Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Je Chul Lee 16 Articles
Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
Seok Hyeon Na , Hyejin Jeon , Man Hwan Oh , Yoo Jeong Kim , Je Chul Lee
J. Microbiol. 2021;59(9):871-878.   Published online August 27, 2021
DOI: https://doi.org/10.1007/s12275-021-1394-z
  • 77 View
  • 0 Download
  • 12 Web of Science
  • 12 Crossref
AbstractAbstract
Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.

Citations

Citations to this article as recorded by  
  • A peptide targeting outer membrane protein A of Acinetobacter baumannii exhibits antibacterial activity by reducing bacterial pathogenicity
    Hui Zhao, Yue Hu, Dan Nie, Na Li, Zhou Chen, Shan Zhou, Mingkai Li, Xiaoyan Xue, James E. Leggett
    Antimicrobial Agents and Chemotherapy.2024;[Epub]     CrossRef
  • Acinetobacter baumannii OmpA-like porins: functional characterization of bacterial physiology, antibiotic-resistance, and virulence
    Daniela Scribano, Elena Cheri, Arianna Pompilio, Giovanni Di Bonaventura, Manuel Belli, Mario Cristina, Luigi Sansone, Carlo Zagaglia, Meysam Sarshar, Anna Teresa Palamara, Cecilia Ambrosi
    Communications Biology.2024;[Epub]     CrossRef
  • Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells
    Hamideh Barati, Zahra Fekrirad, Mohammadreza Jalali Nadoushan, Iraj Rasooli
    Microbial Pathogenesis.2024; 186: 106473.     CrossRef
  • Current and novel therapies for management of Acinetobacter baumannii -associated pneumonia
    Aye Mya Sithu Shein, Parichart Hongsing, O’Rorke Kevin Smith, Phatthranit Phattharapornjaroen, Kazuhiko Miyanaga, Longzhu Cui, Hitoshi Ishikawa, Mohan Amarasiri, Peter N. Monk, Anthony Kicic, Tanittha Chatsuwan, Daniel Pletzer, Paul G. Higgins, Shuichi Ab
    Critical Reviews in Microbiology.2024; : 1.     CrossRef
  • Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii
    Vishwani Jamwal, Tashi Palmo, Kuljit Singh
    RSC Medicinal Chemistry.2024; 15(12): 3925.     CrossRef
  • Acinetobacter baumannii outer membrane protein A induces autophagy in bone marrow‐derived dendritic cells involving the PI3K/mTOR pathway
    Hongyi Tan, Liyan Cao
    Immunity, Inflammation and Disease.2023;[Epub]     CrossRef
  • Advances in research on virulence factors ofAcinetobacter baumanniiand their potential as novel therapeutic targets
    Jian-Xia Zhou, Ding-Yun Feng, Xia Li, Jia-Xin Zhu, Wen-Bin Wu, Tian-tuo Zhang
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Famotidine Enhances Rifampicin Activity against Acinetobacter baumannii by Affecting OmpA
    Meng-na Zhang, Xiao-ou Zhao, Qi Cui, Dao-mi Zhu, Muhammad Asif Wisal, Han-dong Yu, Ling-cong Kong, Hong-xia Ma, Laurie E. Comstock
    Journal of Bacteriology.2023;[Epub]     CrossRef
  • Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics
    Kirti Upmanyu, Qazi Mohd. Rizwanul Haq, Ruchi Singh
    Current Research in Microbial Sciences.2022; 3: 100131.     CrossRef
  • Evaluation the reactivity of a peptide-based monoclonal antibody derived from OmpA with drug resistant pulsotypes of Acinetobacter baumannii as a potential therapeutic approach
    Omid Yeganeh, Mahdi Shabani, Parviz Pakzad, Nariman Mosaffa, Ali Hashemi
    Annals of Clinical Microbiology and Antimicrobials.2022;[Epub]     CrossRef
  • Therapeutic Effects of Inhibitor of ompA Expression against Carbapenem-Resistant Acinetobacter baumannii Strains
    Seok-Hyeon Na, Hyejin Jeon, Man-Hwan Oh, Yoo-Jeong Kim, Mingi Chu, Ill-Young Lee, Je-Chul Lee
    International Journal of Molecular Sciences.2021; 22(22): 12257.     CrossRef
  • DksA Modulates Antimicrobial Susceptibility of Acinetobacter baumannii
    Nayeong Kim, Joo-Hee Son, Kyeongmin Kim, Hyo-Jeong Kim, Minsang Shin, Je-Chul Lee
    Antibiotics.2021; 10(12): 1472.     CrossRef
Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca2+-independent, Mg2+-dependent DNase I activity
Young Chul Kwon , Sinil Kim , Yong Seok Lee , Je Chul Lee , Myung-Je Cho , Woo-Kon Lee , Hyung-Lyun Kang , Jae-Young Song , Seung Chul Baik , Hyeon Su Ro
J. Microbiol. 2016;54(5):387-395.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-5631-9
  • 67 View
  • 0 Download
  • 5 Crossref
AbstractAbstract
HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentrationdependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0–8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells.

Citations

Citations to this article as recorded by  
  • The Identification of a Novel Nucleomodulin MbovP467 of Mycoplasmopsis bovis and Its Potential Contribution in Pathogenesis
    Abdul Raheem, Doukun Lu, Abdul Karim Khalid, Gang Zhao, Yingjie Fu, Yingyu Chen, Xi Chen, Changmin Hu, Jianguo Chen, Huanchun Chen, Aizhen Guo
    Cells.2024; 13(7): 604.     CrossRef
  • Molecular Coevolution of Nuclear and Nucleolar Localization Signals inside the Basic Domain of HIV-1 Tat
    Margarita A. Kurnaeva, Arthur O. Zalevsky, Eugene A. Arifulin, Olga M. Lisitsyna, Anna V. Tvorogova, Maria Y. Shubina, Gleb P. Bourenkov, Maria A. Tikhomirova, Daria M. Potashnikova, Anastasia I. Kachalova, Yana R. Musinova, Andrey V. Golovin, Yegor S. Va
    Journal of Virology.2022;[Epub]     CrossRef
  • Bacterial nucleomodulins and cancer: An unresolved enigma
    Abdul Arif Khan, Zakir Khan
    Translational Oncology.2021; 14(1): 100922.     CrossRef
  • TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps
    Kai Zhang, Ning Jiang, Hongyu Chen, Naiwen Zhang, Xiaoyu Sang, Ying Feng, Ran Chen, Qijun Chen
    Science China Life Sciences.2021; 64(4): 621.     CrossRef
  • Origin of the nuclear proteome on the basis of pre-existing nuclear localization signals in prokaryotic proteins
    Olga M. Lisitsyna, Margarita A. Kurnaeva, Eugene A. Arifulin, Maria Y. Shubina, Yana R. Musinova, Andrey A. Mironov, Eugene V. Sheval
    Biology Direct.2020;[Epub]     CrossRef
Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals
Chi Hyun Kim , Hee Young Kang , Bo Ra Kim , Hyejin Jeon , Yoo Chul Lee , Sang Hwa Lee , Je Chul Lee
J. Microbiol. 2016;54(1):44-49.   Published online January 5, 2016
DOI: https://doi.org/10.1007/s12275-016-5562-5
  • 81 View
  • 0 Download
  • 23 Crossref
AbstractAbstract
This study investigated the mechanisms underlying the carbapenem resistance of bloodstream isolates of Pseudomonas aeruginosa obtained from two Korean hospitals. Of the 79 P. aeruginosa isolates, 22 and 21 were resistant to imipenem and meropenem, respectively. The 22 imipenem-resistant P. aeruginosa isolates were classified into 7 sequence types (STs) and 13 pulsotypes. Twelve imipenem-resistant isolates from one hospital were found to belong to the international clone ST111. Two imipenem-resistant P. aeruginosa ST235 isolates carried the blaIMP-6 gene, but the remaining 20 isolates did not produce carbapenemases. Mutations in the oprD gene and a related decrease in gene expression were found in 21 and 5 isolates, respectively. However, all imipenemresistant P. aeruginosa isolates showed no significant expression of OprD in the outer membrane as compared with that of carbapenem-susceptible PAO1 strain. Overexpression of genes associated with efflux pumps, including mexB, mexD, mexF, and mexY, was not found in any imipenem-resistant isolate. One imipenem-resistant P. aeruginosa isolate overexpressed the ampC gene. Our results show that the low permeability of drugs due to the mutational inactivation of OprD is primarily responsible for carbapenem resistance in bloodstream isolates of P. aeruginosa from Korean hospitals.

Citations

Citations to this article as recorded by  
  • Non-carbapenem-producing carbapenem-resistant Pseudomonas aeruginosa in children: Risk factors, molecular epidemiology, and resistance mechanism
    Lijun Yin, Lu Lu, Leiyan He, Gangfeng Yan, Guoping Lu, Xiaowen Zhai, Chuanqing Wang
    Journal of Infection and Public Health.2025; 18(2): 102634.     CrossRef
  • Virulence factors, molecular characteristics, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa isolated from pediatric patients in Shanghai, China
    Lijun Yin, Zihao Bao, Leiyan He, Lu Lu, Guoping Lu, Xiaowen Zhai, Chuanqing Wang
    BMC Microbiology.2025;[Epub]     CrossRef
  • High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update
    Verónica Roxana Flores-Vega, Santiago Partida-Sanchez, Miguel A. Ares, Vianney Ortiz-Navarrete, Roberto Rosales-Reyes
    Heliyon.2025; 11(1): e41540.     CrossRef
  • In Silico Molecular Analysis of Carbapenemase-Negative Carbapenem-Resistant Pseudomonas aeruginosa Strains in Greece
    Katerina Tsilipounidaki, Christos-Georgios Gkountinoudis, Zoi Florou, George C. Fthenakis, Efthymia Petinaki
    Microorganisms.2024; 12(4): 805.     CrossRef
  • Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals
    Nayeong Kim, Seo Yeon Ko, Seong Yong Park, Seong Yeob Kim, Da Eun Lee, Ki Tae Kwon, Yu Kyung Kim, Je Chul Lee
    Annals of Laboratory Medicine.2024; 44(5): 410.     CrossRef
  • Recombinase-aided amplification assay for rapid detection of imipenem-resistant Pseudomonas aeruginosa and rifampin-resistant Pseudomonas aeruginosa
    Yao Zhou, Ruiqing Shi, Liang Mu, Linlin Tian, Mengshan Zhou, Wenhan Lyu, Yaodong Chen
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Genetic determinants of antimicrobial resistance in polymyxin B resistant Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis
    Felipe A. Simão, Mila M. Almeida, Heloísa S. Rosa, Elizabeth A. Marques, Robson S. Leão
    Brazilian Journal of Microbiology.2024; 55(2): 1415.     CrossRef
  • Multiple Mechanisms Synergistically Induce Pseudomonas Aeruginosa Multiple Drug Resistance
    Pei Dai, Fangyan Jiao, Lulu Yang, Ousman Bajinka, Khalid A. Abdelhalim, Guojun Wu, Yurong Tan
    Microbiology Research.2023; 14(2): 627.     CrossRef
  • Patterns of antimicrobial resistance and metal tolerance in environmental Pseudomonas aeruginosa isolates and the genomic characterization of the rare O6/ST900 clone
    Micaela Santana Ramos, João Pedro Rueda Furlan, Lucas David Rodrigues dos Santos, Rafael da Silva Rosa, Eduardo Angelino Savazzi, Eliana Guedes Stehling
    Environmental Monitoring and Assessment.2023;[Epub]     CrossRef
  • Evaluation of Antimicrobial Activity and Anti-Quorum Sensing of Rosmarinus Methanol Extract on Pseudomonas aeruginosa
    Mohadeseh Zarei Yazdeli, Ciamak Ghazaei, Seyed Alireza Seyed Ebrahimi, Maryam Arfaatabar, Hanieh Alipanah, Maryam Noori
    International Journal of Infection.2021;[Epub]     CrossRef
  • Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C
    Melise Chaves Silveira, Cláudio Marcos Rocha-de-Souza, Rodolpho Mattos Albano, Ivson Cassiano de Oliveira Santos, Ana Paula D’Alincourt Carvalho-Assef
    BMC Genomics.2020;[Epub]     CrossRef
  • Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis
    Michael S. Sonnabend, Kristina Klein, Sina Beier, Angel Angelov, Robert Kluj, Christoph Mayer, Caspar Groß, Kathrin Hofmeister, Antonia Beuttner, Matthias Willmann, Silke Peter, Philipp Oberhettinger, Annika Schmidt, Ingo B. Autenrieth, Monika Schütz, Erw
    Antimicrobial Agents and Chemotherapy.2020;[Epub]     CrossRef
  • Mutational Variation Analysis of oprD Porin Gene in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa
    Manju Suresh, Sinosh Skariyachan, Nithya Narayanan, Jayasree Pullampara Rajamma, Manish Kumar Panickassery Ramakrishnan
    Microbial Drug Resistance.2020; 26(8): 869.     CrossRef
  • Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa


    Ye Xu, Xiangkuo Zheng, Weiliang Zeng, Tao Chen, Wenli Liao, Jiao Qian, Jie Lin, Cui Zhou, Xuebin Tian, Jianming Cao, Tieli Zhou
    Infection and Drug Resistance.2020; Volume 13: 1419.     CrossRef
  • Analysis of Metallo-β-lactamases, oprD Mutation, and Multidrug Resistance of β-lactam Antibiotic-Resistant Strains of Pseudomonas aeruginosa Isolated from Southern China
    Fei Li, Danna Chen, Lijuan Li, Dezhi Liang, Fengping Wang, Bashan Zhang
    Current Microbiology.2020; 77(11): 3264.     CrossRef
  • Detection of carbapenem resistance genes in Pseudomonas aeruginosa isolates with several phenotypic susceptibility profiles
    Sara Morales, Marlon A Gallego, Johanna M Vanegas, J Natalia Jiménez
    Ces Medicina.2018; 32(3): 203.     CrossRef
  • Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa
    Gertrudis Horna, María López, Humberto Guerra, Yolanda Saénz, Joaquim Ruiz
    Scientific Reports.2018;[Epub]     CrossRef
  • Molecular Typing and Carbapenem Resistance Mechanisms of Pseudomonas aeruginosa Isolated From a Chinese Burn Center From 2011 to 2016
    Supeng Yin, Ping Chen, Bo You, Yulong Zhang, Bei Jiang, Guangtao Huang, Zichen Yang, Yu Chen, Jing Chen, Zhiqiang Yuan, Yan Zhao, Ming Li, Fuquan Hu, Yali Gong, Yizhi Peng
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Hospitalized Pets as a Source of Carbapenem-Resistance
    Fabio Gentilini, Maria Elena Turba, Frederique Pasquali, Domenico Mion, Noemi Romagnoli, Elisa Zambon, Daniele Terni, Gisele Peirano, Johann Dawid Daniel Pitout, Antonio Parisi, Vittorio Sambri, Renato Giulio Zanoni
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Whole-Cell-Based Assay To Evaluate Structure Permeation Relationships for Carbapenem Passage through the Pseudomonas aeruginosa Porin OprD
    Ramkumar Iyer, Mark A. Sylvester, Camilo Velez-Vega, Ruben Tommasi, Thomas F. Durand-Reville, Alita A. Miller
    ACS Infectious Diseases.2017; 3(4): 310.     CrossRef
  • High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit
    Lucas Chaves, Lísia Moura Tomich, Matias Salomão, Gleice Cristina Leite, Jessica Ramos, Roberta Ruedas Martins, Camila Rizek, Patricia Neves, Marjorie Vieira Batista, Ulysses Amigo, Thais Guimaraes, Anna Sara Levin, Silvia Figueiredo Costa
    Journal of Medical Microbiology .2017; 66(12): 1722.     CrossRef
  • Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170
    Jwu-Ching Shu, An-Jing Kuo, Lin-Hui Su, Tsui-Ping Liu, Ming-Hsun Lee, I-Ning Su, Tsu-Lan Wu
    Journal of Antimicrobial Chemotherapy.2017; 72(9): 2489.     CrossRef
  • Antimicrobial Susceptibility and Clonal Distribution of the Blood Isolates ofPseudomonas aeruginosafrom Two Korean Hospitals
    Chi Hyun Kim, Je Chul Lee
    Journal of Bacteriology and Virology.2016; 46(4): 213.     CrossRef
Morphological changes in human gastric epithelial cells induced by nuclear targeting of Helicobacter pylori urease subunit A
Jung Hwa Lee , So Hyun Jun , Jung-Min Kim , Seung Chul Baik , Je Chul Lee
J. Microbiol. 2015;53(6):406-414.   Published online May 30, 2015
DOI: https://doi.org/10.1007/s12275-015-5085-5
  • 73 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Nuclear targeting of bacterial proteins and their pathological effects on host cells are an emerging pathogenic mechanism in bacteria. We have previously reported that urease subunit A (UreA) of Helicobacter pylori targets the nuclei of COS-7 cells through nuclear localization signals (NLSs). This study further investigated whether UreA of H. pylori targets the nuclei of gastric epithelial cells and then induces molecular and cellular changes in the host cells. H. pylori 26695 strain produced and secreted outer membrane vesicles (OMVs). UreA was translocated into gastric epithelial AGS cells through outer membrane vesicles (OMVs) and then targeted the nuclei of AGS cells. Nuclear targeting of rUreA did not induce host cell death, but resulted in morphological changes, such as cellular elongation, in AGS cells. In contrast, AGS cells treated with rUreAΔNLS proteins did not show this morphological change. Next generation sequencing revealed that nuclear targeting of UreA differentially regulated 102 morphogenesis- related genes, of which 67 and 35 were up-regulated and down-regulated, respectively. Our results suggest that nuclear targeting of H. pylori UreA induces both molecular and cellular changes in gastric epithelial cells.

Citations

Citations to this article as recorded by  
  • Effects of Exosomes Derived From Helicobacter pylori Outer Membrane Vesicle-Infected Hepatocytes on Hepatic Stellate Cell Activation and Liver Fibrosis Induction
    Masoumeh Ebadi Zahmatkesh, Mariyeh Jahanbakhsh, Negin Hoseini, Saina Shegefti, Amir Peymani, Hossein Dabin, Rasoul Samimi, Shahin Bolori
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Significance of Helicobacter pylori and Its Serological Typing in Gastric Cancer
    碧玉 张
    Advances in Clinical Medicine.2022; 12(12): 11694.     CrossRef
  • Rational Development of Bacterial Ureases Inhibitors
    Saurabh Loharch, Łukasz Berlicki
    The Chemical Record.2022;[Epub]     CrossRef
  • Emerging therapeutic targets for gastric cancer from a host-Helicobacter pylori interaction perspective
    Esmat Abdi, Saeid Latifi-Navid, Fatemeh Abedi Sarvestani, Mohammad Hassan Esmailnejad
    Expert Opinion on Therapeutic Targets.2021; 25(8): 685.     CrossRef
  • Non-enzymatic properties of Proteus mirabilis urease subunits
    Valquiria Broll, Ana Paula A. Perin, Fernanda C. Lopes, Anne Helene S. Martinelli, Natalia R. Moyetta, Leonardo L. Fruttero, Matheus V.C. Grahl, Augusto F. Uberti, Diogo R. Demartini, Rodrigo Ligabue-Braun, Celia R. Carlini
    Process Biochemistry.2021; 110: 263.     CrossRef
  • Nuclear trafficking of bacterial effector proteins
    Lena Hoang My Le, Le Ying, Richard L. Ferrero
    Cellular Microbiology.2021;[Epub]     CrossRef
  • Proteus mirabilis Urease: Unsuspected Non-Enzymatic Properties Relevant to Pathogenicity
    Matheus V. C. Grahl, Augusto F. Uberti, Valquiria Broll, Paula Bacaicoa-Caruso, Evelin F. Meirelles, Celia R. Carlini
    International Journal of Molecular Sciences.2021; 22(13): 7205.     CrossRef
  • Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development
    María Fernanda González, Paula Díaz, Alejandra Sandoval-Bórquez, Daniela Herrera, Andrew F. G. Quest
    International Journal of Molecular Sciences.2021; 22(9): 4823.     CrossRef
  • Tracking the cargo of extracellular symbionts into host tissues with correlated electron microscopy and nanoscale secondary ion mass spectrometry imaging
    Stephanie K. Cohen, Marie‐Stéphanie Aschtgen, Jonathan B. Lynch, Sabrina Koehler, Fangmin Chen, Stéphane Escrig, Jean Daraspe, Edward G. Ruby, Anders Meibom, Margaret McFall‐Ngai
    Cellular Microbiology.2020;[Epub]     CrossRef
  • Role of Probiotics in Prophylaxis of Helicobacter pylori Infection
    Kashyapi Chakravarty, Smriti Gaur
    Current Pharmaceutical Biotechnology.2019; 20(2): 137.     CrossRef
  • Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review
    Sharmila Fagoonee, Rinaldo Pellicano
    Infectious Diseases.2019; 51(6): 399.     CrossRef
  • Cross‐Reactivity of Polyclonal Antibodies against Canavalia ensiformis (Jack Bean) Urease and Helicobacter pylori Urease Subunit A Fragments
    Zbigniew Jerzy Kaminski, Inga Relich, Iwona Konieczna, Wieslaw Kaca, Beata Kolesinska
    Chemistry & Biodiversity.2018;[Epub]     CrossRef
  • Ureases: Historical aspects, catalytic, and non-catalytic properties – A review
    Karine Kappaun, Angela Regina Piovesan, Celia Regina Carlini, Rodrigo Ligabue-Braun
    Journal of Advanced Research.2018; 13: 3.     CrossRef
  • The Impact of Helicobacter pylori Urease upon Platelets and Consequent Contributions to Inflammation
    Adriele Scopel-Guerra, Deiber Olivera-Severo, Fernanda Staniscuaski, Augusto F. Uberti, Natália Callai-Silva, Natália Jaeger, Bárbara N. Porto, Celia R. Carlini
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • A New Role for Helicobacter pylori Urease: Contributions to Angiogenesis
    Deiber Olivera-Severo, Augusto F. Uberti, Miguel S. Marques, Marta T. Pinto, Maria Gomez-Lazaro, Céu Figueiredo, Marina Leite, Célia R. Carlini
    Frontiers in Microbiology.2017;[Epub]     CrossRef
Acinetobacter baumannii Outer Membrane Protein A Modulates the Biogenesis of Outer Membrane Vesicles
Dong Chan Moon , Chul Hee Choi , Jung Hwa Lee , Chi-Won Choi , Hye-Yeon Kim , Jeong Soon Park , Seung Il Kim , Je Chul Lee
J. Microbiol. 2012;50(1):155-160.   Published online February 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1589-4
  • 111 View
  • 0 Download
  • 94 Crossref
AbstractAbstract
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.

Citations

Citations to this article as recorded by  
  • Brucella suis ΔmapB outer membrane vesicles as an acellular vaccine against systemic and mucosal B. suis infection
    Florencia Muñoz González, Magali G. Bialer, Maria L. Cerutti, Silvia M. Estein, Lila Y. Ramis, Pablo C. Baldi, Ángeles Zorreguieta, Mariana C. Ferrero
    Frontiers in Immunology.2025;[Epub]     CrossRef
  • Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter
    Tsvetana Muleshkova, Inga Bazukyan, Konstantinos Papadimitriou, Velitchka Gotcheva, Angel Angelov, Svetoslav G. Dimov
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • The aryl hydrocarbon receptor and FOS mediate cytotoxicity induced by Acinetobacter baumannii
    Chun Kew, Cristian Prieto-Garcia, Anshu Bhattacharya, Manuela Tietgen, Craig R. MacNair, Lindsey A. Carfrae, João Mello-Vieira, Stephan Klatt, Yi-Lin Cheng, Rajeshwari Rathore, Elise Gradhand, Ingrid Fleming, Man-Wah Tan, Stephan Göttig, Volkhard A. J. Ke
    Nature Communications.2024;[Epub]     CrossRef
  • Pathogenicity and virulence of Acinetobacter baumannii : Factors contributing to the fitness in healthcare settings and the infected host
    Massimiliano Lucidi, Daniela Visaggio, Antonella Migliaccio, Giulia Capecchi, Paolo Visca, Francesco Imperi, Raffaele Zarrilli
    Virulence.2024;[Epub]     CrossRef
  • Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii
    Theodoros Karampatakis, Katerina Tsergouli, Payam Behzadi
    Antibiotics.2024; 13(3): 257.     CrossRef
  • Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages
    Jiaying Sun, Yee Huang, Xuefeng Li, Xiangfei Xu, Xuemei Cui, Fangjiao Hao, Quanan Ji, Chun Chen, Guolian Bao, Yan Liu
    Applied Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms
    Anna Sophia Feix, Emily Z. Tabaie, Aarshi N. Singh, Nathan J. Wittenberg, Emma H. Wilson, Anja Joachim, Melissa Bruckner Lodoen
    Microbiology and Molecular Biology Reviews.2024;[Epub]     CrossRef
  • Antimicrobial Resistance in Acinetobacter baumannii: A Challenge to Clinical Settings
    Shilpa Sharma, Amandeep Kaur, Renuka Bajaj, Kanwardeep Singh, Sarika Sharma, Sandeep Sharma
    Molecular Genetics, Microbiology and Virology.2024; 39(3): 219.     CrossRef
  • Outer membrane vesicles from genetically engineered Salmonella enterica serovar Typhimurium presenting Helicobacter pylori antigens UreB and CagA induce protection against Helicobact
    Qiong Liu, Yinpan Shang, Lu Shen, Xiaomin Yu, Yanli Cao, Lingbing Zeng, Hanchi Zhang, Zirong Rao, Yi Li, Ziwei Tao, Zhili Liu, Xiaotian Huang
    Virulence.2024;[Epub]     CrossRef
  • The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases
    Cai-Hua Zhang, Ding-Ci Lu, Ying Liu, Lingzhi Wang, Gautam Sethi, Zhaowu Ma
    International Immunopharmacology.2024; 138: 112633.     CrossRef
  • Loss of Lipooligosaccharide Synthesis in Acinetobacter baumannii Produces Changes in Outer Membrane Vesicle Protein Content
    Beatriz Cano-Castaño, Andrés Corral-Lugo, Eva Gato, María C. Terrón, Antonio J. Martín-Galiano, Javier Sotillo, Astrid Pérez, Michael J. McConnell
    International Journal of Molecular Sciences.2024; 25(17): 9272.     CrossRef
  • The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities
    Eliud S. Peregrino, Jessica Castañeda-Casimiro, Luis Vázquez-Flores, Sergio Estrada-Parra, Carlos Wong-Baeza, Jeanet Serafín-López, Isabel Wong-Baeza
    International Journal of Molecular Sciences.2024; 25(11): 6210.     CrossRef
  • A genetic engineering strategy to enhance outer membrane vesicle-mediated extracellular electron transfer of Geobacter sulfurreducens
    Yanlun Fang, Guiqin Yang, Xian Wu, Canfen Lin, Baoli Qin, Li Zhuang
    Biosensors and Bioelectronics.2024; 250: 116068.     CrossRef
  • Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications
    Sangiliyandi Gurunathan, Jin-Hoi Kim
    Microbial Pathogenesis.2023; 183: 106308.     CrossRef
  • Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application
    Zheqi Weng, Ning Yang, Shujun Shi, Zining Xu, Zixu Chen, Chen Liang, Xiuwei Zhang, Xingran Du
    Vaccines.2023; 12(1): 49.     CrossRef
  • Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host
    Yu-Ching Su, Mahendar Kadari, Megan L. Straw, Martina Janoušková, Sandra Jonsson, Oskar Thofte, Farshid Jalalvand, Erika Matuschek, Linda Sandblad, Ákos Végvári, Roman A. Zubarev, Kristian Riesbeck
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Acinetobacter baumannii in the critically ill: complex infections get complicated
    Ilaria Cavallo, Alessandra Oliva, Rebecca Pages, Francesca Sivori, Mauro Truglio, Giorgia Fabrizio, Martina Pasqua, Fulvia Pimpinelli, Enea Gino Di Domenico
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria
    Gang Zhou, Qian Wang, Yingsi Wang, Xia Wen, Hong Peng, Ruqun Peng, Qingshan Shi, Xiaobao Xie, Liangqiu Li
    Microorganisms.2023; 11(7): 1690.     CrossRef
  • Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection
    Afreen Shadan, Avik Pathak, Ying Ma, Ranjana Pathania, Rajnish Prakash Singh
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells
    Natalie Sirisaengtaksin, Eloise J. O'Donoghue, Sara Jabbari, Andrew J. Roe, Anne Marie Krachler, Craig D. Ellermeier
    mSphere.2023;[Epub]     CrossRef
  • Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome
    Guanting Niu, Tunyu Jian, Yanan Gai, Jian Chen
    Advanced Drug Delivery Reviews.2023; 196: 114774.     CrossRef
  • Bacterial extracellular vesicles and their interplay with the immune system
    Etienne Doré, Eric Boilard
    Pharmacology & Therapeutics.2023; 247: 108443.     CrossRef
  • An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation
    F Mohamad, Raghad R Alzahrani, Ahlam Alsaadi, Bahauddeen M Alrfaei, Alaa Eldeen B Yassin, Manal M Alkhulaifi, Majed Halwani
    Infection and Drug Resistance.2023; Volume 16: 19.     CrossRef
  • The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities
    Himadri B. Thapa, Stephan P. Ebenberger, Stefan Schild
    Antibiotics.2023; 12(6): 1045.     CrossRef
  • Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application
    Deming Li, Lisi Zhu, Yuxiao Wang, Xiangyu Zhou, Yan Li
    Biomedicine & Pharmacotherapy.2023; 165: 115120.     CrossRef
  • Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways
    Sunhyo Ryu, Kareemah Ni, Chenghao Wang, Ayyanar Sivanantham, Jonathan M. Carnino, Hong-Long Ji, Yang Jin
    Biomedicines.2023; 11(2): 568.     CrossRef
  • Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review
    Ravinder Singh, Neena Capalash, Prince Sharma
    3 Biotech.2022;[Epub]     CrossRef
  • Advances of bacteria-based delivery systems for modulating tumor microenvironment
    Shuping Li, Hua Yue, Shuang Wang, Xin Li, Xiaojun Wang, Peilin Guo, Guanghui Ma, Wei Wei
    Advanced Drug Delivery Reviews.2022; 188: 114444.     CrossRef
  • Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy
    Qiong Long, Peng Zheng, Xiao Zheng, Weiran Li, Liangqun Hua, Zhongqian Yang, Weiwei Huang, Yanbing Ma
    Advanced Drug Delivery Reviews.2022; 186: 114321.     CrossRef
  • Outer Membrane Vesicles of Acinetobacter baumannii DS002 Are Selectively Enriched with TonB-Dependent Transporters and Play a Key Role in Iron Acquisition
    Ganeshwari Dhurve, Ashok Kumar Madikonda, Medicharla Venkata Jagannadham, Dayananda Siddavattam, Ayush Kumar
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii
    Nowrosh Islam, Misha I. Kazi, Katie N. Kang, Jacob Biboy, Joe Gray, Feroz Ahmed, Richard D. Schargel, Cara C. Boutte, Tobias Dörr, Waldemar Vollmer, Joseph M. Boll, Vanessa Sperandio
    mBio.2022;[Epub]     CrossRef
  • Outer Membrane Vesicles: Biogenesis, Functions, and Issues
    Rokas Juodeikis, Simon R. Carding
    Microbiology and Molecular Biology Reviews.2022;[Epub]     CrossRef
  • Thioredoxin-mediated alteration of protein content and cytotoxicity of Acinetobacter baumannii outer membrane vesicles
    Swathi Shrihari, Holly C May, Jieh-Juen Yu, Sara B Papp, James P Chambers, M Neal Guentzel, Bernard P Arulanandam
    Experimental Biology and Medicine.2022; 247(3): 282.     CrossRef
  • Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum
    Ashok Zachariah Samuel, Shumpei Horii, Takuji Nakashima, Naoko Shibata, Masahiro Ando, Haruko Takeyama
    Advanced Biology.2022;[Epub]     CrossRef
  • The Discovery of the Role of Outer Membrane Vesicles against Bacteria
    Sofia Combo, Sérgio Mendes, Kaare Magne Nielsen, Gabriela Jorge da Silva, Sara Domingues
    Biomedicines.2022; 10(10): 2399.     CrossRef
  • Enhancement of Acinetobacter baumannii biofilm growth by cephem antibiotics via enrichment of protein and extracellular DNA in the biofilm matrices
    Kaoru Yamabe, Yukio Arakawa, Masaki Shoji, Katsushiro Miyamoto, Takahiro Tsuchiya, Katsuhiko Minoura, Yukihiro Akeda, Kazunori Tomono, Mitsuko Onda
    Journal of Applied Microbiology.2022; 133(3): 2002.     CrossRef
  • The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii
    Nayeong Kim, Hyo Jeong Kim, Man Hwan Oh, Se Yeon Kim, Mi Hyun Kim, Joo Hee Son, Seung Il Kim, Minsang Shin, Yoo Chul Lee, Je Chul Lee
    BMC Microbiology.2021;[Epub]     CrossRef
  • Host immunity and cellular responses to bacterial outer membrane vesicles
    Varnesh Tiku, Man-Wah Tan
    Trends in Immunology.2021; 42(11): 1024.     CrossRef
  • Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli
    Weichuan Qiao, Lianjie Wang, Yang Luo, Jiahui Miao
    Biodegradation.2021; 32(4): 435.     CrossRef
  • Comparative Analysis of Outer Membrane Vesicle Isolation Methods With an Escherichia coli tolA Mutant Reveals a Hypervesiculating Phenotype With Outer-Inner Membrane Vesicle Content
    Shelby L. Reimer, Daniel R. Beniac, Shannon L. Hiebert, Timothy F. Booth, Patrick M. Chong, Garrett R. Westmacott, George G. Zhanel, Denice C. Bay
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Engineered Remolding and Application of Bacterial Membrane Vesicles
    Li Qiao, Yifan Rao, Keting Zhu, Xiancai Rao, Renjie Zhou
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Inhibition of Virulence Factors and Biofilm Formation ofAcinetobacter Baumanniiby Naturally-derived and Synthetic Drugs
    Nilushi Indika Bamunuarachchi, Fazlurrahman Khan, Young-Mog Kim
    Current Drug Targets.2021; 22(7): 734.     CrossRef
  • Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications
    Salma Sultan, Walid Mottawea, JuDong Yeo, Riadh Hammami
    International Journal of Molecular Sciences.2021; 22(23): 13166.     CrossRef
  • Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods
    Roghayeh Mohammadzadeh, Kiarash Ghazvini, Hadi Farsiani, Saman Soleimanpour
    Critical Reviews in Microbiology.2021; 47(1): 13.     CrossRef
  • Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression
    Dušan Ušjak, Miroslav Dinić, Katarina Novović, Branka Ivković, Nenad Filipović, Magdalena Stevanović, Marina T. Milenković
    Chemistry & Biodiversity.2021;[Epub]     CrossRef
  • New Provisional Function of OmpA from Acinetobacter sp. Strain SA01 Based on Environmental Challenges
    Shahab Shahryari, Mahbubeh Talaee, Kamahldin Haghbeen, Lorenz Adrian, Hojatollah Vali, Hossein Shahbani Zahiri, Kambiz Akbari Noghabi, Jack A. Gilbert
    mSystems.2021;[Epub]     CrossRef
  • The extracellular vesicle generation paradox: a bacterial point of view
    Hannah M McMillan, Meta J Kuehn
    The EMBO Journal.2021;[Epub]     CrossRef
  • Bacteria- and host-derived extracellular vesicles – two sides of the same coin?
    Jeffrey S. Schorey, Yong Cheng, William R. McManus
    Journal of Cell Science.2021;[Epub]     CrossRef
  • INSIGHTS INTO THE VIRULENCE FACTORS OF ACINETOBACTER BAUMANNII AND THEIR ROLES IN PERSISTENCE AND INFECTIOUS PROCESS
    Al Shaikhli Nawfal Haitham, Irina Gheorghe, Andreea Gheorghe
    Romanian Archives of Microbiology and Immunology.2021; 80(2): 141.     CrossRef
  • Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
    Seok Hyeon Na, Hyejin Jeon, Man Hwan Oh, Yoo Jeong Kim, Je Chul Lee
    Journal of Microbiology.2021; 59(9): 871.     CrossRef
  • Membrane Vesicle Production as a Bacterial Defense Against Stress
    Negar Mozaheb, Marie-Paule Mingeot-Leclercq
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria
    Steeve Lima, Jorge Matinha-Cardoso, Paula Tamagnini, Paulo Oliveira
    Life.2020; 10(8): 129.     CrossRef
  • The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen
    Siva R. Uppalapati, Abhiroop Sett, Ranjana Pathania
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Microevolution in the major outer membrane protein OmpA of Acinetobacter baumannii
    Alejandro M. Viale, Benjamin A. Evans
    Microbial Genomics .2020;[Epub]     CrossRef
  • Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions
    Sara Ahmadi Badi, Stefania Paola Bruno, Arfa Moshiri, Samira Tarashi, Seyed Davar Siadat, Andrea Masotti
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Engineered Bacterial Outer Membrane Vesicles as Multifunctional Delivery Platforms
    Ruizhen Li, Qiong Liu
    Frontiers in Materials.2020;[Epub]     CrossRef
  • Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria
    Nicole P. Giordano, Melina B. Cian, Zachary D. Dalebroux, Anthony R. Richardson
    Infection and Immunity.2020;[Epub]     CrossRef
  • The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery
    Md Jalal Uddin, Jirapat Dawan, Gibeom Jeon, Tao Yu, Xinlong He, Juhee Ahn
    Microorganisms.2020; 8(5): 670.     CrossRef
  • The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple Acinetobacter baumannii Virulence Characteristics
    Jūratė Skerniškytė, Emilija Karazijaitė, Julien Deschamps, Renatas Krasauskas, Romain Briandet, Edita Sužiedėlienė
    Molecules.2019; 24(10): 1972.     CrossRef
  • Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance
    Mark Lindholm, Kyaw Min Aung, Sun Nyunt Wai, Jan Oscarsson
    Journal of Oral Microbiology.2019; 11(1): 1536192.     CrossRef
  • Studies on the mechanism of multidrug resistance of Acinetobacter baumannii by proteomic analysis of the outer membrane vesicles of the bacterium
    Bina Agarwal, Raman Karthikeyan, P. Gayathri, B. RameshBabu, G. Ahmed, M. V. Jagannadham
    Journal of Proteins and Proteomics.2019; 10(1): 1.     CrossRef
  • Toll-Like Receptors 2 and 4 Modulate Pulmonary Inflammation and Host Factors Mediated by Outer Membrane Vesicles Derived from Acinetobacter baumannii
    Chad R. Marion, Jaewook Lee, Lokesh Sharma, Kyong-Su Park, Changjin Lee, Wei Liu, Pei Liu, Jingjing Feng, Yong Song Gho, Charles S. Dela Cruz, Vincent B. Young
    Infection and Immunity.2019;[Epub]     CrossRef
  • The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii
    Se Yeon Kim, Mi Hyun Kim, Seung Il Kim, Joo Hee Son, Shukho Kim, Yoo Chul Lee, Minsang Shin, Man Hwan Oh, Je Chul Lee
    BMC Microbiology.2019;[Epub]     CrossRef
  • The Mechanisms of Disease Caused by Acinetobacter baumannii
    Faye C. Morris, Carina Dexter, Xenia Kostoulias, Muhammad Ikhtear Uddin, Anton Y. Peleg
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress
    Jasmine Martinez, Jennifer S. Fernandez, Christine Liu, Amparo Hoard, Anthony Mendoza, Jun Nakanouchi, Nyah Rodman, Robert Courville, Marisel R. Tuttobene, Carolina Lopez, Lisandro J. Gonzalez, Parvin Shahrestani, Krisztina M. Papp-Wallace, Alejandro J. V
    Scientific Reports.2019;[Epub]     CrossRef
  • Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii: mechanistic analysis and in vivo efficacy
    Raquel Parra-Millán, Xavier Vila-Farrés, Rafael Ayerbe-Algaba, Monica Varese, Viviana Sánchez-Encinales, Nuría Bayó, María Eugenia Pachón-Ibáñez, Meritxell Teixidó, Jordi Vila, Jerónimo Pachón, Ernest Giralt, Younes Smani
    Journal of Antimicrobial Chemotherapy.2018;[Epub]     CrossRef
  • Acinetobacter : an emerging pathogen with a versatile secretome
    Noha M. Elhosseiny, Ahmed S. Attia
    Emerging Microbes & Infections.2018; 7(1): 1.     CrossRef
  • Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?
    Charlotte Volgers, Paul H. M. Savelkoul, Frank R. M. Stassen
    Critical Reviews in Microbiology.2018; 44(3): 258.     CrossRef
  • Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases
    You-jiang Yu, Xiao-hong Wang, Guo-Chang Fan
    Acta Pharmacologica Sinica.2018; 39(4): 514.     CrossRef
  • Tug of war betweenAcinetobacter baumanniiand host immune responses
    Fei-Ju Li, Lora Starrs, Gaetan Burgio
    Pathogens and Disease.2018;[Epub]     CrossRef
  • Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update
    Arif Tasleem Jan
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • The Secrets of Acinetobacter Secretion
    Brent S. Weber, Rachel L. Kinsella, Christian M. Harding, Mario F. Feldman
    Trends in Microbiology.2017; 25(7): 532.     CrossRef
  • Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options
    Chang-Ro Lee, Jung Hun Lee, Moonhee Park, Kwang Seung Park, Il Kwon Bae, Young Bae Kim, Chang-Jun Cha, Byeong Chul Jeong, Sang Hee Lee
    Frontiers in Cellular and Infection Microbiology.2017;[Epub]     CrossRef
  • LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella
    Wael Elhenawy, Michael Bording-Jorgensen, Ezequiel Valguarnera, M. Florencia Haurat, Eytan Wine, Mario F. Feldman, John J. Mekalanos
    mBio.2016;[Epub]     CrossRef
  • Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets
    Afreenish Hassan, Anam Naz, Ayesha Obaid, Rehan Zafar Paracha, Kanwal Naz, Faryal Mehwish Awan, Syed Aun Muhmmad, Hussnain Ahmed Janjua, Jamil Ahmad, Amjad Ali
    BMC Genomics.2016;[Epub]     CrossRef
  • Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: Current perspectives
    Jaewook Lee, Oh Youn Kim, Yong Song Gho
    PROTEOMICS – Clinical Applications.2016; 10(9-10): 897.     CrossRef
  • Outer membrane Protein A plays a role in pathogenesis ofAcinetobacter nosocomialis
    Sang Woo Kim, Man Hwan Oh, So Hyun Jun, Hyejin Jeon, Seung Il Kim, Kwangho Kim, Yoo Chul Lee, Je Chul Lee
    Virulence.2016; 7(4): 413.     CrossRef
  • Bacterial membrane vesicles: Biogenesis, immune regulation and pathogenesis
    Rishi D. Pathirana, Maria Kaparakis-Liaskos
    Cellular Microbiology.2016; 18(11): 1518.     CrossRef
  • Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry
    Carla Pérez-Cruz, María-Alexandra Cañas, Rosa Giménez, Josefa Badia, Elena Mercade, Laura Baldomà, Laura Aguilera, Maria Kaparakis-Liaskos
    PLOS ONE.2016; 11(12): e0169186.     CrossRef
  • Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects
    Irina V. Kudryakova, Nina A. Shishkova, Natalia V. Vasilyeva
    Applied Microbiology and Biotechnology.2016; 100(11): 4791.     CrossRef
  • Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii
    Weiwei Huang, Yufeng Yao, Shijie Wang, Ye Xia, Xu Yang, Qiong Long, Wenjia Sun, Cunbao Liu, Yang Li, Xiaojie Chu, Hongmei Bai, Yueting Yao, Yanbing Ma
    Scientific Reports.2016;[Epub]     CrossRef
  • Bacterial outer membrane vesicles: New insights and applications
    Deepak Anand, Arunima Chaudhuri
    Molecular Membrane Biology.2016; 33(6-8): 125.     CrossRef
  • Pathogenic Acinetobacter: from the Cell Surface to Infinity and Beyond
    Brent S. Weber, Christian M. Harding, Mario F. Feldman, W. Margolin
    Journal of Bacteriology.2016; 198(6): 880.     CrossRef
  • Biogenesis ofLysobactersp. XL1 vesicles
    Irina V. Kudryakova, Natalia E. Suzina, Natalia V. Vasilyeva, Klaus Hantke
    FEMS Microbiology Letters.2015; 362(18): fnv137.     CrossRef
  • Roles of bacterial membrane vesicles
    Eric Daniel Avila-Calderón, Minerva Georgina Araiza-Villanueva, Juan Carlos Cancino-Diaz, Edgar Oliver López-Villegas, Nammalwar Sriranganathan, Stephen M. Boyle, Araceli Contreras-Rodríguez
    Archives of Microbiology.2015; 197(1): 1.     CrossRef
  • Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions
    Carmen Schwechheimer, Meta J. Kuehn
    Nature Reviews Microbiology.2015; 13(10): 605.     CrossRef
  • OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii
    Ming-Feng Lin, Pei-Wen Tsai, Jeng-Yi Chen, Yun-You Lin, Chung-Yu Lan, Surajit Bhattacharjya
    PLOS ONE.2015; 10(10): e0141107.     CrossRef
  • Bacterial outer membrane nanovesicles: Structure, biogenesis, functions, and application in biotechnology and medicine (Review)
    K. A. Lusta
    Applied Biochemistry and Microbiology.2015; 51(5): 485.     CrossRef
  • Outer membrane vesicles as platform vaccine technology
    Leo van der Pol, Michiel Stork, Peter van der Ley
    Biotechnology Journal.2015; 10(11): 1689.     CrossRef
  • Modulation of bacterial outer membrane vesicle production by envelope structure and content
    Carmen Schwechheimer, Adam Kulp, Meta J Kuehn
    BMC Microbiology.2014;[Epub]     CrossRef
  • Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation
    Shweta Fulsundar, Klaus Harms, Gøril E. Flaten, Pål J. Johnsen, Balu Ananda Chopade, Kaare M. Nielsen, M. Kivisaar
    Applied and Environmental Microbiology.2014; 80(11): 3469.     CrossRef
  • Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins
    So Hyun Jun, Jung Hwa Lee, Bo Ra Kim, Seung Il Kim, Tae In Park, Je Chul Lee, Yoo Chul Lee, Özlem Yilmaz
    PLoS ONE.2013; 8(8): e71751.     CrossRef
  • Molecular paleontology and complexity in the last eukaryotic common ancestor
    V. Lila Koumandou, Bill Wickstead, Michael L. Ginger, Mark van der Giezen, Joel B. Dacks, Mark C. Field
    Critical Reviews in Biochemistry and Molecular Biology.2013; 48(4): 373.     CrossRef
  • Host-microbe interactions that shape the pathogenesis ofAcinetobacter baumanniiinfection
    Brittany L. Mortensen, Eric P. Skaar
    Cellular Microbiology.2012; 14(9): 1336.     CrossRef
Immunostimulatory Activity of Dendritic Cells Pulsed with Carbonic Anhydrase IX and Acinetobacter baumannii Outer Membrane Protein A for Renal Cell Carcinoma
Bo Ra Kim , Eun Kyoung Yang , Sun Hee Kim , Dong Chan Moon , Hwa Jung Kim , Je Chul Lee , Duk Yoon Kim
J. Microbiol. 2011;49(1):115-120.   Published online March 3, 2011
DOI: https://doi.org/10.1007/s12275-011-1037-x
  • 43 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.

Citations

Citations to this article as recorded by  
  • The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen
    Siva R. Uppalapati, Abhiroop Sett, Ranjana Pathania
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Host Innate Immune Responses to Acinetobacter baumannii Infection
    Wangxue Chen
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
  • Generation of anti-tumour immune response using dendritic cells pulsed with carbonic anhydrase IX-Acinetobacter baumanniiouter membrane protein A fusion proteins against renal cell carcinoma
    B-R Kim, E-K Yang, D-Y Kim, S-H Kim, D-C Moon, J-H Lee, H-J Kim, J-C Lee
    Clinical and Experimental Immunology.2011; 167(1): 73.     CrossRef
Emergence of Vancomycin-Intermediate Staphylococcus aureus from Predominant Methicillin-Resistant S. aureus Clones in a Korean Hospital
Hwa Yun Cha , Hyun Ok Kim , Jong Sook Jin , Je Chul Lee
J. Microbiol. 2010;48(4):533-535.   Published online August 20, 2010
DOI: https://doi.org/10.1007/s12275-010-0062-5
  • 39 View
  • 0 Download
  • 10 Scopus
AbstractAbstract
The genetic and epidemiological features of four vancomycin-intermediate Staphylococcus aureus (VISA) isolates obtained from a Korean hospital were evaluated in this study. The VISA isolates were genotyped as sequence type (ST) 5-staphylococcal cassette chromosome mec (SCCmec) II variant (n=2) and ST239- SCCmec III (n=2), which were derived from the predominant methicillin-resistant S. aureus (MRSA) clones in Korean hospitals. One VISA isolate was acquired during vancomycin treatment, whereas three VISA isolates were obtained from the patients who had not previously been exposed to glycopeptides. As VISA is likely to arise from the predominant MRSA clones and may then possibly spread between patients, the emergence of VISA should be monitored with great care in hospitals.
Acinetobacter baumannii Outer Membrane Protein A Induces Dendritic Cell Death Through Mitochondrial Targeting
Jun Sik Lee , Chul Hee Choi , Jung Wook Kim , Je Chul Lee
J. Microbiol. 2010;48(3):387-392.   Published online June 23, 2010
DOI: https://doi.org/10.1007/s12275-010-0155-1
  • 35 View
  • 0 Download
  • 71 Scopus
AbstractAbstract
Acinetobacter baumannii outer membrane protein A (AbOmpA) is a potential virulence factor that induces epithelial cell death, but its pathologic effects on the immune system have yet to be determined. The present study investigated the pathologic events occurring in dendritic cells (DCs) exposed to a cytotoxic concentration of AbOmpA. AbOmpA induced early-onset apoptosis and delayed-onset necrosis in DCs. AbOmpA targeted the mitochondria and induced the production of reactive oxygen species (ROS). ROS were directly responsible for both apoptosis and necrosis of AbOmpA-treated DCs. These results demonstrate that the AbOmpA secreted from A. baumannii induces DC death, which may impair T cell biology to induce adaptive immune responses against A. baumannii.
Prediction of Bacterial Proteins Carrying A Nuclear Localization Signal and Nuclear Targeting of HsdM from Klebsiella pneumoniae
Je Chul Lee , Dong Sun Kim , Dong Chan Moon , Jung-Hwa Lee , Mi Jin Kim , Su Man Lee , Yong Seok Lee , Se-Won Kang , Eun Jung Lee , Sang Sun Kang , Eunpyo Lee , Sung Hee Hyun
J. Microbiol. 2009;47(5):641-645.   Published online October 24, 2009
DOI: https://doi.org/10.1007/s12275-009-0217-4
  • 40 View
  • 0 Download
  • 15 Scopus
AbstractAbstract
Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism whereby bacterial proteins can interact with nuclear molecules and alter the physiology of host cells. The fully sequenced bacterial genome can predict proteins that target the nuclei of host cells based on the presence of nuclear localization signal (NLS). In the present study, we predicted bacterial proteins with the NLS sequences from Klebsiella pneumoniae by bioinformatic analysis, and 13 proteins were identified as carrying putative NLS sequences. Among them, HsdM, a subunit of KpnAI that is a type I restriction-modification system found in K. pneumoniae, was selected for the experimental proof of nuclear targeting in host cells. HsdM carried the NLS sequences, 7KKAKAKK13, in the N-terminus. A transient expression of HsdM-EGFP in COS-1 cells exhibited exclusively a nuclear localization of the fusion proteins, whereas the fusion proteins of HsdM with substitutions in residues lysine to alanine in the NLS sequences, 7AAAKAAA13, were localized in the cytoplasm. HsdM was co-localized with importin α in the nuclei of host cells. Recombinant HsdM alone methylated the eukaryotic DNA in vitro assay. Although HsdM tested in this study has not been considered to be a virulence factor, the prediction of NLS motifs from the full sequenced genome of bacteria extends our knowledge of functional genomics to understand subcellular targeting of bacterial proteins.
Characterization of Conjugative Plasmids Carrying Antibiotic Resistance Genes Encoding 16S rRNA Methylase, Extended-Spectrum Beta-Lactamase, and/or Plasmid-Mediated AmpC Beta-Lactamase
Hee Young Kang , Jungmin Kim , Sung Yong Seol , Yoo Chul Lee , Je Chul Lee , Dong Taek Cho
J. Microbiol. 2009;47(1):68-75.   Published online February 20, 2009
DOI: https://doi.org/10.1007/s12275-008-0158-3
  • 53 View
  • 0 Download
  • 21 Scopus
AbstractAbstract
In this study, we identified extended-spectrum ß-lactamase (ESBL) and plasmid-mediated AmpC ß-lactamase which were associated with 16S rRNA methylase gene on the conjugative plasmid. Among 82 clinical isolates of Enterobacteriaceae that carry 16S rRNA methylase gene (64 strains, armA, and 18 strains, rmtB), blaSHV-12 was detected either alone or combined with blaDHA-1, blaCTX-M-3, and blaCTX-M-14 in 30 strains carrying armA and 6 strains carrying rmtB. The blaCTX-M-3 was detected in 13 of 64 strains carrying armA but no strains carrying rmtB. Whereas blaCTX-M-14 was detected in 15 of 18 strains carrying rmtB but only 2 of 64 strains carrying armA. Overall, blaSHV-12 and blaCTX-M-14 was the most common ESBL gene which was associated with armA and rmtB, respectively. In addition, we found that blaCTX-M-3 localized with armA on the same IncL/M plasmid and blaCTX-M-14 localized with rmtB on the same IncA/C plasmid. Restriction fragment length polymorphism of conjugative plasmids and pulsed-field gel electrophoresis of genomic DNAs revealed that intercellular horizontal transfer of conjugative plasmid and clonal transmission have been occurred at the same time.
Proteomic Analysis of Outer Membrane Proteins from Acinetobacter baumannii DU202 in Tetracycline Stress Condition
Sung-Ho Yun , Chi-Won Choi , Soon-Ho Park , Je Chul Lee , Sun-Hee Leem , Jong-Soon Choi , Soohyun Kim , Seung Il Kim
J. Microbiol. 2008;46(6):720-727.   Published online December 24, 2008
DOI: https://doi.org/10.1007/s12275-008-0202-3
  • 39 View
  • 0 Download
  • 53 Scopus
AbstractAbstract
Acinetobacter baumannii readily developed antimicrobial resistance to clinically available antibiotics. A. baumannii DU202 is a multi-drug resistant strain, and is highly resistant to tetracycline (MIC>1,024μg/ml). The surface proteome of A. baumannii DU202 in response to the sub-minimal inhibitory concentration (subMIC) of tetracycline was analyzed by 2-DE/MS-MS and 1-DE/LC/MS-MS to understand the pathways that form barriers for tetracycline. Membrane expression of major outer membrane proteins (Omps) was significantly decreased in response to the subMIC of tetracycline. These Omps with sizes of 38, 32, 28, and 21 kDa were identified as OmpA38, OmpA32, CarO, and OmpW, respectively. However, transcription level of these Omps was not significantly changed. 1-DE/LC/MS-MS analysis of secreted proteins showed that OmpA38, CarO, OmpW, and other Omps were increasingly secreted at tetracycline condition. This result suggests that A. baumannii actively regulates the membrane expression and the secretion of Omps to overcome antibiotic stress condition.
Anti-Tumor Activity of Acinetobacter baumannii Outer Membrane Protein A on Dendritic Cell-Based Immunotherapy against Murine Melanoma
Jun Sik Lee , Jung Wook Kim , Chul Hee Choi , Won Kee Lee , Hae Young Chung , Je Chul Lee
J. Microbiol. 2008;46(2):221-227.   Published online June 11, 2008
DOI: https://doi.org/10.1007/s12275-008-0052-z
  • 55 View
  • 0 Download
  • 14 Scopus
AbstractAbstract
Acinetobacter baumannii outer membrane protein A (AbOmpA) is a major surface protein that is an important pathogen-associated molecular pattern. Based on our previous findings that AbOmpA induced the phenotypic maturation of dendritic cells (DCs) and drove the Th1 immune response in vitro, we investigated the therapeutic efficacy of AbOmpA-pulsed DC vaccines in a murine melanoma model. The surface expression of co-stimulatory molecules (CD80 and CD86) and major histocompatibility complex class I and II molecules was higher in DCs pulsed with AbOmpA alone or with a combination of B16F10 cell lysates than that of DCs pulsed with B16F10 cell lysates. AbOmpA stimulated the maturation of murine splenic DCs in vivo. In a therapeutic model of murine melanoma, AbOmpA-pulsed DCs significantly retarded tumor growth and improved the survival of tumor-bearing mice. AbOmpA-pulsed DCs significantly enhanced CD8+, interleukin-2+ T cells and CD4+, interferon-γ+ T cells in tumor-bearing mice. These results provide evidence that AbOmpA may be therapeutically useful in adjuvant DC immunotherapy against poorly immunogenic melanoma without tumor-specific antigens.
Phenotypic and Genotypic Differences of the Vancomycin-Resistant Enterococcus faecium Isolates from Humans and Poultry in Korea
Jae Young Oh , Seunghun An , Jong Sook Jin , You Chul Lee , Dong Teak Cho , Je Chul Lee
J. Microbiol. 2007;45(5):466-472.
DOI: https://doi.org/2588 [pii]
  • 49 View
  • 0 Download
AbstractAbstract
A total of 98 vancomycin-resistant Enterococcus faecium (VREF) isolates (58 isolates from patients and 40 isolates from poultry) were compared based on their antimicrobial susceptibility, Tn1546 element organization, and pulsed-field gel electrophoresis (PFGE) patterns. This comparison aided in determining the relationships between the groups of isolates. All the VREF isolates harbored the vanA gene; however, 29 (29.6%) of the isolates exhibited the VanB phenotype-vanA genotype. Furthermore, the VREF isolates from humans and poultry exhibited distinct antimicrobial resistance patterns. The PCR mapping of the Tn1546 elements exhibited 12 different transposon types (A to L). The VREF isolates of poultry were classified into types A to D, whereas the human isolates were classified into types E to L. A PFGE analysis demonstrated a high degree of clonal heterogeneity in both groups of isolates; however, the distinct VREF clones appeared in each group of isolates. The deletion of the vanX-vanY genes or insertion of IS1216V in the intergenic region from the vanX-vanY genes is directly associated with the incongruence of the VanB phenotype-vanA genotype in human VREF isolates. These data suggest that the VREF isolates exhibit distinct phenotypic and genotypic traits according to their origins, which suggests that no evidence exists to substantiate the clonal spread or transfer of vancomycin resistance determinants between humans and poultry.
A Comparison of Adult and Pediatric Methicillin-Resistant Staphylococcus aureus Isolates Collected from Patients at a University Hospital in Korea
Jin Yeol Park , Jong Sook Jin , Hee Young Kang , Eun Hee Jeong , Je Chul Lee , Yoo Chul Lee , Sung Yong Seol , Dong Taek Cho , Jungmin Kim
J. Microbiol. 2007;45(5):447-452.
DOI: https://doi.org/2591 [pii]
  • 48 View
  • 0 Download
AbstractAbstract
In this study, we compared the phenotypic and genotypic characteristics of 138 MRSA isolates obtained from adult and pediatric patients (adult, 50; children, 88). The resistance rates against gentamicin, clindamycin, and ciprofloxacin were much higher in the adult MRSA isolates than in the pediatric MRSA isolates. The ermC gene, which is responsible for inducible clindamycin resistance, was detected in 52(59.1%) of the 88 pediatric MRSA isolates but in only 5(10.0%) of the 50 adult MRSA isolates. MRSA isolates of clonal type ST5 with an integration of SCCmec type II/II variants was the most predominant clone among the adult isolates, while clonal type ST72 with an integration of SCCmec IV/IVA was the most predominant clone among the pediatric MRSA isolates. Staphylococcal enterotoxin A and toxic shock syndrome toxin-1 were prevalent among the adult MRSA isolates but not among the pediatric MRSA isolates. The results of this study demonstrated remarkable differences between adult and pediatric MRSA isolates in terms of their antimicrobial susceptibility profiles, SCCmec type, multilocus sequence type, staphylococcal toxin genes, and erythromycin resistance genes.
Molecular Characterization of Pseudomonas aeruginosa Isolates Resistant to All Antimicrobial Agents, but Susceptible to Colistin, in Daegu, Korea
Yoo Chul Lee , Byung Jun Ahn , Jong Sook Jin , Jung Uk Kim , Sang Hwa Lee , Do Young Song , Won Kil Lee , Je Chul Lee
J. Microbiol. 2007;45(4):358-363.
DOI: https://doi.org/2560 [pii]
  • 53 View
  • 0 Download
AbstractAbstract
Multi-drug resistant Pseudomonas aeruginosa has been implicated in a variety of serious therapeutic problems in clinical environments. Among the 968 P. aeruginosa isolates obtained from two hospitals in Daegu, Korea, we acquired 17 isolates that were resistant to all available tested antimicrobial agents, with the exception of colistin (colistin-only sensitive). We characterized the antimicrobial susceptibilities, metallo-β-lactamases, and epidemiological relatedness among the colistin-only sensitive P. aeruginosa isolates. All colistin-only sensitive isolates were positive in the modified Hodge test and imipenem-EDTA synergy test, thereby indicating the production of metallo-β-lactamases. 11 isolates from the secondary hospital and six isolates from the tertiary teaching hospital harbored blaVIM-2 and blaIMP-1, respectively. The pulsed-field gel electrophoretic analysis of the SpeI-digested DNA from P. aeruginosa isolates indicated that two different clones of colistin-only sensitive P. aeruginosa originated from each hospital, and had spread within the hospital environment. Overall, colistin-only sensitive P. aeruginosa was detected in Korea for the first time, but no pan-drug resistant bacteria were identified. Nationwide surveillance is required in order to monitor the emergence of colistin-only sensitive or pan-drug resistant bacteria.
Isolation of Quinolone-Resistant Escherichia coli Found in Major Rivers in Korea
Dahye Jung , Min Young Lee , Jung Min Kim , Je Chul Lee , Dong Taek Cho , Yeonhee Lee
J. Microbiol. 2006;44(6):680-684.
DOI: https://doi.org/2456 [pii]
  • 50 View
  • 0 Download
AbstractAbstract
Twenty isolates resistant to seven quinolones were isolated from major rivers in Korea. All isolates had three mutations, Ser83→Leu and Asp87→Asn in GyrA and Ser80→Ile or Ser80→Arg in ParC and three isolates had an additional mutation Glu84→Gly or Glu84→Val in ParC. In addition, a clonal spread was not found in these isolates.
Je Chul Lee 1 Article
H-NS is a Transcriptional Repressor of the CRISPR-Cas System in Acinetobacter baumannii ATCC 19606
Kyeongmin Kim, Md Maidul Islam, Seunghyeok Bang, Jeongah Kim, Chung-Young Lee, Je Chul Lee, Minsang Shin
J. Microbiol. 2024;62(11):999-1012.   Published online November 11, 2024
DOI: https://doi.org/10.1007/s12275-024-00182-5
  • 110 View
  • 0 Download
AbstractAbstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606T standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606T and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.

Journal of Microbiology : Journal of Microbiology
TOP