Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "sewage"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Acinetobacter chinensis, a novel Acinetobacter species, carrying blaNDM-1, recovered from hospital sewage
Yiyi Hu , Yu Feng , Jiayuan Qin , Xiaoxia Zhang , Zhiyong Zong
J. Microbiol. 2019;57(5):350-355.   Published online February 26, 2019
DOI: https://doi.org/10.1007/s12275-019-8485-0
  • 57 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Two strains of the genus Acinetobacter, named WCHAc- 010005 and WCHAc010052, were isolated from hospital sewage at West China Hospital in Chengdu, China. The two strains were found to be resistant to carbapenems due to the presence of carbapenemase gene blaNDM-1. Based on the comparative analysis of the rpoB sequence, the two strains formed a strongly supported and internally coherent cluster (intracluster identity of 98.7%), which was clearly separated from all known Acinetobacter species (≤ 83.4%). The two strains also formed a tight and distinct cluster based on the genuswide comparison of whole-cell mass fingerprints generated by MALDI-TOF mass spectrometry. In addition, the combination of their ability to assimilate malonate but not benzoate, and the inability to grow at 37°C could distinguish the two strains from all known Acinetobacter species. The two strains were subjected to whole genome sequencing using both short-read Illumina HiSeq2500 platform and the longread MinION sequencer. The average nucleotide identity and in silico DNA-DNA hybridization value between the genomes of WCHAc010005 and WCHAc010052 was 96.69% and 74.3% respectively, whereas those between the two genomes and the known Acinetobacter species were < 80% and < 30%, respectively. Therefore, the two strains represent a novel species of the genus Acinetobacter, for which the name Acinetobacter chinensis sp. nov. is proposed, and the type strain is WCHAc- 010005T (= GDMCC 1.1232T = KCTC 62813T).

Citations

Citations to this article as recorded by  
  • Evolution of RND efflux pumps in the development of a successful pathogen
    Varsha Naidu, Amelia Bartczak, Anthony J. Brzoska, Peter Lewis, Bart A. Eijkelkamp, Ian T. Paulsen, Liam D.H. Elbourne, Karl A. Hassan
    Drug Resistance Updates.2023; 66: 100911.     CrossRef
  • NDM-1 and OXA-48-Like Carbapenemases (OXA-48, OXA-181 and OXA-252) Co-Producing Shewanella xiamenensis from Hospital Wastewater, China
    Yicheng Wen, Xiaofang Xie, Ping Xu, Chengcheng Yang, Zhichen Zhu, Jie Zhu, Jingnan Lv, Haifang Zhang, Liang Chen, Hong Du
    Infection and Drug Resistance.2022; Volume 15: 6927.     CrossRef
  • Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review
    Zineb Cherak, Lotfi Loucif, Abdelhamid Moussi, Jean-Marc Rolain
    Journal of Global Antimicrobial Resistance.2021; 25: 287.     CrossRef
  • Whole-Genomic Analysis of NDM-5-Producing Enterobacteriaceae Recovered from an Urban River in China
    Ying Li, Min Tang, Xiaoyi Dai, Yingshun Zhou, Zhikun Zhang, Yichuan Qiu, Chengwen Li, Luhua Zhang
    Infection and Drug Resistance.2021; Volume 14: 4427.     CrossRef
  • β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review
    Rajeev Ranjan, Shashidhar Thatikonda
    Current Microbiology.2021; 78(10): 3634.     CrossRef
  • Whole-Genome Analysis of Two Copies of blaNDM-1 Gene Carrying Acinetobacter johnsonii Strain Acsw19 Isolated from Sichuan, China


    Lingtong Tang, Wei Shen, Zhikun Zhang, Jingping Zhang, Guangxi Wang, Li Xiang, Junping She, Xiaoyan Hu, Guoyuan Zou, Baoli Zhu, Yingshun Zhou
    Infection and Drug Resistance.2020; Volume 13: 855.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(9): 2627.     CrossRef
Corynebacterium defluvii sp. nov., isolated from Sewage
Qiu-Li Yu , Zheng-Fei Yan , Feng-Hua Tian , Chuan-Wen Jia , Chang-Tian Li
J. Microbiol. 2017;55(6):435-439.   Published online April 20, 2017
DOI: https://doi.org/10.1007/s12275-017-6592-3
  • 62 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
A Gram-positive, aerobic, non-motile, rod-shapeds, cata-lase-positive, and oxidase-negative strain, designated Y49T, was isolated from sewage collected from Jilin Agricultural University, China. It grew at 20–40°C (optimum at 30°C), at pH 6.0–8.0 (optimum at 7.0) and at 0–1.0% sodium chlo-ride (optimum at 0%). The major isoprenoid quinone was menaquinone-8 (MK-8) and the polar lipids were diphos-phatidylglycerol, phosphatidylglycerol, phosphatidylmethy-lethanolamine, four unidentified lipids, and two unidenti-fied aminolipids. The peptidoglycan was meso-diaminopi-melic acid. The cell-wall sugars were galactose, arabinose, and glucose. The fatty acids were C9:0, C16:0, C16:1 ω9c, C17:1 ω9c, C18:3 ω6c (6,9,12), C18:1 ω9c, and C18:0. The DNA G+C content was 51.4 mol%. Based on the 16S rRNA gene se-quence analysis, the nearest phylogenetic neighbors of strain Y49T were Corynebacterium efficiens DSM 44549T (97.5%), Corynebacterium callunae DSM 20147T (97.2%), Coryne-bacterium deserti GIMN 1.010T (96.8%), Corynebacterium glutamicum ATCC 13032T (96.4%), and other species belong-ing to this genus (92.3–95.4%). The DNA-DNA relatedness value between strain Y49T and C. efficiens DSM 44549T, C. callunae DSM 20147T, C. deserti GIMN1.010T, and C. gluta-micum ATCC 13032T was 25.5±2.0%, 21.1±1.0%, 16.5±0.5%, and 13.5±0.9%, respectively. Based on the phylogenetic an-alysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain Y49T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium defluvii sp nov. is proposed. The type strain is Y49T (= KCTC 39731T =CGMCC 1.15506T).

Citations

Citations to this article as recorded by  
  • Corynebacterium kalidii sp. nov, an endophyte from a shoot of the halophyte Kalidium cuspidatum
    Jia-Yi Feng, Lian Xu, Shu-Kun Tang, Ji-Quan Sun
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Corynebacterium zhongnanshanii sp. nov. isolated from trachea of Marmota himalayana, Corynebacterium lujinxingii sp. nov. and Corynebacterium wankanglinii sp. nov. from human faeces
    Gui Zhang, Jing Yang, Xin-He Lai, Dong Jin, Shan Lu, Zhihong Ren, Tian Qin, Ji Pu, Yajun Ge, Yanpeng Cheng, Caixin Yang, Xianglian Lv, Yifan Jiao, Ying Huang, Jianguo Xu
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis
    Yoshitaka Nakayama
    Microorganisms.2021; 9(1): 201.     CrossRef
  • Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov
    Melody Dazas, Edgar Badell, Annick Carmi-Leroy, Alexis Criscuolo, Sylvain Brisse
    International Journal of Systematic and Evolutionary Microbiology.2018; 68(12): 3826.     CrossRef
Research Support, Non-U.S. Gov't
Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant
Young-Woon Lim , Soon-Ae Lee , Seung Bum Kim , Hae-Young Yong , Seon-Hee Yeon , Yong-Keun Park , Dong-Woo Jeong , Jin-Sook Park
J. Microbiol. 2005;43(5):383-390.
DOI: https://doi.org/2286 [pii]
  • 42 View
  • 0 Download
AbstractAbstract
The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.

Journal of Microbiology : Journal of Microbiology
TOP