Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "transcription factor network"
Filter
Filter
Article category
Keywords
Publication year
Review
MINIREVIEW] Transcriptional control of sexual development in Cryptococcus neoformans
Matthew E. Mead , Christina M. Hull
J. Microbiol. 2016;54(5):339-346.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-6080-1
  • 48 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.

Citations

Citations to this article as recorded by  
  • Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex
    Minseek Kim, Minji Oh, Ji-Hoon Im, Eun-Ji Lee, Hojin Ryu, Hyeon-Su Ro, Youn-Lee Oh
    Journal of Fungi.2024; 10(12): 866.     CrossRef
  • Current Perspectives on Uniparental Mitochondrial Inheritance in Cryptococcus neoformans
    Amber R. Matha, Xiaorong Lin
    Pathogens.2020; 9(9): 743.     CrossRef
  • Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes
    Sinil Kim, Byeongsuk Ha, Minseek Kim, Hyeon-Su Ro
    Genes.2020; 11(5): 506.     CrossRef
  • The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi
    Sheng Sun, Marco A. Coelho, Márcia David-Palma, Shelby J. Priest, Joseph Heitman
    Annual Review of Genetics.2019; 53(1): 417.     CrossRef
  • Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar
    Poppy C. S. Sephton-Clark, Jose F. Muñoz, Elizabeth R. Ballou, Christina A. Cuomo, Kerstin Voelz, Aaron P. Mitchell
    mSphere.2018;[Epub]     CrossRef
  • Activation of the Mating Pheromone Response Pathway ofLentinula edodesby Synthetic Pheromones
    Byeongsuk Ha, Sinil Kim, Minseek Kim, Hyeon-Su Ro
    Mycobiology.2018; 46(4): 407.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP