, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex
    Bardya Djahanschiri, Gisela Di Venanzio, Jesus S. Distel, Jennifer Breisch, Marius Alfred Dieckmann, Alexander Goesmann, Beate Averhoff, Stephan Göttig, Gottfried Wilharm, Mario F. Feldman, Ingo Ebersberger, Xavier Didelot
    PLOS Genetics.2022; 18(6): e1010020.     CrossRef
  • Gut Bacterial Flora of Open Nested Honeybee, Apis florea
    D. N. Ganeshprasad, Jafar K. Lone, Kunal Jani, Yogesh S. Shouche, Khalid Ali Khan, Samy Sayed, Mustafa Shukry, Showket A. Dar, Muntazir Mushtaq, A. H. Sneharani
    Frontiers in Ecology and Evolution.2022;[Epub]     CrossRef
  • Changes of microorganism composition in fresh and stored bee pollen from Southern Germany
    Carolin Friedle, Paul D’Alvise, Karsten Schweikert, Klaus Wallner, Martin Hasselmann
    Environmental Science and Pollution Research.2021; 28(34): 47251.     CrossRef
  • Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov., isolated from floral nectar and honey bees
    Sergio Alvarez-Perez, Lydia J. Baker, Megan M. Morris, Kaoru Tsuji, Vivianna A. Sanchez, Tadashi Fukami, Rachel L. Vannette, Bart Lievens, Tory A. Hendry
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters
    Sergio Álvarez-Pérez, Kaoru Tsuji, Marion Donald, Ado Van Assche, Rachel L. Vannette, Carlos M. Herrera, Hans Jacquemyn, Tadashi Fukami, Bart Lievens
    Microbial Ecology.2021; 81(4): 990.     CrossRef
  • Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development
    María I. Pozo, Toon Mariën, Gaby van Kemenade, Felix Wäckers, Hans Jacquemyn
    Oecologia.2021; 195(3): 689.     CrossRef
  • Structural diversity and functional variability of gut microbial communities associated with honey bees
    Khalid Ali Khan, Ahmad A. Al-Ghamdi, Hamed A. Ghramh, Mohammad Javed Ansari, Habib Ali, Saad A. Alamri, Saad Naser Al- Kahtani, Nuru Adgaba, Muhammad Qasim, Muhammad Hafeez
    Microbial Pathogenesis.2020; 138: 103793.     CrossRef
  • Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China
    Terd Disayathanoowat, HuanYuan Li, Natapon Supapimon, Nakarin Suwannarach, Saisamorn Lumyong, Panuwan Chantawannakul, Jun Guo
    Microorganisms.2020; 8(2): 264.     CrossRef
  • Abundance of mobile genetic elements in an Acinetobacter lwoffii strain isolated from Transylvanian honey sample
    Alexandra Veress, Tibor Nagy, Tímea Wilk, János Kömüves, Ferenc Olasz, János Kiss
    Scientific Reports.2020;[Epub]     CrossRef
  • Microbiota comparison in the intestine of juvenile Chinese mitten crab Eriocheir sinensis fed different diets
    Yunfei Sun, Wenfeng Han, Jian Liu, Feng Liu, Yongxu Cheng
    Aquaculture.2020; 515: 734518.     CrossRef
  • Acinetobacter baumannii NCIMB8209: a Rare Environmental Strain Displaying Extensive Insertion Sequence-Mediated Genome Remodeling Resulting in the Loss of Exposed Cell Structures and Defensive Mechanisms
    Guillermo D. Repizo, Martín Espariz, Joana L. Seravalle, Juan Ignacio Díaz Miloslavich, Bruno A. Steimbrüch, Howard A. Shuman, Alejandro M. Viale, Ana Cristina Gales
    mSphere.2020;[Epub]     CrossRef
  • Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens
    Anurak Bunnoy, Uthairat Na-Nakorn, Pattanapon Kayansamruaj, Prapansak Srisapoome
    Microorganisms.2019; 7(11): 549.     CrossRef
  • Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)
    Anurak Bunnoy, Uthairat Na-Nakorn, Prapansak Srisapoome
    Microorganisms.2019; 7(12): 613.     CrossRef
  • Phylogenetic signal in phenotypic traits related to carbon source assimilation and chemical sensitivity in Acinetobacter species
    Ado Van Assche, Sergio Álvarez-Pérez, Anna de Breij, Joseph De Brabanter, Kris A. Willems, Lenie Dijkshoorn, Bart Lievens
    Applied Microbiology and Biotechnology.2017; 101(1): 367.     CrossRef
  • Acinetobacter larvae sp. nov., isolated from the larval gut of Omphisa fuscidentalis
    Song Liu, Yanwei Wang, Zhiyong Ruan, Kedong Ma, Bo Wu, Yansheng Xu, Jingli Wang, Yang You, Mingxiong He, Guoquan Hu
    International Journal of Systematic and Evolutionary Microbiology.2017; 67(4): 806.     CrossRef
  • Relative abundance of deformed wing virus, Varroa destructor virus 1, and their recombinants in honey bees (Apis mellifera) assessed by kmer analysis of public RNA-Seq data
    Robert Scott Cornman
    Journal of Invertebrate Pathology.2017; 149: 44.     CrossRef
  • Reservoirs of Non-baumannii Acinetobacter Species
    Ahmad Al Atrouni, Marie-Laure Joly-Guillou, Monzer Hamze, Marie Kempf
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Acinetobacter equi sp. nov., isolated from horse faeces
    Marie T. Poppel, Evelyn Skiebe, Michael Laue, Holger Bergmann, Ingo Ebersberger, Thomas Garn, Angelika Fruth, Sandra Baumgardt, Hans-Jürgen Busse, Gottfried Wilharm
    International Journal of Systematic and Evolutionary Microbiology.2016; 66(2): 881.     CrossRef
  • Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex mainly recovered from clinical samples in different countries
    Clara Cosgaya, Marta Marí-Almirall, Ado Van Assche, Dietmar Fernández-Orth, Noraida Mosqueda, Murat Telli, Geert Huys, Paul G. Higgins, Harald Seifert, Bart Lievens, Ignasi Roca, Jordi Vila
    International Journal of Systematic and Evolutionary Microbiology .2016; 66(10): 4105.     CrossRef
  • Ventosimonas gracilis gen. nov., sp. nov., a member of the Gammaproteobacteria isolated from Cephalotes varians ant guts representing a new family, Ventosimonadaceae fam. nov., within the order ‘Pseudomonadales’
    Jonathan Y. Lin, William J. Hobson, John T. Wertz
    International Journal of Systematic and Evolutionary Microbiology .2016; 66(8): 2869.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2014; 64(Pt_11): 3603.     CrossRef
Paenibacillus marinisediminis sp. nov., a Bacterium Isolated from Marine Sediment
Hae-Won Lee , Seong Woon Roh , Kyung June Yim , Na-Ri Shin , Jina Lee , Tae Woong Whon , Joon Yong Kim , Dong-Wook Hyun , Daekyung Kim , Jin-Woo Bae
J. Microbiol. 2013;51(3):312-317.   Published online June 28, 2013
DOI: https://doi.org/10.1007/s12275-013-3198-2
  • 57 View
  • 0 Download
  • 13 Scopus
AbstractAbstract
A Gram-negative, nonmotile, endospore-forming, rod-shaped bacterial strain LHW35T, which belonged to the genus Paenibacillus, was isolated from marine sediment collected from the south coast of the Republic of Korea. A phylogenetic analysis of 16S rRNA gene sequences indicated that strain LHW35T was most closely related to Paenibacillus taiwanensis G-soil-2-3T (97.2% similarity). The optimal growth conditions for strain LHW35T were 37°C, pH 6.0, and 0% (w/v) NaCl. The main isoprenoid quinone was menaquinone-7 (MK-7) and the major polyamine was spermidine. The diamino acid present in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acids were anteiso-C15:0 and C16:0. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, unidentified aminohospholipids, unidentified phospholipids, and unidentified polar lipids. A DNA-DNA hybridization experiment using the type strain of P. taiwanensis indicated <40% relatedness. The DNA G+C content was 45.0 mol%. Based on these phylogenetic, genomic, and phenotypic analyses, strain LHW35T should be classified as a novel species within the genus Paenibacillus, for which the name Paenibacillus marinisediminis sp. nov. is proposed. The type strain is LHW35T (=KACC 16317T =JCM 17886T).
Rhodopirellula rosea sp. nov., a Novel Bacterium Isolated from an Ark Clam Scapharca broughtonii
Seong Woon Roh , Hae-Won Lee , Kyung June Yim , Na-Ri Shin , Jina Lee , Tae Woong Whon , Na-Lae Lim , Daekyung Kim , Jin-Woo Bae
J. Microbiol. 2013;51(3):301-304.   Published online June 28, 2013
DOI: https://doi.org/10.1007/s12275-013-3210-x
  • 55 View
  • 0 Download
  • 16 Scopus
AbstractAbstract
A novel Gram-negative, motile, and ovoid-shaped strain, LHWP3T, which belonged to the family Planctomycetaceae in the phylum Planctomycetes, was isolated from a dead ark clam Scapharca broughtonii collected during a mass mortality event on the south coast of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the isolate was most closely related to the type strain of Rhodopirellula baltica, with a shared 16S rRNA gene sequence similarity of 94.8%. The isolate grew optimally at 30°C in 4–6% (w/v) NaCl, and at pH 7. The major isoprenoid quinone was menaquinone-6 (MK-6). The dominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and unidentified polar lipids. The predominant cellular fatty acids were C16:0, C18:1 ω9c, and C18:0. The genomic DNA G+C content of strain LHWP3T was 53.0 mol%. Based on polyphasic taxonomic analyses, strain LHWP3T should be classified as a novel species in the genus Rhodopirellula in the family Planctomycetaceae, for which the name Rhodopirellula rosea sp. nov. is proposed. The type strain is LHWP3T (=KACC 15560T =JCM 17759T).
Na-Ri Shin 2 Articles
Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., Isolated from Jeotgal, a Traditional Korean Fermented Seafood
Ah-In Yang, Bora Kim, Sung-Hong Joe, Hae-In Joe, Hanna Choe, Ki Hyun Kim, Min Ok Jun, Na-Ri Shin
J. Microbiol. 2024;62(4):285-296.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00106-3
  • 126 View
  • 0 Download
  • 1 Web of Science
  • 3 Crossref
AbstractAbstract
Three novel, Gram-stain-positive, obligate aerobic, catalase- and oxidase-positive bacterial strains, designated B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T), were isolated from jeotgal, a traditional Korean fermented seafood. Strains B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T) exhibited distinct colony colors, characterized by pink, yellow, and red opaque circular colonies, respectively. Phylogenetic analysis revealed that three strains formed a paraphyletic clade within the genus Sporosarcina and shared < 99.0% similarity with Sporosarcina aquimarina KCTC 3840(T) and Sporosarcina saromensis KCTC 13119(T) in their 16S rRNA gene sequences. The three strains exhibiting Orthologous Average Nucleotide Identity values < 79.3% and digital DNA-DNA hybridization values < 23.1% within the genus Sporosarcina affirmed their distinctiveness. Strains B2O-1(T), T2O-4(T), and 0.2-SM1T-5(T) contained MK-7 as a sole respiratory menaquinone and A4α type peptidoglycan based on lysine with alanine, glutamic acid, and aspartic acid. The common polar lipids include diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Strain T2O-4(T) contained one unidentified phospholipid, whereas strain 0.2-SM1T-5(T) contained two unidentified phospholipids. Cellular fatty acid profiles, with C(15:0) anteiso as the major fatty acid, supported the affiliation of the three strains to the genus Sporosarcina. Based on the polyphasic characteristics, strains B2O-1(T) (= KCTC 43506(T) = JCM 36032(T)), T2O-4(T) (= KCTC 43489(T) = JCM 36031(T)), and 0.2-SM1T-5(T) (= KCTC 43519(T) = JCM 36034(T)) represent three novel species within the genus Sporosarcina, named Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., respectively.

Citations

Citations to this article as recorded by  
  • Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 41
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Brevibacterium koreense sp. nov., a moderately halophilic bacterium isolated from jogae-jeotgal, a Korean fermented seafood
    Sohee Nam, Yujin Kim, Min Ji Lee, Yeon Bee Kim, Jeong Ui Yun, Mi-Ja Jung, Hye Seon Song, Se Hee Lee, Seok-Jun Kim, Tae Woong Whon
    International Journal of Systematic and Evolutionary Microbiology .2025;[Epub]     CrossRef
  • Validation List no. 220. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov., isolated from human feces, and the reclassification of Bacteroides koreensis Shin et al. 2017 and Bacteroides kribbi Shin et al. 2017 as later heterotypic synonyms of Bacteroides ovatus Eggerth and Gagnon 1933 (Approved Lists 1980)
Ah-In Yang, Bora Kim, Woorim Kang, Hae-In Joe, Na-Ri Shin
Received February 7, 2025  Accepted April 28, 2025  Published online May 22, 2025  
DOI: https://doi.org/10.71150/jm.2502006
  • 0 View
  • 0 Download
AbstractAbstract

Two novel, Gram-stain-negative, anaerobic, and non-motile bacterial strains, designated KFT8T and CG01T, were isolated from the feces of healthy individuals without diagnosed diseases and characterized using a polyphasic approach. Phylogenetic analysis revealed that both strains belong to the genus Bacteroides, with < 99.0% similarity in their 16S rRNA gene sequences to B. facilis NSJ-77T and B. nordii JCM 12987T. Within the genus Bacteroides, strain KFT8T exhibited the highest Orthologous Average Nucleotide Identity value of 94.7% and a digital DNA-DNA hybridization value of 63.7% with B. ovatus ATCC 8483T, whereas strain CG01T showed the highest values of 95.3% and 63.3%, respectively, with B. nordii JCM 12987T. The values between the two novel strains were 74.8% and 21.4%, respectively, which are below the species delineation thresholds, supporting their classification as novel species. The major fatty acid of strain KFT8T was C18:1 ω9c, whereas strain CG01T predominantly contained summed feature 11 (comprising iso-C17:0 3OH and/or C18:2 DMA). The only respiratory quinone was MK-11, the major polar lipid was phosphatidylethanolamine. Both strains produced succinic acid and acetic acid as common metabolic end-products of fermentation, while lactic acid and formic acid were detected individually in each strain. Based on polyphasic characterization, strains KFT8T (= KCTC 15614T = JCM 36011T) and CG01T (= KCTC 15613T = JCM 36010T) represent two novel species within the genus Bacteroides, for which the names Bacteroides celer sp. nov. and Bacteroides mucinivorans sp. nov. are proposed, respectively. Additionally, genome-based analyses and phenotypic comparisons revealed that B. koreensis and B. kribbi represent the same strain, showing genomic relatedness to B. ovatus that exceeds the threshold for species delineation. Consequently, we propose the reclassification of B. koreensis Shin et al. 2017 and B. kribbi Shin et al. 2017 as later heterotypic synonyms of B. ovatus Eggerth and Gagnon 1933 (Approved Lists 1980).


Journal of Microbiology : Journal of Microbiology
TOP