Research Support, Non-U.S. Gov't
- Low-Scale Expression and Purification of an Active Putative Iduronate 2-Sulfate Sulfatase-Like Enzyme from Escherichia coli K12
-
Edwin David Morales-Álvarez , Claudia Marcela Rivera-Hoyos , Angélica María Baena-Moncada , Patricia Landázuri , Raúl A. Poutou-Piñales , Homero Sáenz-Suárez , Luis A. Barrera , Olga Y. Echeverri-Peña
-
J. Microbiol. 2013;51(2):213-221. Published online April 27, 2013
-
DOI: https://doi.org/10.1007/s12275-013-2416-2
-
-
44
View
-
0
Download
-
15
Scopus
-
Abstract
-
The sulfatase family involves a group of enzymes with a large degree of similarity. Until now, sixteen human sulfatases have been identified, most of them found in lysosomes. Human deficiency of sulfatases generates various genetic disorders
characterized by abnormal accumulation of sulfated intermediate compounds. Mucopolysaccharidosis type II is characterized by the deficiency of iduronate 2-sulfate sulfatase (IDS), causing the lysosomal accumulation of heparan and
dermatan sulfates. Currently, there are several cases of genetic diseases treated with enzyme replacement therapy, which have generated a great interest in the development of systems for recombinant protein expression. In this work we expressed the human recombinant IDS-Like enzyme (hrIDS-Like) in Escherichia coli DH5α. The enzyme concentration revealed by ELISA varied from 78.13 to 94.35 ng/ml and the specific activity varied from 34.20 to 25.97 nmol/h/mg. Western blotting
done after affinity chromatography purification showed a single band of approximately 40 kDa, which was recognized by an IgY polyclonal antibody that was developed against the specific peptide of the native protein. Our 100 ml-shake-flask
assays allowed us to improve the enzyme activity seven fold, compared to the E. coli JM109/pUC13-hrIDS-Like system. Additionally, the results obtained in the present study were equal to those obtained with the Pichia pastoris GS1115/
pPIC-9-hrIDS-Like system (3 L bioreactor scale). The system used in this work (E. coli DH5α/pGEX-3X-hrIDS-Like) emerges as a strategy for improving protein expression and purification, aimed at recombinant protein chemical characterization,
future laboratory assays for enzyme replacement therapy, and as new evidence of active putative sulfatase production in E. coli.
Journal Article
- Biologically Active and C-Amidated HinnavinII-38-Asn Produced from a Trx Fusion Construct in Escherichia coli
-
Chang Soo Kang , Seung-Yeol Son , In Seok Bang
-
J. Microbiol. 2008;46(6):656-661. Published online December 24, 2008
-
DOI: https://doi.org/10.1007/s12275-008-0214-z
-
-
42
View
-
0
Download
-
9
Scopus
-
Abstract
-
The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15~20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.