Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "septin"
Filter
Filter
Article category
Keywords
Publication year
Review
REVIEW] Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans
Lois M. Douglas , James B. Konopka
J. Microbiol. 2016;54(3):178-191.   Published online February 27, 2016
DOI: https://doi.org/10.1007/s12275-016-5621-y
  • 64 View
  • 0 Download
  • 35 Crossref
AbstractAbstract
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

Citations

Citations to this article as recorded by  
  • Zingerone effect against Candida albicans growth and biofilm production
    Sayali Chougule, Sargun Basrani, Tanjila Gavandi, Shivani Patil, Shivanand Yankanchi, Ashwini Jadhav, Sankunny Mohan Karuppayil
    Journal of Medical Mycology.2025; 35(1): 101527.     CrossRef
  • Functional analysis of Candida albicans Cdr1 through homologous and heterologous expression studies
    Mengcun Zhao, Erwin Lamping, Kyoko Niimi, Masakazu Niimi, Richard D Cannon
    FEMS Yeast Research.2025;[Epub]     CrossRef
  • Regulation of yeast polarized exocytosis by phosphoinositide lipids
    Matthew W. Volpiana, Aleksa Nenadic, Christopher T. Beh
    Cellular and Molecular Life Sciences.2024;[Epub]     CrossRef
  • Sur7 mediates a novel pathway for PI4,5P2 regulation in C. albicans that promotes stress resistance and cell wall morphogenesis
    Carla E. Lanze, James B. Konopka, Amy Susanne Gladfelter
    Molecular Biology of the Cell.2024;[Epub]     CrossRef
  • Anti-Candida activity of flavonoids - an overview
    Savu Mihaela, Marius Stefan
    Journal of Experimental and Molecular Biology.2024; 25(1): 67.     CrossRef
  • Emerging Roles of Exocyst Complex in Fungi: A Review
    Qussai Zuriegat, Yakubu Saddeeq Abubakar, Zonghua Wang, Meilian Chen, Jun Zhang
    Journal of Fungi.2024; 10(9): 614.     CrossRef
  • Candida albicans pathways that protect against organic peroxides and lipid peroxidation
    Kara A. Swenson, Kyunghun Min, James B. Konopka, Aaron P. Mitchell
    PLOS Genetics.2024; 20(10): e1011455.     CrossRef
  • A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi
    Zinnat Shahina, Tanya E. S. Dahms
    Molecules.2024; 29(23): 5536.     CrossRef
  • Hinokitiol inhibits Aspergillus fumigatus by interfering with the cell membrane and cell wall
    Fanyue Meng, Xing Liu, Cui Li, Xudong Peng, Qian Wang, Qiang Xu, Jialin Sui, Guiqiu Zhao, Jing Lin
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Candida albicans resistance to hypochlorous acid
    Lois M. Douglas, Kyunghun Min, James B. Konopka, J. Andrew Alspaugh
    mBio.2023;[Epub]     CrossRef
  • Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19,20‑epoxycytochalasin Q in Candida albicans
    Kwanrutai Watchaputi, L. A. Channa Bhathiya Jayasekara, Khanok Ratanakhanokchai, Nitnipa Soontorngun
    Scientific Reports.2023;[Epub]     CrossRef
  • Unique roles of aminophospholipid translocase Drs2p in governing efflux pump activity, ergosterol level, virulence traits, and host–pathogen interaction in Candida albicans
    Shweta Singh, Sandeep Hans, Aijaz Ahmad, Zeeshan Fatima, Saif Hameed
    International Microbiology.2022; 25(4): 769.     CrossRef
  • Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans
    Zinnat Shahina, Raymond Al Homsi, Jared D. W. Price, Malcolm Whiteway, Taranum Sultana, Tanya E. S. Dahms, Roy Aziz Khalaf
    PLOS ONE.2022; 17(11): e0277097.     CrossRef
  • Cinnamon Leaf and Clove Essential Oils Are Potent Inhibitors of Candida albicans Virulence Traits
    Zinnat Shahina, Ali Molaeitabari, Taranum Sultana, Tanya Elizabeth Susan Dahms
    Microorganisms.2022; 10(10): 1989.     CrossRef
  • Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral
    Zinnat Shahina, Easter Ndlovu, Omkaar Persaud, Taranum Sultana, Tanya E. S. Dahms, Damian J. Krysan
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • In Vitro and In Silico Analysis of Ascorbic Acid Towards Lanosterol 14-α-Demethylase Enzyme of Fluconazole-Resistant Candida albicans
    Arumugam Ganeshkumar, Suvaiyarasan Suvaithenamudhan, Rajendran Rajaram
    Current Microbiology.2021; 78(1): 292.     CrossRef
  • The Antibacterial Synthetic Flavonoid BrCl-Flav Exhibits Important Anti-Candida Activity by Damaging Cell Membrane Integrity
    Cornelia Babii, Mihaela Savu, Iuliana Motrescu, Lucian Mihail Birsa, Laura Gabriela Sarbu, Marius Stefan
    Pharmaceuticals.2021; 14(11): 1130.     CrossRef
  • The Sur7 cytoplasmic C terminus regulates morphogenesis and stress responses in Candida albicans
    Carla E. Lanze, Sai Zhou, James B. Konopka
    Molecular Microbiology.2021; 116(4): 1201.     CrossRef
  • Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans
    Jenna E. Foderaro, James B. Konopka, Mairi C. Noverr
    Infection and Immunity.2021;[Epub]     CrossRef
  • Modulation of Immune Responses by Particle Size and Shape
    Maksim V. Baranov, Manoj Kumar, Stefano Sacanna, Shashi Thutupalli, Geert van den Bogaart
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • derived 5,6,8-trihydroxy-7,4′ dimethoxy flavone inhibits ergosterol synthesis and the production of hyphae and biofilm in
    Mrudula Patel, Vartika Srivastava, Aijaz Ahmad
    Journal of Ethnopharmacology.2020; 259: 112965.     CrossRef
  • The Role of Secretory Pathways in Candida albicans Pathogenesis
    Christiane Rollenhagen, Sahil Mamtani, Dakota Ma, Reva Dixit, Susan Eszterhas, Samuel A. Lee
    Journal of Fungi.2020; 6(1): 26.     CrossRef
  • Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits
    Cristina Nicoleta Ciurea, Irina-Bianca Kosovski, Anca Delia Mare, Felicia Toma, Ionela Anca Pintea-Simon, Adrian Man
    Microorganisms.2020; 8(6): 857.     CrossRef
  • Plasma Membrane MCC/Eisosome Domains Promote Stress Resistance in Fungi
    Carla E. Lanze, Rafael M. Gandra, Jenna E. Foderaro, Kara A. Swenson, Lois M. Douglas, James B. Konopka
    Microbiology and Molecular Biology Reviews.2020;[Epub]     CrossRef
  • Si vis pacem para bellum: A prospective in silico analysis of miRNA-based plant defenses against fungal infections
    André F. Gabriel, Marina C. Costa, Francisco J. Enguita, Ana Lúcia Leitão
    Plant Science.2019; 288: 110241.     CrossRef
  • Advances in understanding of the oxysterol-binding protein homologous in yeast and filamentous fungi
    Shangkun Qiu, Bin Zeng
    International Microbiology.2019; 22(2): 169.     CrossRef
  • The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses?
    Tomas Di Mambro, Ilaria Guerriero, Luigi Aurisicchio, Mauro Magnani, Emanuele Marra
    Frontiers in Pharmacology.2019;[Epub]     CrossRef
  • Plasma membrane architecture protects Candida albicans from killing by copper
    Lois M. Douglas, James B. Konopka, Valeria C. Culotta
    PLOS Genetics.2019; 15(1): e1007911.     CrossRef
  • Boric Acid and Commercial Organoboron Products as Inhibitors of Drug-Resistant Candida albicans
    Bryan Larsen, Marija Petrovic, Francesco De Seta
    Mycopathologia.2018; 183(2): 349.     CrossRef
  • Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures
    María Claudia Campos, Milena Beltrán, Nancy Fuentes, Gerardo Moreno
    Biomédica.2018; 38(1): 42.     CrossRef
  • Selective BET bromodomain inhibition as an antifungal therapeutic strategy
    Flore Mietton, Elena Ferri, Morgane Champleboux, Ninon Zala, Danièle Maubon, Yingsheng Zhou, Mike Harbut, Didier Spittler, Cécile Garnaud, Marie Courçon, Murielle Chauvel, Christophe d’Enfert, Boris A. Kashemirov, Mitchell Hull, Muriel Cornet, Charles E.
    Nature Communications.2017;[Epub]     CrossRef
  • Calcium Enhances Bile Salt-Dependent Virulence Activation in Vibrio cholerae
    Amanda J. Hay, Menghua Yang, Xiaoyun Xia, Zhi Liu, Justin Hammons, William Fenical, Jun Zhu, Nancy E. Freitag
    Infection and Immunity.2017;[Epub]     CrossRef
  • MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi
    Jenna Foderaro, Lois Douglas, James Konopka
    Journal of Fungi.2017; 3(4): 61.     CrossRef
  • Human fungal pathogens: Why should we learn?
    Jeong-Yoon Kim
    Journal of Microbiology.2016; 54(3): 145.     CrossRef
  • Fungal cell membrane-promising drug target for antifungal therapy
    D.G. Sant, S.G. Tupe, C.V. Ramana, M.V. Deshpande
    Journal of Applied Microbiology.2016; 121(6): 1498.     CrossRef
Research Support, Non-U.S. Gov't
Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis
Sung Chang Nam , Hyeran Sung , Seung Hye Kang , Jin Young Joo , Soo Jae Lee , Yeon Bok Chung , Chong-Kil Lee , Sukgil Song
J. Microbiol. 2007;45(3):227-233.
DOI: https://doi.org/2538 [pii]
  • 41 View
  • 0 Download
AbstractAbstract
In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with hof1Δ. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely delocalization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.

Journal of Microbiology : Journal of Microbiology
TOP