Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
9 "urea"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus
Yun Suk Lee , Hyun Jung Kim , Woojun Park
J. Microbiol. 2017;55(6):440-447.   Published online May 28, 2017
DOI: https://doi.org/10.1007/s12275-017-7086-z
  • 55 View
  • 0 Download
  • 37 Crossref
AbstractAbstract
Although microbially induced calcium carbonate precipita-tion (MICP) through ureolysis has been widely studied in en-vironmental engineering fields, urea utilization might cause environmental problems as a result of ammonia and nitrate production. In this study, many non-ureolytic calcium car-bonate-precipitating bacteria that induced an alkaline envi-ronment were isolated from the rhizosphere of Miscanthus sacchariflorus near an artificial stream and their ability to pre-cipitate calcium carbonate minerals with the absence of urea was investigated. MICP was observed using a phase-contrast microscope and ion-selective electrode. Only Lysinibacillus sp. YS11 showed MICP in aerobic conditions. Energy disper-sive X-ray spectrometry and X-ray diffraction confirmed the presence of calcium carbonate. Field emission scanning elec-tron microscopy analysis indicated the formation of morpho-logically distinct minerals around cells under these condi-tions. Monitoring of bacterial growth, pH changes, and Ca2+ concentrations under aerobic, hypoxia, and anaerobic con-ditions suggested that strain YS11 could induce alkaline con-ditions up to a pH of 8.9 and utilize 95% of free Ca2+ only under aerobic conditions. Unusual Ca2+ binding and its re-lease from cells were observed under hypoxia conditions. Bio-film and extracellular polymeric substances (EPS) formation were enhanced during MICP. Strain YS11 has resistance at high pH and in high salt concentrations, as well as its spore- forming ability, which supports its potential application for self-healing concrete.

Citations

Citations to this article as recorded by  
  • Revolutionizing remediation: Unveiling the power of Lysinibacillus sp. in tackling heavy metal stress
    Akanksha Gupta, Chhavi Siwach, Virendra Kumar Mishra
    Sustainable Chemistry for the Environment.2024; 8: 100156.     CrossRef
  • Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284
    Seyed Ali Rahmaninezhad, Mohammad Houshmand, Amirreza Sadighi, Kiana Ahmari, Divya Kamireddi, Reva M. Street, Yaghoob (Amir) Farnam, Caroline L. Schauer, Ahmad Raeisi Najafi, Christopher M. Sales
    Journal of Bioscience and Bioengineering.2024; 138(1): 63.     CrossRef
  • Comparison of calcium carbonate production by bacterial isolates from recycled aggregates
    Giuseppe Ciaramella Moita, Vitor da Silva Liduino, Eliana Flávia Camporese Sérvulo, João Paulo Bassin, Romildo Dias Toledo Filho
    Environmental Science and Pollution Research.2024; 31(25): 37810.     CrossRef
  • Microbially Induced Calcium Carbonate Precipitation Using Lysinibacillus sp.: A Ureolytic Bacterium from Uttarakhand for Soil Stabilization
    Aparna Ganapathy Vilasam Sreekala, Sreelakshmi Nair, Vinod Kumar Nathan
    Current Microbiology.2024;[Epub]     CrossRef
  • Application of Microbially Induced CaCO3 on the Reinforcement of Rock Discontinuity
    Simiao Zhang, Shuhong Wang, Zulkifl Ahmed, Fahad Alshawmar
    Applied Sciences.2024; 14(19): 8952.     CrossRef
  • Exploring a cellulose-immobilized bacteria for self-healing concrete via microbe-induced calcium carbonate precipitation
    Jian-Miao Xu, Zhuo-Ting Chen, Feng Cheng, Zhi-Qiang Liu, Yu-Guo Zheng
    Journal of Building Engineering.2024; 95: 110248.     CrossRef
  • Trends and opportunities for greener and more efficient microbially induced calcite precipitation pathways: a strategic review
    Kishan Bhadiyadra, Siaw Chian Jong, Dominic E L Ong, Jeung-Hwan Doh
    Geotechnical Research.2024; 11(3): 161.     CrossRef
  • Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications
    Kuan Zhang, Chao-Sheng Tang, Ning-Jun Jiang, Xiao-Hua Pan, Bo Liu, Yi-Jie Wang, Bin Shi
    Environmental Earth Sciences.2023;[Epub]     CrossRef
  • Solidification treatment of rare earth tailings by a renewable biological cementation method
    Wei-da Wang, Tan Wang, Zhen-bo Sun, Yan-xin Bo, Chang-xiong Zou, Zhe Wang, Chun-li Zheng
    Process Safety and Environmental Protection.2023; 179: 585.     CrossRef
  • Biocalcifying Potential of Ureolytic Bacteria Isolated from Soil for Biocementation and Material Crack Repair
    Laxmi Leeprasert, Duenrut Chonudomkul, Chanita Boonmak
    Microorganisms.2022; 10(5): 963.     CrossRef
  • Microbial Concrete—a Sustainable Solution for Concrete Construction
    Parampreet Kaur, Varinder Singh, Amit Arora
    Applied Biochemistry and Biotechnology.2022; 194(3): 1401.     CrossRef
  • Effects of Various Pseudomonas Bacteria Concentrations on the Strength and Durability Characteristics of Concrete
    Ashish Shukla, Nakul Gupta, Saurav Dixit, Nikolai Ivanovich Vatin, Manish Gupta, Kuldeep Kumar Saxena, Chander Prakash
    Buildings.2022; 12(7): 993.     CrossRef
  • Controlling pore-scale processes to tame subsurface biomineralization
    Joaquin Jimenez-Martinez, Jen Nguyen, Dani Or
    Reviews in Environmental Science and Bio/Technology.2022; 21(1): 27.     CrossRef
  • Advancements in bacteria based self-healing concrete and the promise of modelling
    Manpreet Bagga, Charlotte Hamley-Bennett, Aleena Alex, Brubeck L Freeman, Ismael Justo-Reinoso, Iulia C Mihai, Susanne Gebhard, Kevin Paine, Anthony D Jefferson, Enrico Masoero, Irina D Ofiţeru
    Construction and Building Materials.2022; 358: 129412.     CrossRef
  • Bio-strengthening of cementitious composites from incinerated sugarcane filter cake by a calcifying bacterium Lysinibacillus sp. WH
    Zerlinda Mara Ditta, Nantawat Tanapongpisit, Wittawat Saenrang, Ittipon Fongkaew, Poemwai Chainakun, Wasan Seemakram, Sophon Boonlue, Vanchai Sata, Jindarat Ekprasert
    Scientific Reports.2022;[Epub]     CrossRef
  • Performance Evaluation of Bio Concrete by Cluster and Regression Analysis for Environment Protection
    Ashish Shukla, Nakul Gupta, Kunwar Raghvendra Singh, Pawan Kumar Verma, Mohit Bajaj, Arfat Ahmad Khan, Frie Ayalew, Anastasios D. Doulamis
    Computational Intelligence and Neuroscience.2022; 2022: 1.     CrossRef
  • Agricultural by-products and oyster shell as alternative nutrient sources for microbial sealing of early age cracks in mortar
    Minyoung Hong, Indong Jang, Yongjun Son, Chongku Yi, Woojun Park
    AMB Express.2021;[Epub]     CrossRef
  • The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity
    Inna V. Zamulina, Andrey V. Gorovtsov, Tatiana M. Minkina, Saglara S. Mandzhieva, Tatiana V. Bauer, Marina V. Burachevskaya
    Ecotoxicology and Environmental Safety.2021; 208: 111471.     CrossRef
  • Morpho-Mineralogical and Bio-Geochemical Description of Cave Manganese Stromatolite-Like Patinas (Grotta del Cervo, Central Italy) and Hints on Their Paleohydrological-Driven Genesis
    Simone Bernardini, Fabio Bellatreccia, Andrea Columbu, Ilaria Vaccarelli, Marika Pellegrini, Valme Jurado, Maddalena Del Gallo, Cesareo Saiz-Jimenez, Armida Sodo, Christian Millo, Luigi Jovane, Jo De Waele
    Frontiers in Earth Science.2021;[Epub]     CrossRef
  • Aerobic non-ureolytic bacteria-based self-healing cementitious composites: A comprehensive review
    Ismael Justo-Reinoso, Andrew Heath, Susanne Gebhard, Kevin Paine
    Journal of Building Engineering.2021; 42: 102834.     CrossRef
  • Use of Methylcellulose-Based Pellet to Enhance the Bacterial Self-Healing of Cement Composite
    Indong Jang, Dasom Son, Yongjun Son, Jihyeon Min, Chongku Yi
    Materials.2021; 14(20): 6113.     CrossRef
  • Profiling of Bacteria Capable of Precipitating CaCO3on the Speleothem Surfaces in Dupnisa Cave, Kırklareli, Turkey
    Merve Dilek Türkgenci, Nihal Doğruöz Güngör
    Geomicrobiology Journal.2021; 38(9): 816.     CrossRef
  • Bacterial Self-Healing Performance of Coated Expanded Clay in Concrete
    Sanghyun Han, Indong Jang, Eun Kyung Choi, Woojun Park, Chongku Yi, Namhyun Chung
    Journal of Environmental Engineering.2020;[Epub]     CrossRef
  • Biosynthesis and characterization of cadmium carbonate crystals by anaerobic granular sludge capable of precipitate cadmium
    C.M. Martínez, M. Rivera-Hernández, Luis H. Álvarez, Ismael Acosta-Rodríguez, F. Ruíz, V.D. Compeán-García
    Materials Chemistry and Physics.2020; 246: 122797.     CrossRef
  • Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina
    Jaebok Lee, Minkyung Kim, Sang Eun Jeong, Hye Yoon Park, Che Ok Jeon, Woojun Park
    Journal of Hazardous Materials.2020; 384: 121312.     CrossRef
  • Dominance of Gas-Eating, Biofilm-Forming Methylobacterium Species in the Evaporator Cores of Automobile Air-Conditioning Systems
    Chulwoo Park, Hye Su Jung, Soyoon Park, Che Ok Jeon, Woojun Park, Katherine McMahon
    mSphere.2020;[Epub]     CrossRef
  • Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus
    Bora Shin, Chulwoo Park, Byoung-Hee Lee, Ki-Eun Lee, Woojun Park
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(3): 1843.     CrossRef
  • Effects of spray-dried co-cultured bacteria on cement mortar
    Indong Jang, Dasom Son, Wonjae Kim, Woojun Park, Chongku Yi
    Construction and Building Materials.2020; 243: 118206.     CrossRef
  • Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation
    Sing Chuong Chuo, Sarajul Fikri Mohamed, Siti Hamidah Mohd Setapar, Akil Ahmad, Mohammad Jawaid, Waseem A. Wani, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim
    Materials.2020; 13(21): 4993.     CrossRef
  • Optimization of bacterial sporulation using economic nutrient for self-healing concrete
    Youngung Ryu, Ki-Eun Lee, In-Tae Cha, Woojun Park
    Journal of Microbiology.2020; 58(4): 288.     CrossRef
  • Non-ureolytic microbial self-repairing concrete for low temperature environment
    Yilin Su, Jianhang Feng, Qiwei Zhan, Yi Zhang, Chunxiang Qian
    Smart Materials and Structures.2019; 28(7): 075041.     CrossRef
  • Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina
    Vincenzo Pasquale, Saverio Fiore, Dhaker Hlayem, Antonio Lettino, F. Javier Huertas, Elena Chianese, Stefano Dumontet
    International Biodeterioration & Biodegradation.2019; 140: 57.     CrossRef
  • A Comparison of Bacteria Cultured from Unionid Mussel Hemolymph between Stable Populations in the Upper Mississippi River Basin and Populations Affected by a Mortality Event in the Clinch River
    Eric Leis, Sara Erickson, Diane Waller, Jordan Richard, Tony Goldberg
    Freshwater Mollusk Biology and Conservation.2019;[Epub]     CrossRef
  • Effectiveness of expanded clay as a bacteria carrier for self-healing concrete
    Sanghyun Han, Eun Kyung Choi, Woojun Park, Chongku Yi, Namhyun Chung
    Applied Biological Chemistry.2019;[Epub]     CrossRef
  • Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13
    Yun Suk Lee, Woojun Park
    AMB Express.2019;[Epub]     CrossRef
  • Biomimetic mineralization of calcium carbonate/poly (sodium p-styrenesulfonate) for lysozyme immobilization
    Wei Xu, Xiaonan Xue, Lu Huang, Huan Liu, Bakht Ramin Shah, Yuntao Wang, Yingying Li, Xinfang Liu
    Materials Research Express.2018; 6(2): 025101.     CrossRef
  • Current challenges and future directions for bacterial self-healing concrete
    Yun Suk Lee, Woojun Park
    Applied Microbiology and Biotechnology.2018; 102(7): 3059.     CrossRef
The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis
Hsin-Chih Lai , Yu-Tze Horng , Pen-Fang Yeh , Jann-Yuan Wang , Chin-Chung Shu , Jang-Jih Lu , Jen-Jyh Lee , Po-Chi Soo
J. Microbiol. 2016;54(11):761-767.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6201-x
  • 54 View
  • 0 Download
  • 2 Crossref
AbstractAbstract
Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis. The protein composition of sputum may reflect the immune status of the lung. This study aimed to evaluate the protein profiles in spontaneous sputum samples from patients with active pulmonary TB. Sputum samples were collected from patients with pulmonary TB and healthy controls. Western blotting was used to analyze the amount of interleukin 10 (IL-10), interferon-gamma (IFN-γ), IL-25, IL- 17, perforin-1, urease, albumin, transferrin, lactoferrin, adenosine deaminase (also known as adenosine aminohydrolase, or ADA), ADA-2, granzyme B, granulysin, and caspase- 1 in sputum. Results of detection of IL-10, IFN-γ, perforin- 1, urease, ADA2, and caspase-1, showed relatively high specificity in distinguishing patients with TB from healthy controls, although sensitivities varied from 13.3% to 66.1%. By defining a positive result as the detection of any two proteins in sputum samples, combined use of transferrin and urease as markers increased sensitivity to 73.2% and specificity to 71.1%. Furthermore, we observed that the concentration of transferrin was proportional to the number of acidfast bacilli detected in sputum specimens. Detection of sputum transferrin and urease was highly associated with pulmonary TB infection. In addition, a high concentration of transferrin detected in sputum might correlate with active TB infection. This data on sputum proteins in patients with TB may aid in the development of biomarkers to assess the severity of pulmonary TB.

Citations

Citations to this article as recorded by  
  • From simple to complex: Protein‐based biomarker discovery in tuberculosis
    Zaynab Mousavian, Gunilla Källenius, Christopher Sundling
    European Journal of Immunology.2023;[Epub]     CrossRef
  • Interleukin 8 and Pentaxin (C-Reactive Protein) as Potential New Biomarkers of Bovine Tuberculosis
    Xintao Gao, Xiaoyu Guo, Ming Li, Hong Jia, Weidong Lin, Lichun Fang, Yitong Jiang, Hongfei Zhu, Zhifang Zhang, Jiabo Ding, Ting Xin, Brad Fenwick
    Journal of Clinical Microbiology.2019;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Morphological changes in human gastric epithelial cells induced by nuclear targeting of Helicobacter pylori urease subunit A
Jung Hwa Lee , So Hyun Jun , Jung-Min Kim , Seung Chul Baik , Je Chul Lee
J. Microbiol. 2015;53(6):406-414.   Published online May 30, 2015
DOI: https://doi.org/10.1007/s12275-015-5085-5
  • 58 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Nuclear targeting of bacterial proteins and their pathological effects on host cells are an emerging pathogenic mechanism in bacteria. We have previously reported that urease subunit A (UreA) of Helicobacter pylori targets the nuclei of COS-7 cells through nuclear localization signals (NLSs). This study further investigated whether UreA of H. pylori targets the nuclei of gastric epithelial cells and then induces molecular and cellular changes in the host cells. H. pylori 26695 strain produced and secreted outer membrane vesicles (OMVs). UreA was translocated into gastric epithelial AGS cells through outer membrane vesicles (OMVs) and then targeted the nuclei of AGS cells. Nuclear targeting of rUreA did not induce host cell death, but resulted in morphological changes, such as cellular elongation, in AGS cells. In contrast, AGS cells treated with rUreAΔNLS proteins did not show this morphological change. Next generation sequencing revealed that nuclear targeting of UreA differentially regulated 102 morphogenesis- related genes, of which 67 and 35 were up-regulated and down-regulated, respectively. Our results suggest that nuclear targeting of H. pylori UreA induces both molecular and cellular changes in gastric epithelial cells.

Citations

Citations to this article as recorded by  
  • Effects of Exosomes Derived From Helicobacter pylori Outer Membrane Vesicle-Infected Hepatocytes on Hepatic Stellate Cell Activation and Liver Fibrosis Induction
    Masoumeh Ebadi Zahmatkesh, Mariyeh Jahanbakhsh, Negin Hoseini, Saina Shegefti, Amir Peymani, Hossein Dabin, Rasoul Samimi, Shahin Bolori
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Significance of Helicobacter pylori and Its Serological Typing in Gastric Cancer
    碧玉 张
    Advances in Clinical Medicine.2022; 12(12): 11694.     CrossRef
  • Rational Development of Bacterial Ureases Inhibitors
    Saurabh Loharch, Łukasz Berlicki
    The Chemical Record.2022;[Epub]     CrossRef
  • Emerging therapeutic targets for gastric cancer from a host-Helicobacter pylori interaction perspective
    Esmat Abdi, Saeid Latifi-Navid, Fatemeh Abedi Sarvestani, Mohammad Hassan Esmailnejad
    Expert Opinion on Therapeutic Targets.2021; 25(8): 685.     CrossRef
  • Non-enzymatic properties of Proteus mirabilis urease subunits
    Valquiria Broll, Ana Paula A. Perin, Fernanda C. Lopes, Anne Helene S. Martinelli, Natalia R. Moyetta, Leonardo L. Fruttero, Matheus V.C. Grahl, Augusto F. Uberti, Diogo R. Demartini, Rodrigo Ligabue-Braun, Celia R. Carlini
    Process Biochemistry.2021; 110: 263.     CrossRef
  • Nuclear trafficking of bacterial effector proteins
    Lena Hoang My Le, Le Ying, Richard L. Ferrero
    Cellular Microbiology.2021;[Epub]     CrossRef
  • Proteus mirabilis Urease: Unsuspected Non-Enzymatic Properties Relevant to Pathogenicity
    Matheus V. C. Grahl, Augusto F. Uberti, Valquiria Broll, Paula Bacaicoa-Caruso, Evelin F. Meirelles, Celia R. Carlini
    International Journal of Molecular Sciences.2021; 22(13): 7205.     CrossRef
  • Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development
    María Fernanda González, Paula Díaz, Alejandra Sandoval-Bórquez, Daniela Herrera, Andrew F. G. Quest
    International Journal of Molecular Sciences.2021; 22(9): 4823.     CrossRef
  • Tracking the cargo of extracellular symbionts into host tissues with correlated electron microscopy and nanoscale secondary ion mass spectrometry imaging
    Stephanie K. Cohen, Marie‐Stéphanie Aschtgen, Jonathan B. Lynch, Sabrina Koehler, Fangmin Chen, Stéphane Escrig, Jean Daraspe, Edward G. Ruby, Anders Meibom, Margaret McFall‐Ngai
    Cellular Microbiology.2020;[Epub]     CrossRef
  • Role of Probiotics in Prophylaxis of Helicobacter pylori Infection
    Kashyapi Chakravarty, Smriti Gaur
    Current Pharmaceutical Biotechnology.2019; 20(2): 137.     CrossRef
  • Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review
    Sharmila Fagoonee, Rinaldo Pellicano
    Infectious Diseases.2019; 51(6): 399.     CrossRef
  • Cross‐Reactivity of Polyclonal Antibodies against Canavalia ensiformis (Jack Bean) Urease and Helicobacter pylori Urease Subunit A Fragments
    Zbigniew Jerzy Kaminski, Inga Relich, Iwona Konieczna, Wieslaw Kaca, Beata Kolesinska
    Chemistry & Biodiversity.2018;[Epub]     CrossRef
  • Ureases: Historical aspects, catalytic, and non-catalytic properties – A review
    Karine Kappaun, Angela Regina Piovesan, Celia Regina Carlini, Rodrigo Ligabue-Braun
    Journal of Advanced Research.2018; 13: 3.     CrossRef
  • The Impact of Helicobacter pylori Urease upon Platelets and Consequent Contributions to Inflammation
    Adriele Scopel-Guerra, Deiber Olivera-Severo, Fernanda Staniscuaski, Augusto F. Uberti, Natália Callai-Silva, Natália Jaeger, Bárbara N. Porto, Celia R. Carlini
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • A New Role for Helicobacter pylori Urease: Contributions to Angiogenesis
    Deiber Olivera-Severo, Augusto F. Uberti, Miguel S. Marques, Marta T. Pinto, Maria Gomez-Lazaro, Céu Figueiredo, Marina Leite, Célia R. Carlini
    Frontiers in Microbiology.2017;[Epub]     CrossRef
Journal Article
Use of Selected Lactic Acid Bacteria in the Eradication of Helicobacter pylori Infection
Jin-Eung Kim , Min-Soo Kim , Yeo-Sang Yoon , Myung-Jun Chung , Do-Young Yum
J. Microbiol. 2014;52(11):955-962.   Published online October 3, 2014
DOI: https://doi.org/10.1007/s12275-014-4355-y
  • 61 View
  • 0 Download
  • 27 Crossref
AbstractAbstract
Helicobacter pylori is among the major pathogenic bacteria that cause chronic gastritis and peptic ulcer disease and is related to the development of gastric cancer. Several chemicals, including antibiotics, have been used to eradicate H. pylori; however, they do not always curb the infection. Ten representative type strains of lactic acid bacteria (LAB) were screened for antagonism toward H. pylori via inhibition of urease activity. Strains inhibiting the binding of H. pylori to human gastric cell line cells and suppressing H. pylori-induced interleukin-8 (IL-8) production were also screened. Of these, Pediococcus pentosaseus (SL4), which inhibited the adhesion of H. pylori to MKN-45 gastric cancer cells, Bifidobacterium longum (BG7), with urease inhibiting activity, and Lactococcus lactis (SL3), and Enterococcus faecalis (SL5), which suppressed H. pylori-induced IL-8 production within MKN-45 and AGS cells, were selected. In mouse model, these LAB stains in combination significantly suppressed IL-8 levels in serum. Gastric pH also recovered to normal values after the administration of these LAB. These stains effectively suppressed H. pylori viability, although not to the extent of antibiotic treatment. When used as probiotics, LAB may help decrease the occurrence of gastritis and reduce the risk of H. pylori infection without, inducing side effects.

Citations

Citations to this article as recorded by  
  • Faecal microbiota transplantation for eradicatingHelicobacter pyloriinfection: clinical practice and theoretical postulation
    Zhi-Ning Ye, Guy D Eslick, Shao-Gang Huang, Xing-Xiang He
    eGastroenterology.2024; 2(4): e100099.     CrossRef
  • Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics
    Zhiyang Li, Hui Deng, Xinqi Cai, Zhuo Chen
    Acta Physico-Chimica Sinica.2024; 40(7): 2306051.     CrossRef
  • Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade
    Jiahui Xi, Yonghong Li, Hui Zhang, Zhongtian Bai
    International Journal of Cancer.2023; 152(6): 1069.     CrossRef
  • Controlling Intestinal Infections and Digestive Disorders Using Probiotics
    Sanjeev Kumar, Md Faruque Ahmad, Priyakshi Nath, Rubina Roy, Rudrarup Bhattacharjee, Eman Shama, Indira Gahatraj, Manisha Sehrawat, Vaishali Dasriya, Harmeet Singh Dhillon, Monica Puniya, Mrinal Samtiya, Tejpal Dhewa, Rotimi E. Aluko, Gulab D. Khedkar, An
    Journal of Medicinal Food.2023; 26(10): 705.     CrossRef
  • Lactiplantibacillus plantarum ZJ316 Reduces Helicobacter pylori Adhesion and Inflammation by Inhibiting the Expression of Adhesin and Urease Genes
    Shiying Wu, Yang Xu, Ziqi Chen, Yongqiang Chen, Fangtong Wei, Chenlan Xia, Qingqing Zhou, Ping Li, Qing Gu
    Molecular Nutrition & Food Research.2023;[Epub]     CrossRef
  • Upregulation of antimicrobial peptide expression in slc26a3-/- mice with colonic dysbiosis and barrier defect
    Archana Kini, Bei Zhao, Marijana Basic, Urmi Roy, Aida Iljazovic, Ivan Odak, Zhenghao Ye, Brigitte Riederer, Gabriella Di Stefano, Dorothee Römermann, Christian Koenecke, André Bleich, Till Strowig, Ursula Seidler
    Gut Microbes.2022;[Epub]     CrossRef
  • Potential utility of nano-based treatment approaches to address the risk ofHelicobacter pylori
    Sohaib Khan, Mohamed Sharaf, Ishfaq Ahmed, Tehsin Ullah Khan, Samah Shabana, Muhammad Arif, Syed Shabi Ul Hassan Kazmi, Chenguang Liu
    Expert Review of Anti-infective Therapy.2022; 20(3): 407.     CrossRef
  • Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next?
    Seyedeh Zahra Bakhti, Saeid Latifi-Navid
    BMC Microbiology.2021;[Epub]     CrossRef
  • Eradication therapy of helicobacteriosis with probiotics, problems, and prospects
    E. I. Ermolenko, A. S. Molostova, N. S. Gladyshev
    Experimental and Clinical Gastroenterology.2021; (9): 60.     CrossRef
  • Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study
    Tomoki Takahashi, Hirofumi Fukudome, Hiroshi M. Ueno, Shiomi Watanabe-Matsuhashi, Taku Nakano, Toshiya Kobayashi, Kayoko Ishimaru, Atsuhito Nakao
    Nutrients.2021; 13(7): 2285.     CrossRef
  • Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation
    Abdul Raheem, Lin Liang, Guangzhi Zhang, Shangjin Cui
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections
    Masoud Keikha, Mohsen Karbalaei
    BMC Gastroenterology.2021;[Epub]     CrossRef
  • FERMENTE GIDALARIN İNSAN SAĞLIĞI ÜZERİNDEKİ ETKİLERİ
    Büşra AKDENİZ OKTAY, Z. Yeşim ÖZBAŞ
    Gıda.2020; 45(6): 1215.     CrossRef
  • The Mechanism of CagA and VacA in Gastric Cancer under the Tumor Microenvironment and Vitro Factors
    Zhu Jiang Dai, Hui Wen Fang, Jing Qiu Zhang, Qi Wu, Jia Ming Xu, Han Jian Zhu, Jin Gao, Zhuang Zhuang Liu, Dong Tang, Dao Rong Wang
    Journal of Nutritional Oncology.2020; 5(2): 59.     CrossRef
  • Helicobacter pylori Eradication in Patients Undergoing Gastrectomy: Diagnosis and Therapy
    Youn I Choi, Jun-Won Chung
    The Korean Journal of Helicobacter and Upper Gastrointestinal Research.2020; 20(3): 204.     CrossRef
  • Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues
    Xiao-Hui Chen, Ang Wang, Ai-Ning Chu, Yue-Hua Gong, Yuan Yuan
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Are probiotics useful for therapy of Helicobacter pylori diseases?
    Majid Eslami, Bahman Yousefi, Parviz Kokhaei, Ali Jazayeri Moghadas, Bizhan Sadighi Moghadam, Vahid Arabkari, Zohreh Niazi
    Comparative Immunology, Microbiology and Infectious Diseases.2019; 64: 99.     CrossRef
  • Effects of Probiotic Supplementation on TGF-β1, TGF-β2, and IgA Levels in the Milk of Japanese Women: An Open-Label Pilot Study
    Tomoki Takahashi, Hirofumi Fukudome, Hiroshi M. Ueno, Shiomi Watanabe-Matsuhashi, Taku Nakano, Toshiya Kobayashi, Kayoko Ishimaru, Atsuhito Nakao
    Frontiers in Nutrition.2019;[Epub]     CrossRef
  • Association of TNF-α but not IL-1β levels with the presence of Helicobacter pylori infection increased the risk of peptic ulcer development
    Mehdi Tourani, Maryam Habibzadeh, Ahmad Karkhah, Javad Shokri-Shirvani, Ladan Barari, Hamid Reza Nouri
    Cytokine.2018; 110: 232.     CrossRef
  • Probiotics in Helicobacter pylori eradication therapy: Systematic review and network meta-analysis
    Fan Wang, Juerong Feng, Pengfei Chen, Xiaoping Liu, Minxing Ma, Rui Zhou, Ying Chang, Jing Liu, Jin Li, Qiu Zhao
    Clinics and Research in Hepatology and Gastroenterology.2017; 41(4): 466.     CrossRef
  • Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells
    Shiro Takeda, Keiji Igoshi, Chuluunbat Tsend-Ayush, Tsendesuren Oyunsuren, Ryoichi Sakata, Yasuhiro Koga, Yuo Arima, Masahiko Takeshita
    Human Cell.2017; 30(4): 258.     CrossRef
  • Update on prevention and treatment of Helicobacter pylori infection
    Zhao-Chun Chi
    World Chinese Journal of Digestology.2016; 24(16): 2454.     CrossRef
  • Helicobacter pylori outer membrane protein, HomC, shows geographic dependent polymorphism that is influenced by the Bab family
    Aeryun Kim, Stephanie L. Servetas, Jieun Kang, Jinmoon Kim, Sungil Jang, Yun Hui Choi, Hanfu Su, Yeong-Eui Jeon, Youngmin A. Hong, Yun-Jung Yoo, D. Scott Merrell, Jeong-Heon Cha
    Journal of Microbiology.2016; 54(12): 846.     CrossRef
  • Efficacy of probiotics as an adjuvant agent in eradication of Helicobacter pylori infection and associated side effects
    Y. Dasteh Goli, R. Moniri
    Beneficial Microbes.2016; 7(4): 519.     CrossRef
  • Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health
    Soon-Kyeong Kwon, Min-Jung Kwak, Jae-Gu Seo, Myung Jun Chung, Jihyun F. Kim
    Journal of Biotechnology.2015; 214: 169.     CrossRef
  • Antimicrobial Activity of Acidified Sodium Chlorite and Cell Free Culture Supernatent of Lactic Acid Bacteria against <i>Salmonella</i> Typhimurium
    Sangeeta Singh, Ajit Singh Yadav, Priyanka Bharti
    Journal of Biosciences and Medicines.2015; 03(11): 128.     CrossRef
  • Protective role of gut commensal microbes against intestinal infections
    My Young Yoon, Keehoon Lee, Sang Sun Yoon
    Journal of Microbiology.2014; 52(12): 983.     CrossRef
Research Support, Non-U.S. Gov'ts
Screening of Mutant Strain Streptomyces mediolani sp. AC37 for (-)-8-O-Methyltetrangomycin Production Enhancement
Jakeline Trejos Jiménez , Maria Sturdíková , Vlasta Brezová , Emil Svajdlenka , Marta Novotová
J. Microbiol. 2012;50(6):1014-1023.   Published online December 30, 2012
DOI: https://doi.org/10.1007/s12275-012-2025-5
  • 31 View
  • 0 Download
  • 5 Scopus
AbstractAbstract
Streptomyces mediolani sp. AC37 was isolated from the root system of higher plant Taxus baccata and produced metabolite identified as (-)-8-O-methyltetrangomycin according to LC/MS/MS analysis. In our screening program for improvements of bioactive secondary metabolites from plant associate streptomycetes, mutation was used as a tool for the induction of genetic variations for selection of higher (-)-8-O-methyltetrangomycin producers of isolates. S. mediolani sp. AC37 was treated with UV irradiation and chemical mutagenic treatment (N-nitroso-N-methyl-urea). The radical scavenging and antioxidant capacity of (-)-8-O-methyltetrangomycin and extracts isolated from mutants were tested using EPR spin trapping technique and ABTS􀁹+ assay. Comparison of electron microscopic images of Streptomyces sp. AC37 and mutant strains of Streptomyces sp. AC37 revealed substantial differences in morphology and ultrastructure.
Protection Against Helicobacter pylori Infection by a Trivalent Fusion Vaccine Based on a Fragment of Urease B-UreB414
Li Wang Wang , Xiao-Fei Liu , Shi Yun , Xiao-Peng Yuan , Xu-Hu Mao , Chao Wu , Wei-Jun Zhang , Kai-Yun Liu , Gang Guo , Dong-Shui Lu , Wen-De Tong , Ai-Dong Wen , Quan-Ming Zou
J. Microbiol. 2010;48(2):223-228.   Published online May 1, 2010
DOI: https://doi.org/10.1007/s12275-009-0233-4
  • 39 View
  • 0 Download
  • 14 Scopus
AbstractAbstract
A multivalent fusion vaccine is a promising option for protection against Helicobacter pylori infection. In this study, UreB414 was identified as an antigenic fragment of urease B subunit (UreB) and it induced an antibody inhibiting urease activity. Immunization with UreB414 partially protected mice from H. pylori infection. Furthermore, a trivalent fusion vaccine was constructed by genetically linking heat shock protein A (HspA), H. pylori adhesin A (HpaA), and UreB414, resulting in recombinant HspA-HpaA-UreB414 (rHHU). Its protective effect against H. pylori infection was tested in BALB/c mice. Oral administration of rHHU significantly protected mice from H. pylori infection, which was associated with H. pylori-specific antibody production and Th1/Th2-type immune responses. The results show that a trivalent fusion vaccine efficiently combats H. pylori infection, and that an antigenic fragment of the protein can be used instead of the whole protein to construct a multivalent vaccine.
Phylogeny of a Novel “Helicobacter heilmannii” Organism from a Japanese Patient with Chronic Gastritis Based on DNA Sequence Analysis of 16S rRNA and Urease Genes
Takehisa Matsumoto , Masatomo Kawakubo , Mayumi Shiohara , Toshiko Kumagai , Eiko Hidaka , Kazuyoshi Yamauchi , Kozue Oana , Kenji Matsuzawa , Hiroyoshi Ota , Yoshiyuki Kawakami
J. Microbiol. 2009;47(2):201-207.   Published online May 2, 2009
DOI: https://doi.org/10.1007/s12275-008-0313-x
  • 39 View
  • 0 Download
  • 15 Scopus
AbstractAbstract
“Helicobacter heilmannii” is an uncultivable spiral-shaped bacterium inhabiting the human gastric mucosa. It is larger and more tightly-coiled than H. pylori. We encountered a patient with chronic gastritis infected a “H. heilmannii”-like organism (HHLO), designated as SH6. Gastric mucosa derived from the patient was orally ingested by specific pathogen free mice. Colonization of the mice by SH6 was confirmed by electron microscopy of gastric tissue specimens. In an attempt to characterize SH6, 16S rRNA and urease genes were sequenced. The 16S rRNA gene sequence was most similar (99.4%; 1,437/1,445 bp) to HHLO C4E from a cheetah. However, the urease gene sequence displayed low similarity (81.7%; 1,240/1,516 bp) with HHLO C4E. Taxonomic analysis disclosed that SH6 represents a novel strain and should constitute a novel taxon in the phylogenetic trees, being discriminated from any other taxon, with the ability of infecting human gastric mucosa.
Rapid One Step Detection of Pathogenic Bacteria in Urine with Sexually Transmitted Disease (STD) and Prostatitis Patient by Multiplex PCR Assay (mPCR)
Sang Rok Lee , Ji Min Chung , Young Gon Kim
J. Microbiol. 2007;45(5):453-459.
DOI: https://doi.org/2590 [pii]
  • 43 View
  • 0 Download
AbstractAbstract
We developed a multiplex PCR (mPCR) assay to simultaneously detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Ureaplasma urealyticum, Corynebacterium spp. and seudomona aeruginosa. This method employs a single tube and multiple specific primers which yield 200, 281, 346, 423, 542, and 1,427 bp PCR products, respectively. All the PCR products were easily detected by agarose gel electrophoresis and were sequenced to confirm the specificity of the reactions. To test this method, DNA extracted from urine samples was collected from 96 sexually transmitted disease or prostatitis patients at a local hospital clinical center, and were subjected to the mPCR assay. The resulting amplicons were cloned and sequenced to exactly match the sequences of known pathogenic isolates. N. gonorrhoeae and Corynebacterium spp. were the most frequently observed pathogens found in the STDs and prostatitis patients, respectively. Unexpectedly, P. aeruginosa was also detected in some of the STD and prostatitis samples. More than one pathogen species was found in 10% and 80.7% of STD and prostatitis samples, respectively, indicating that STD and prostatitis patients may have other undiagnosed and associates. The sensitivity of the assay was determined by sing purified DNA from six pathogenic laboratory strains and revealed that this technique could detect pathogenic DNA at concentrations ranging from 0.018 to 1.899 pg/μl. Moreover, the specificities of this assay were found to be highly efficient. Thus, this mPCR assay may be useful for the rapid diagnosis of causative infectious STDs and prostatitis. useful for the infectious STDs and prostatitis.
Characteristics of Urease from Vibrio parahaemolyticus Possessing tdh and trh Genes Isolated in Korea
Young Hee Kim , Jong Sook Kim
J. Microbiol. 2001;39(4):279-285.
  • 42 View
  • 0 Download
AbstractAbstract
Vibrio parahaemolyticus is a halophilic bacterium associated with seafood gastroenteritis. An unusual strain of Kanagawa-positive urease producing Vibrio parahaemolyticus O1 : K1 was isolated from the environment and identified. A polymerase chain reaction assay revealed that this strain harbored both the tdh and trh genes. The urease from this strain was studied. Maximum urease production was induced in LB medium containing 0.2% urea, 0.5% glucose, 2% NaCl and pH 5.5 with 6 h of cultivation at 37 C under aeration. Purification of urease was achieved by the process of whole cell lysate, 65% ammonium sulphate precipitation, DEAE-cellulose ion exchange column chromatography, Sepharose CL-6B gel filtration and oxirane activated Sepharose 6B-urea affinity chromatography with 203 fold purification and 2.2% yield. Analysis of the purified enzyme by SDS-PAGE demonstrated the presence of the subunits with a molecular weight of 85 kDa, 59 kDa, 41 kDa and the molecular weight for the native enzyme by nondenaturing PAGE and gel filtration chromatography was 255 kDa. The purified urease was stable at pH 7.5 and the optimal pH in HEPES buffer was 8.0. The enzyme was stable at 60 C for 2 h with a residual activity of 32%. The addition of 10 uM of NiCl_2 maintained stability for 30 min. The Km value of the purified enzyme was 35.6 mM in urea substrate. The TD_50 (median toxic dose) of the purified urease was 2.5 ug/ml on human leukemia cells.

Journal of Microbiology : Journal of Microbiology
TOP