- Development of a CRISPR/Cas9 RNP-mediated genetic engineering system in Paecilomyces variotii
-
Hui-Gang Han, Rutuja Nandre, Hyerang Eom, Yeon-Jae Choi, Hyeon-Su Ro
-
Received February 20, 2025 Accepted May 13, 2025 Published online June 11, 2025
-
DOI: https://doi.org/10.71150/jm.2502011
-
-
Abstract
-
A thermophilic strain of Paecilomyces variotii (MR1), capable of surviving temperatures above 40°C, was isolated from a paper mill and investigated as a host for heterologous protein production. To prevent environmental dissemination of spores, UV mutagenesis was employed to create a conidia-deficient strain, UM7. This strain underwent gene editing using Cas9-gRNA ribonucleoprotein (RNP) with HR donor DNA fragments, incorporating promoter sequences amplified from the genomic DNA of P. variotii (PH4, PP2, PS8, Ptub, Ptef1, and PgpdA), along with a signal sequence-tagged eGFP, flanked by 5’-upstream (336 bp) and 3’-downstream (363 bp) regions of pyrG. Co-transformation of HR donor DNA with RNP into protoplasts yielded 48 mutant pyrG transformants capable of surviving in the presence of 5-fluoroorotic acid (5-FOA). Sequence analysis identified 16 of the 48 pyrG-disrupted mutants carrying complete HR donor DNAs with the six different promoter sequences, indicating successful homology-directed repair (HDR). Evaluation of promoter strength revealed that PgpdA was the most effective for intracellular GFP production; however, it resulted in negligible extracellular GFP signal under all promoter conditions. A newly edited strain with an HDR integration module connecting PgpdA directly to eGFP, without the signal sequence, exhibited enhanced GFP expression in both mycelial cells and culture broth, suggesting that the signal peptide negatively affect protein expression and secretion. This work represents the first successful RNP-mediated gene editing in P. variotii, contributing to the application of this thermophilic fungus in protein production.
|