Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
7 "peptides"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
Jaejin Lee , Eunkyoung Shin , Jaeyeong Park , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(12):1133-1141.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1518-5
  • 69 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract
RraA, a protein regulator of RNase E activity, plays a unique role in modulating the mRNA abundance in Escherichia coli. The marine pathogenic bacterium Vibrio vulnificus also possesses homologs of RNase E (VvRNase E) and RraA (VvRraA1 and VvRraA2). However, their physiological roles have not yet been investigated. In this study, we demonstrated that VvRraA1 expression levels affect the pathogenicity of V. vulnificus. Compared to the wild-type strain, the VvrraA1-deleted strain (ΔVvrraA1) showed decreased motility, invasiveness, biofilm formation ability as well as virulence in mice; these phenotypic changes of ΔVvrraA1 were restored by the exogenous expression of VvrraA1. Transcriptomic analysis indicated that VvRraA1 expression levels affect the abundance of a large number of mRNA species. Among them, the halflives of mRNA species encoding virulence factors (e.g., smcR and htpG) that have been previously shown to affect VvrraA1 expression-dependent phenotypes were positively correlated with VvrraA1 expression levels. These findings suggest that VvRraA1 modulates the pathogenicity of V. vulnificus by regulating the abundance of a subset of mRNA species.

Citations

Citations to this article as recorded by  
  • Identification of the global regulatory roles of RraA via the integrative transcriptome and proteome in Vibrio alginolyticus
    Huizhen Chen, Qian Gao, Bing Liu, Ying Zhang, Jianxiang Fang, Songbiao Wang, Youqi Chen, Chang Chen, Nicolas E. Buchler
    mSphere.2024;[Epub]     CrossRef
  • Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant
    Seungmok Han, Ji-Won Byun, Minho Lee
    Journal of Microbiology.2024; 62(1): 33.     CrossRef
  • Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach
    Amy Marie Campbell, Chris Hauton, Ronny van Aerle, Jaime Martinez-Urtaza
    JMIR Bioinformatics and Biotechnology.2024; 5: e62747.     CrossRef
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Jeesun Chun , Byeonghak Na , Dae-Hyuk Kim
J. Microbiol. 2020;58(12):1046-1053.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0380-1
  • 55 View
  • 0 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family “Fusagraviridae”, with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1- NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pathogen, but this enhanced antifungal activity appeared to be species-specific.

Citations

Citations to this article as recorded by  
  • Co-infection with two novel mycoviruses affects the biocontrol activity of Trichoderma polysporum
    Jeesun Chun, Hae-Ryeong Yoon, Sei-Jin Lee, Dae-Hyuk Kim
    Biological Control.2024; 188: 105440.     CrossRef
  • An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate
    Chenchen Liu, Xiliang Jiang, Zhaoyan Tan, Rongqun Wang, Qiaoxia Shang, Hongrui Li, Shujin Xu, Miguel A. Aranda, Beilei Wu, Lea Atanasova
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae
    Siwei Li, Zhihao Ma, Xinyi Zhang, Yibo Cai, Chenggui Han, Xuehong Wu
    Journal of Fungi.2023; 10(1): 30.     CrossRef
  • Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture
    Miriam Schalamun, Monika Schmoll
    Frontiers in Fungal Biology.2022;[Epub]     CrossRef
  • A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles
    Subha Das, Sakae Hisano, Ana Eusebio-Cope, Hideki Kondo, Nobuhiro Suzuki
    Viruses.2022; 14(8): 1722.     CrossRef
  • Molecular characteristics of a novel hypovirus from Trichoderma harzianum
    Jeesun Chun, Kum-Kang So, Yo-Han Ko, Dae-Hyuk Kim
    Archives of Virology.2022; 167(1): 233.     CrossRef
  • Sustainable Management of Medicago sativa for Future Climates: Insect Pests, Endophytes and Multitrophic Interactions in a Complex Environment
    Mark R. McNeill, Xiongbing Tu, Eric Altermann, Wu Beilei, Shengjing Shi
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host
    Carolina Cornejo, Sakae Hisano, Helena Bragança, Nobuhiro Suzuki, Daniel Rigling
    Journal of Fungi.2021; 7(10): 861.     CrossRef
Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1
Mostafa N. Taha , Amal E. Saafan , A. Ahmedy , Eman El Gebaly , Ahmed S. Khairalla
J. Microbiol. 2019;57(7):618-625.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8548-2
  • 50 View
  • 0 Download
  • 18 Web of Science
  • 15 Crossref
AbstractAbstract
Quorum sensing (QS) regulates virulence factor expression in Pseudomonas aeruginosa. Inhibiting the QS-controlled virulence factors without inhibiting the growth of P. aeruginosa is a promising approach for overcoming the widespread resistance of P. aeruginosa. This study was proposed to investigate the effects of two novel synthetic peptides on the biofilm development and virulence factor production of P. aeruginosa. The tested strain was P. aeruginosa PAO1. The results indicated that both of the synthetic peptides (LIVRHK and LIVRRK) inhibited (P < 0.05) the formation of biofilms and the production of virulence factors, including pyocyanin, protease, and rhamnolipids, without inhibiting the growth of PAO1. Additionally, we detected transcriptional changes related to QS and found a significant reduction in the levels of gene expression of lasI, lasR, rhlI, and rhlR. This study demonstrates that LIVRRK and LIVRHK are novel synthetic peptides that can act as potent inhibitors of QS-regulated virulence factors in P. aeruginosa. Moreover, these synthetic peptides have potential applications in the treatment of biofilmrelated diseases. Both peptides may be able to control chronic infections and biofilm-associated problems of P. aeruginosa.

Citations

Citations to this article as recorded by  
  • Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens
    Linda Sukmarini, Akhirta Atikana, Triana Hertiani
    Journal of Natural Medicines.2024; 78(1): 1.     CrossRef
  • A Systematic Hierarchical Virtual Screening Model for RhlR Inhibitors Based on PCA, Pharmacophore, Docking, and Molecular Dynamics
    Jiarui Du, Jiahao Li, Juqi Wen, Jun Liu, Haichuan Xiao, Antian Zhang, Dongdong Yang, Pinghua Sun, Haibo Zhou, Jun Xu
    International Journal of Molecular Sciences.2024; 25(14): 8000.     CrossRef
  • Antimicrobial peptides fight against Pseudomonas aeruginosa at a sub-inhibitory concentration via anti-QS pathway
    Li Li, Jiaxin Li, Xiaodan Yu, Ruipin Cao, Meiling Hong, Zuxian Xu, Jian Ren Lu, Yinglu Wang, Hu Zhu
    Bioorganic Chemistry.2023; 141: 106922.     CrossRef
  • The Role of Quorum Sensing Molecules in Bacterial–Plant Interactions
    Jan Majdura, Urszula Jankiewicz, Agnieszka Gałązka, Sławomir Orzechowski
    Metabolites.2023; 13(1): 114.     CrossRef
  • Peptide LQLY3-1, a novel Vibrio harveyi quorum sensing inhibitor produced by Lactococcus lactis LY3-1
    Yangrui Wang, Mengtong Sun, Xiaoling Cui, Yongyue Gao, Xinran Lv, Jianrong Li, Fengling Bai, Xuepeng Li, Defu Zhang, Kai Zhou
    LWT.2022; 170: 114093.     CrossRef
  • Design and assessment of novel synthetic peptides to inhibit quorum sensing-dependent biofilm formation in Pseudomonas aeruginosa
    Fatemeh Aflakian, Mehrnaz Rad, Gholamreza Hashemitabar, Milad Lagzian, Mohammad Ramezani
    Biofouling.2022; 38(2): 131.     CrossRef
  • Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa
    Zoya Peerzada, Ashish M. Kanhed, Krutika B. Desai
    RSC Advances.2022; 12(24): 15196.     CrossRef
  • Antimicrobial peptides properties beyond growth inhibition and bacterial killing
    Israel Castillo-Juárez, Blanca Esther Blancas-Luciano, Rodolfo García-Contreras, Ana María Fernández-Presas
    PeerJ.2022; 10: e12667.     CrossRef
  • A Bacterial Isolate Capable of Quenching Both Diffusible Signal Factor- and N-Acylhomoserine Lactone-Family Quorum Sensing Signals Shows Much Enhanced Biocontrol Potencies
    Huishan Wang, Qiqi Lin, Lingling Dong, Wenting Wu, Zhibing Liang, Zhangyong Dong, Huijuan Ye, Lisheng Liao, Lian-Hui Zhang
    Journal of Agricultural and Food Chemistry.2022; 70(25): 7716.     CrossRef
  • Algal polysaccharide’s potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms
    Jyoti Vishwakarma, Bhumika Waghela, Berness Falcao, Sirisha L. Vavilala
    Applied Biochemistry and Biotechnology.2022; 194(2): 671.     CrossRef
  • Molecular Characteristics, Antimicrobial Resistance, and Biofilm Formation of Pseudomonas aeruginosa Isolated from Patients with Aural Infections in Shanghai, China
    Feifei Yang, Chunhong Liu, Jian Ji, Wenjun Cao, Baixing Ding, Xiaogang Xu
    Infection and Drug Resistance.2021; Volume 14: 3637.     CrossRef
  • Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities
    Priscila Cardoso, Hugh Glossop, Thomas G. Meikle, Arturo Aburto-Medina, Charlotte E. Conn, Vijayalekshmi Sarojini, Celine Valery
    Biophysical Reviews.2021; 13(1): 35.     CrossRef
  • Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation
    Lihua Chen, Yaru Zou, Asmaa Abbas Kronfl, Yong Wu
    MicrobiologyOpen.2020;[Epub]     CrossRef
  • Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections
    Jiarui Li, Pablo Fernández-Millán, Ester Boix
    Current Topics in Medicinal Chemistry.2020; 20(14): 1238.     CrossRef
  • Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas aeruginosa
    Nazly R. El-sayed, Reham Samir, Lina Jamil M. Abdel-Hafez, Mohammed A. Ramadan
    Antibiotics.2020; 9(9): 526.     CrossRef
The antimicrobial potential of a new derivative of cathelicidin from Bungarus fasciatus against methicillin-resistant Staphylococcus aureus
Mercedeh Tajbakhsh , Abdollah Karimi , Abolghasem Tohidpour , Naser Abbasi , Fatemeh Fallah , Maziar Mohammad Akhavan
J. Microbiol. 2018;56(2):128-137.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7444-5
  • 57 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32–128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.

Citations

Citations to this article as recorded by  
  • Synthetic peptide (DP1) functionalized graphene oxide: A biocompatible nanoformulation with broad-spectrum antibacterial and antibiofilm activity
    Shubhi Joshi, Jatin Chadha, Kusum Harjai, Gaurav Verma, Avneet Saini
    FlatChem.2024; 44: 100626.     CrossRef
  • Cathelicidin-BF regulates the AMPK/SIRT1/NF-κB pathway to ameliorate murine osteoarthritis: In vitro and in vivo studie
    Hao Zhou, Linfang Zou, Hui Ren, Zhenyu Shen, Yuanqu Lin, Haikang Cai, Jingdong Zhang
    International Immunopharmacology.2024; 134: 112201.     CrossRef
  • Flow-Based Fmoc-SPPS Preparation and SAR Study of Cathelicidin-PY Reveals Selective Antimicrobial Activity
    Shama Dissanayake, Junming He, Sung H. Yang, Margaret A. Brimble, Paul W. R. Harris, Alan J. Cameron
    Molecules.2023; 28(4): 1993.     CrossRef
  • Rational Design of RN15m4 Cathelin Domain-Based Peptides from Siamese Crocodile Cathelicidin Improves Antimicrobial Activity
    Nisachon Jangpromma, Monruedee Konkchaiyaphum, Arpaporn Punpad, Sirinthip Sosiangdi, Sakda Daduang, Sompong Klaynongsruang, Anupong Tankrathok
    Applied Biochemistry and Biotechnology.2023; 195(2): 1096.     CrossRef
  • Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms
    Nancy Oguiura, Leonardo Sanches, Priscila V. Duarte, Marcos A. Sulca-López, Maria Terêsa Machini
    Animals.2023; 13(4): 744.     CrossRef
  • Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933–2022)
    Fajar Sofyantoro, Donan Satria Yudha, Kenny Lischer, Tri Rini Nuringtyas, Wahyu Aristyaning Putri, Wisnu Ananta Kusuma, Yekti Asih Purwestri, Respati Tri Swasono
    Animals.2022; 12(16): 2058.     CrossRef
  • Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA)
    Yusang Li, Ruiying Chen, Fushi Wang, Xinjie Cai, Yining Wang
    RSC Advances.2022; 12(11): 6918.     CrossRef
  • Ab initio Designed Antimicrobial Peptides Against Gram-Negative Bacteria
    Shravani S. Bobde, Fahad M. Alsaab, Guangshuan Wang, Monique L. Van Hoek
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances
    Shuaibing Shi, Tengfei Shen, Yongqing Liu, Liangliang Chen, Chen Wang, Chengshui Liao
    Frontiers in Veterinary Science.2021;[Epub]     CrossRef
  • Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs
    Clara Pérez-Peinado, Sira Defaus, David Andreu
    Toxins.2020; 12(4): 255.     CrossRef
  • Identification of the first Crocodylus siamensis cathelicidin gene and RN15 peptide derived from cathelin domain exhibiting antibacterial activity
    Anupong Tankrathok, Arpaporn Punpad, Monrudee Kongchaiyapoom, Sirinthip Sosiangdi, Nisachon Jangpromma, Sakda Daduang, Sompong Klaynongsruang
    Biotechnology and Applied Biochemistry.2019; 66(2): 142.     CrossRef
  • Characterization of the Bioactivity and Mechanism of Bactenecin Derivatives Against Food-Pathogens
    Changbao Sun, Liya Gu, Muhammad Altaf Hussain, Lijun Chen, Li Lin, Haimei Wang, Shiyue Pang, Chenggang Jiang, Zhanmei Jiang, Juncai Hou
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites
    Elias Ferreira Sabiá Júnior, Luis Felipe Santos Menezes, Israel Flor Silva de Araújo, Elisabeth Ferroni Schwartz
    Toxins.2019; 11(10): 563.     CrossRef
  • The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine
    Mohammadreza Nazer, Saber Abbaszadeh, Mohammd Darvishi, Abdolreza Kheirollahi, Somayeh Shahsavari, Mona Moghadasi
    Sudan Journal of Medical Sciences.2019;[Epub]     CrossRef
  • Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities
    Na Dong, Chensi Wang, Xinran Li, Yuming Guo, Xiaoli Li
    International Journal of Molecular Sciences.2019; 20(23): 5904.     CrossRef
  • Sedation with medicinal plants: A review of medicinal plants with sedative properties in Iranian ethnoblotanical documents
    Fariba Bahmani, Hamidreza Kazemeini, Fatemeh Hoseinzadeh-Chahkandak, Tahereh Farkhondeh, mahshid sedaghat
    Plant Biotechnology Persa.2019; 1(1): 13.     CrossRef
  • A review of the most important medicinal herbs affecting giardiasis
    Mohamad Reza Nazer, Saber Abbaszadeh, Khatereh Anbari, Morteza Shams
    Journal of Herbmed Pharmacology.2019; 8(2): 78.     CrossRef
  • Antimicrobial peptide similarity and classification through rough set theory using physicochemical boundaries
    Kyle Boone, Kyle Camarda, Paulette Spencer, Candan Tamerler
    BMC Bioinformatics.2018;[Epub]     CrossRef
  • A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli
    Mercedeh Tajbakhsh, Maziar Mohammad Akhavan, Fatemeh Fallah, Abdollah Karimi
    Biomolecules.2018; 8(4): 118.     CrossRef
Review
MINIREVIEW] Nontraditional Therapies to Treat Helicobacter pylori Infection
Morris O. Makobongo , Jeremy J. Gilbreath , D. Scott Merrell
J. Microbiol. 2014;52(4):259-272.   Published online March 29, 2014
DOI: https://doi.org/10.1007/s12275-014-3603-5
  • 55 View
  • 0 Download
  • 20 Crossref
AbstractAbstract
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.

Citations

Citations to this article as recorded by  
  • Pistacia vera L. as natural source against antimicrobial and antiviral resistance
    Giuseppina Mandalari, Rosamaria Pennisi, Teresa Gervasi, Maria Teresa Sciortino
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Efficacy of a standardised herbal formulation in Helicobacter pylori positive patients with gastritis or peptic ulcer: a triple-blind randomised clinical trial
    Arefe Shojaeian, Alireza Khalilian, Maryam Mehrpoya, Jalal Poorolajal, Dara Dastan
    Journal of Herbal Medicine.2023; 41: 100706.     CrossRef
  • Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin
    Ali Pormohammad, Dave Hansen, Raymond J. Turner
    Antibiotics.2022; 11(8): 1099.     CrossRef
  • Targeting the Essential Transcription Factor HP1043 of Helicobacter pylori: A Drug Repositioning Study
    Federico Antoniciello, Davide Roncarati, Annamaria Zannoni, Elena Chiti, Vincenzo Scarlato, Federica Chiappori
    Frontiers in Molecular Biosciences.2022;[Epub]     CrossRef
  • Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa
    Chun-Yan Weng, Jing-Li Xu, Shao-Peng Sun, Kai-Jie Wang, Bin Lv
    World Journal of Gastroenterology.2021; 27(31): 5152.     CrossRef
  • A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy
    Ehsan Abedini, Ehsaneh Khodadadi, Elham Zeinalzadeh, Seyyed Reza Moaddab, Mohammad Asgharzadeh, Bahareh Mehramouz, Sounkalo Dao, Hossein Samadi Kafil, Weicheng Hu
    Evidence-Based Complementary and Alternative Medicine.2021; 2021: 1.     CrossRef
  • Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice
    Patrícia C. Henriques, Lia M. Costa, Catarina L. Seabra, Bernardo Antunes, Ricardo Silva-Carvalho, Susana Junqueira-Neto, André F. Maia, Pedro Oliveira, Ana Magalhães, Celso A. Reis, Fátima Gartner, Eliette Touati, Joana Gomes, Paulo Costa, M. Cristina L.
    Acta Biomaterialia.2020; 114: 206.     CrossRef
  • Effects of cinnamon extract on complications of treatment and eradication of Helicobacter pylori in infected people
    Ghazal Imani, Alireza khalilian, Dara Dastan, Behzad Imani, Maryam Mehrpoya
    Journal of Herbmed Pharmacology.2020; 9(1): 55.     CrossRef
  • Flacourtia indica based biogenic nanoparticles: development, characterization, and bioactivity against wound associated pathogens
    Farooq Ahmad, Muhammad Babar Taj, Muhammad Ramzan, Ahmad Raheel, Saima Shabbir, Muhammad Imran, Hafiz M N Iqbal
    Materials Research Express.2020; 7(1): 015026.     CrossRef
  • In vitro activity of neem (Azadirachta indica) oil extract against Helicobacter pylori
    Faith C. Blum, Jatinder Singh, D. Scott Merrell
    Journal of Ethnopharmacology.2019; 232: 236.     CrossRef
  • Study of inhibitory effects of the mixture of cinnamon and ginger extracts on cagA gene expression of Helicobacter pylori by Real-Time RT-PCR technique
    Morteza Azadi, Asa Ebrahimi, Azad Khaledi, Davoud Esmaeili
    Gene Reports.2019; 17: 100493.     CrossRef
  • In Vitro Activity of Diphenyleneiodonium toward Multidrug-Resistant Helicobacter pylori Strains
    Jun-Won Chung, Su Young Kim, Hee Jung Park, Chang Su Chung, Hee Woo Lee, Sun Mi Lee, Inki Kim, Jhang Ho Pak, Gin Hyug Lee, Jin-Yong Jeong
    Gut and Liver.2017; 11(5): 648.     CrossRef
  • Helicobacter pylori treatment: New perspectives using current experience
    Amin Talebi Bezmin Abadi
    Journal of Global Antimicrobial Resistance.2017; 8: 123.     CrossRef
  • Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides
    Menghua Xiong, Yan Bao, Xin Xu, Hua Wang, Zhiyuan Han, Zhiyu Wang, Yeqing Liu, Songyin Huang, Ziyuan Song, Jinjing Chen, Richard M. Peek, Lichen Yin, Lin-Feng Chen, Jianjun Cheng
    Proceedings of the National Academy of Sciences.2017; 114(48): 12675.     CrossRef
  • Helicobacter pylori outer membrane protein, HomC, shows geographic dependent polymorphism that is influenced by the Bab family
    Aeryun Kim, Stephanie L. Servetas, Jieun Kang, Jinmoon Kim, Sungil Jang, Yun Hui Choi, Hanfu Su, Yeong-Eui Jeon, Youngmin A. Hong, Yun-Jung Yoo, D. Scott Merrell, Jeong-Heon Cha
    Journal of Microbiology.2016; 54(12): 846.     CrossRef
  • Capsule Design for Blue Light Therapy against Helicobacter pylori
    Zhangyong Li, Binbin Ren, Haiyan Tan, Shengrong Liu, Wei Wang, Yu Pang, Jinzhao Lin, Chen Zeng, Dipshikha Chakravortty
    PLOS ONE.2016; 11(1): e0147531.     CrossRef
  • Morphological changes in human gastric epithelial cells induced by nuclear targeting of Helicobacter pylori urease subunit A
    Jung Hwa Lee, So Hyun Jun, Jung-Min Kim, Seung Chul Baik, Je Chul Lee
    Journal of Microbiology.2015; 53(6): 406.     CrossRef
  • Dietary amelioration of Helicobacter infection
    Jed W. Fahey, Katherine K. Stephenson, Alison J. Wallace
    Nutrition Research.2015; 35(6): 461.     CrossRef
  • Antibiotic treatment forHelicobacter pylori: Is the end coming?
    Su Young Kim
    World Journal of Gastrointestinal Pharmacology and Therapeutics.2015; 6(4): 183.     CrossRef
  • The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection
    Inês C Gonçalves, Patrícia C Henriques, Catarina L Seabra, M Cristina L Martins
    Expert Review of Anti-infective Therapy.2014; 12(8): 981.     CrossRef
Journal Article
Cyclic Lipopeptide Profile of Three Bacillus subtilis Strains; Antagonists of Fusarium Head Blight
Christopher A. Dunlap , David A. Schisler , Neil P. Price , Steven F. Vaughn
J. Microbiol. 2011;49(4):603-609.   Published online September 2, 2011
DOI: https://doi.org/10.1007/s12275-011-1044-y
  • 40 View
  • 0 Download
  • 59 Crossref
AbstractAbstract
The objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B. subtilis strains (AS43.3, AS43.4, and OH131.1) was determined using mass spectroscopy. Strains AS43.3 and AS43.4 produced the anti-fungal lipopeptides from the iturin and fengycin family during the stationary growth phase. All three strains produced the lipopeptide surfactin at different growth times. Strain OH131.1 only produced surfactin under these conditions. The antifungal activity of the culture supernatant and individual lipopeptides was determined by the inhibition of G. zeae. Cell-free supernatant from strains AS43.3 and AS43.4 demonstrated strong antibiosis of G. zeae, while strain OH131.1 had no antibiosis activity. These results suggest a different mechanism of antagonism for strain OH131.1, relative to AS43.3 and AS43.4.

Citations

Citations to this article as recorded by  
  • Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: in vitro, greenhouse and field conditions
    María Silvina Alaniz Zanon, Lorenzo Rosales Cavaglieri, Juan Manuel Palazzini, Sofía Noemí Chulze, María Laura Chiotta
    International Journal of Food Microbiology.2024; 413: 110580.     CrossRef
  • Preparation of Bacillus pumilus loaded electrosprayed nanoparticles as a plant protective against postharvest fungal decay
    Meyrem Vehapi, Benan İnan, Selma Kayacan-Cakmakoglu, Osman Sagdic, Didem Balkanlı Özçimen
    European Journal of Plant Pathology.2024; 168(1): 121.     CrossRef
  • Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides
    Tomasz Szczygieł, Anna Koziróg, Anna Otlewska
    Molecules.2024; 29(16): 3780.     CrossRef
  • Composition and activity of antifungal lipopeptides produced by Bacillus spp. in daqu fermentation
    Zhen Li, Kleinberg X. Fernandez, John C. Vederas, Michael G. Gänzle
    Food Microbiology.2023; 111: 104211.     CrossRef
  • Characterization of lipopeptide produced by Bacillus altitudinis Q7 and inhibitory effect on Alternaria alternata
    Pengfei Guo, Fengrui Yang, Shuhong Ye, Jing Li, Fengjun Shen, Yan Ding
    Journal of Basic Microbiology.2023; 63(1): 26.     CrossRef
  • Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review
    Sajid Iqbal, Farida Begum, Ali A. Rabaan, Mohammed Aljeldah, Basim R. Al Shammari, Abdulsalam Alawfi, Amer Alshengeti, Tarek Sulaiman, Alam Khan
    Molecules.2023; 28(3): 927.     CrossRef
  • Research Advances in Wheat Breeding and Genetics for Powdery Mildew Resistance
    Myoung-Hui Lee, Sumin Hong, Kyeong-Min Kim, Yurim Kim, Sun-Hwa Kwak, Kyeong-Hoon Kim, Chon-Sik Kang, Chul Soo Park, Youngjun Mo, Changhyun Choi
    Korean Journal of Breeding Science.2023; 55(3): 218.     CrossRef
  • GC/EI/MS and 1H NMR Metabolomics Reveal the Effect of an Olive Tree Endophytic Bacillus sp. Lipopeptide Extract on the Metabolism of Colletotrichum acutatum
    Evgenia-Anna Papadopoulou, Apostolis Angelis, Alexios-Leandros Skaltsounis, Konstantinos A. Aliferis
    Metabolites.2023; 13(4): 462.     CrossRef
  • Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides
    Beom Ryong Kang, Joon Seong Park, Gwang Rok Ryu, Woo-Jin Jung, Jun-Seok Choi, Hye-Min Shin
    Nanomaterials.2022; 12(23): 4189.     CrossRef
  • Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against Colletotrichum acutatum in Pepper
    Joon Seong Park, Gwang Rok Ryu, Beom Ryong Kang
    Plants.2022; 11(9): 1267.     CrossRef
  • Maize Root Exudates Recruit Bacillus amyloliquefaciens OR2-30 to Inhibit Fusarium graminearum Infection
    Shanshan Xie, Lin Jiang, Qin Wu, Wenkun Wan, Yutian Gan, Lingling Zhao, Jiajia Wen
    Phytopathology®.2022; 112(9): 1886.     CrossRef
  • Specific features of antagonism of Bacillus bacteria against toxinogenic Fusarium fungi in protecting plants against disease and contamination with mycotoxins (review)
    T. M. Sidorova, A. M. Asaturova, V. V. Allakhverdyan
    South of Russia: ecology, development.2022; 16(4): 86.     CrossRef
  • Efficiency of durum wheat seeds biopriming by rhizobacteria in the biocontrol of Fusarium culmorum and Fusarium chlamydosporum infecting durum wheat in Algeria
    Amor Bencheikh, Meziti Hicham, Daichi Barkahoum Meriem, Gharzouli Asma, Belkadi Khalida, Noureddine Rouag
    Archives of Phytopathology and Plant Protection.2022; 55(6): 653.     CrossRef
  • Isolation of lipopeptide antibiotics from Bacillus siamensis: a potential biocontrol agent for Fusarium graminearum
    Yanhong Huang, Xingrong Zhang, Hui Xu, Fan Zhang, Xuelin Zhang, Yongheng Yan, Lianzhi He, Jianjun Liu
    Canadian Journal of Microbiology.2022; 68(6): 403.     CrossRef
  • Biocontrol prospective of Bacillus siamensis-AMU03 against Soil-borne fungal pathogens of potato tubers
    Touseef Hussain, Abrar Ahmad Khan
    Indian Phytopathology.2022; 75(1): 179.     CrossRef
  • Distribution, pathogenicity and disease control of Fusarium tricinctum
    Yun Wang, Ruoyu Wang, Yuexia Sha
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • In vitro antifungal potential of surfactin isolated from rhizospheric Bacillus thuringiensis Berliner 1915 against maize (Zea mays L.) fungal phytopathogen Fusarium graminearum Schwabe
    Muddasir KHAN, Muhammad SALMAN, Syed Hussain SHAH, Muhammad ISRAR
    Acta agriculturae Slovenica.2021; 117(4): 1.     CrossRef
  • Interactions with plant pathogens influence lipopeptides production and antimicrobial activity of Bacillus subtilis strain PTB185
    Louis Cossus, Florence Roux-Dalvai, Isabelle Kelly, Thi Thuy An Nguyen, Hani Antoun, Arnaud Droit, Russell J. Tweddell
    Biological Control.2021; 154: 104497.     CrossRef
  • Bacillus species as potential biocontrol agents against citrus diseases
    Kai Chen, Zhonghuan Tian, Hua He, Chao-an Long, Fatang Jiang
    Biological Control.2020; 151: 104419.     CrossRef
  • Surfactin-producing Bacillus velezensis 1B-23 and Bacillus sp. 1D-12 protect tomato against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis
    Matthew Laird, David Piccoli, Brian Weselowski, Tim McDowell, Justin Renaud, Jacqueline MacDonald, Ze-Chun Yuan
    Journal of Plant Pathology.2020; 102(2): 451.     CrossRef
  • Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici
    Beom Ryong Kang, Joon Seong Park, Woo-Jin Jung
    Microbial Pathogenesis.2020; 149: 104509.     CrossRef
  • The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects
    Khayalethu Ntushelo, Lesiba Klaas Ledwaba, Molemi Evelyn Rauwane, Oluwafemi Ayodeji Adebo, Patrick Berka Njobeh
    Toxins.2019; 11(10): 606.     CrossRef
  • Characterization of Antagonistic Bacillus methylotrophicus Isolated From Rhizosphere and Its Biocontrol Effects on Maize Stalk Rot
    Xingkai Cheng, Xiaoxue Ji, Yanzhen Ge, Jingjing Li, Wenzhe Qi, Kang Qiao
    Phytopathology®.2019; 109(4): 571.     CrossRef
  • Identification of lipopeptides from Bacillus strain Q11 with ability to inhibit the germination of Penicillium expansum, the etiological agent of postharvest blue mold disease
    José Luis Rodríguez-Chávez, Yara Suhan Juárez-Campusano, Guillermo Delgado, Juan Ramiro Pacheco Aguilar
    Postharvest Biology and Technology.2019; 155: 72.     CrossRef
  • Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens
    Dibya Jyoti Hazarika, Gunajit Goswami, Trishnamoni Gautom, Assma Parveen, Pompi Das, Madhumita Barooah, Robin Chandra Boro
    BMC Microbiology.2019;[Epub]     CrossRef
  • Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity
    Hélène Desmyttere, Caroline Deweer, Jérôme Muchembled, Karin Sahmer, Justine Jacquin, François Coutte, Philippe Jacques
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group
    Simon Caulier, Catherine Nannan, Annika Gillis, Florent Licciardi, Claude Bragard, Jacques Mahillon
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Biofilm formation and regulation of salicylic acid-inducible genes expression in Arabidopsis by Algerian indigenous bacteria from wheat and potatoes rhizospheres in semi-arid Sétif region
    Asma Benslim, Samia Mezaache-Aichour, Nora Haichour, Kamel Aissat, Mohamed Mihoub Zerroug
    Archives of Microbiology.2018; 200(9): 1395.     CrossRef
  • Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages
    Agustín Luna-Bulbarela, Raunel Tinoco-Valencia, Gerardo Corzo, Kohei Kazuma, Katsuhiro Konno, Enrique Galindo, Leobardo Serrano-Carreón
    Biological Control.2018; 127: 145.     CrossRef
  • Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors
    Adetomiwa Ayodele Adeniji, Olubukola Oluranti Babalola
    Archives of Microbiology.2018; 200(8): 1239.     CrossRef
  • Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9–5
    Stefanie DeFilippi, Emma Groulx, Merna Megalla, Rowida Mohamed, Tyler J. Avis
    Journal of Chemical Ecology.2018; 44(4): 374.     CrossRef
  • Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench
    Mohit Agarwal, Shrivardhan Dheeman, Ramesh Chand Dubey, Pradeep Kumar, Dinesh Kumar Maheshwari, Vivek K. Bajpai
    Microbiological Research.2017; 205: 40.     CrossRef
  • Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum
    Fabienne Legrand, Adeline Picot, José Francisco Cobo-Díaz, Wen Chen, Gaétan Le Floch
    Biological Control.2017; 113: 26.     CrossRef
  • Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review
    Piotr Biniarz, Marcin Łukaszewicz, Tomasz Janek
    Critical Reviews in Biotechnology.2017; 37(3): 393.     CrossRef
  • Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes
    Lina María González-Jaramillo, Francisco José Aranda, José Antonio Teruel, Valeska Villegas-Escobar, Antonio Ortiz
    Colloids and Surfaces B: Biointerfaces.2017; 156: 114.     CrossRef
  • High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species
    Mareen Geissler, Claudia Oellig, Karin Moss, Wolfgang Schwack, Marius Henkel, Rudolf Hausmann
    Journal of Chromatography B.2017; 1044-1045: 214.     CrossRef
  • Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains
    Urszula Wachowska, Danuta Packa, Marian Wiwart
    Toxins.2017; 9(12): 408.     CrossRef
  • Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum
    A.D. Ribas, E.M. Del Ponte, A.M. Dalbem, D. Dalla-Lana, C. Bündchen, R.K. Donato, H.S. Schrekker, A.M. Fuentefria
    Journal of Applied Microbiology.2016; 121(2): 445.     CrossRef
  • Identification and characterization of a library of surfactins and fengycins from a marine endophytic Bacillus sp.
    Divya Nair, Muralidharan Vanuopadath, Bipin G. Nair, Jayashree Gopalakrishna Pai, Sudarslal Sadasivan Nair
    Journal of Basic Microbiology.2016; 56(11): 1159.     CrossRef
  • Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood
    K.L. Sajitha, Suma Arun Dev
    Biological Control.2016; 96: 78.     CrossRef
  • Production and identification of iturin A lipopeptide fromBacillus methyltrophicusTEB1 for control ofPhoma tracheiphila
    Leila Kalai-Grami, Ines Karkouch, Omar Naili, Imen Ben Slimene, Salem Elkahoui, Roudaina Ben Zekri, Ines Touati, Monia Mnari-Hattab, Mohamed Rabeh Hajlaoui, Ferid Limam
    Journal of Basic Microbiology.2016; 56(8): 864.     CrossRef
  • Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus flavescens for control of Fusarium head blight
    Christopher A. Dunlap, David A. Schisler, Michael J. Bowman, Alejandro P. Rooney
    Plant Gene.2015; 2: 1.     CrossRef
  • Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina
    S.N. Chulze, J.M. Palazzini, A. M. Torres, G. Barros, M.L. Ponsone, R. Geisen, M. Schmidt-Heydt, J. Köhl
    Food Additives & Contaminants: Part A.2015; 32(4): 471.     CrossRef
  • Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato
    Xin Ma, Xiaobing Wang, Juan Cheng, Xin Nie, Xuexin Yu, Yongtian Zhao, Wei Wang
    Biological Control.2015; 90: 34.     CrossRef
  • Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat
    D. Pan, A. Mionetto, S. Tiscornia, L. Bettucci
    Mycotoxin Research.2015; 31(3): 137.     CrossRef
  • Effects of Bio-organic Fertilizers Produced by FourBacillus amyloliquefaciensStrains on Banana Fusarium Wilt Disease
    Jingjing Wang, Yan Zhao, Yunze Ruan
    Compost Science & Utilization.2015; 23(3): 185.     CrossRef
  • Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum
    Weiqun Hu, Qixun Gao, Mohamed Sobhy Hamada, Dawood Hosni Dawood, Jingwu Zheng, Yun Chen, Zhonghua Ma
    Phytopathology®.2014; 104(12): 1289.     CrossRef
  • Complete Genome Sequence for the Fusarium Head Blight Antagonist Bacillus amyloliquefaciens Strain TrigoCor 1448
    Beth A. Nelson, Preethi Ramaiya, Alfredo Lopez de Leon, Ravi Kumar, Austin Crinklaw, Eliana Jolkovsky, Julia M. Crane, Gary C. Bergstrom, Michael W. Rey
    Genome Announcements.2014;[Epub]     CrossRef
  • Isolation and identification of cyclic lipopeptides from Paenibacillus ehimensis, strain IB-X-b
    Gleb Aktuganov, Jouni Jokela, Henri Kivelä, Elvira Khalikova, Alexander Melentjev, Nailia Galimzianova, Lyudmila Kuzmina, Petri Kouvonen, Juha-Pekka Himanen, Petri Susi, Timo Korpela
    Journal of Chromatography B.2014; 973: 9.     CrossRef
  • Cyclic Lipopeptides from Bacillus subtilis ABS–S14 Elicit Defense-Related Gene Expression in Citrus Fruit
    Waewruedee Waewthongrak, Wichitra Leelasuphakul, Greg McCollum, Silvia Mazzuca
    PLoS ONE.2014; 9(10): e109386.     CrossRef
  • Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum
    Yueju Zhao, Jonathan Nimal Selvaraj, Fuguo Xing, Lu Zhou, Yan Wang, Huimin Song, Xinxin Tan, Lichao Sun, Lancine Sangare, Yawa Minnie Elodie Folly, Yang Liu, Adam Driks
    PLoS ONE.2014; 9(3): e92486.     CrossRef
  • Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1
    Xiaoyun Zhang, Baoqing Li, Ye Wang, Qinggang Guo, Xiuyun Lu, Shezeng Li, Ping Ma
    Applied Microbiology and Biotechnology.2013; 97(21): 9525.     CrossRef
  • Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight
    Christopher A. Dunlap, Michael J. Bowman, David A. Schisler
    Biological Control.2013; 64(2): 166.     CrossRef
  • Overview of some recent research developments in fusarium head blight of wheat
    Jeannie Gilbert, Steve Haber
    Canadian Journal of Plant Pathology.2013; 35(2): 149.     CrossRef
  • Iturin Levels on Wheat Spikes Linked to Biological Control of Fusarium Head Blight by Bacillus amyloliquefaciens
    J. M. Crane, D. M. Gibson, R. H. Vaughan, G. C. Bergstrom
    Phytopathology®.2013; 103(2): 146.     CrossRef
  • Biological control of winter wheat pathogens with the use of antagonisticSphingomonasbacteria under greenhouse conditions
    Urszula Wachowska, Witold Irzykowski, Małgorzata Jędryczka, Anna D. Stasiulewicz-Paluch, Katarzyna Głowacka
    Biocontrol Science and Technology.2013; 23(10): 1110.     CrossRef
  • Production of schizophyllan from distiller’s dried grains with solubles by diverse strains of Schizophyllum commune
    Nongnuch Sutivisedsak, Timothy D Leathers, Neil PJ Price
    SpringerPlus.2013;[Epub]     CrossRef
  • Utilization of agricultural biomass in the production of the biopolymer schizophyllan
    Nongnuch Sutivisedsak, Timothy D Leathers, Melinda S Nunnally, Neil P J Price, Girma Biresaw
    Journal of Industrial Microbiology and Biotechnology.2013; 40(1): 105.     CrossRef
  • Analysis of free amino acids during fermentation by Bacillus subtilis using capillary electrophoresis
    Yanli Ren, Jinyan Zhou, Xiaoyong Zhang, Zhidong Li, Juan Zhong, Jie Yang, Tan Xu, Hong Tan
    Biotechnology and Bioprocess Engineering.2012; 17(6): 1244.     CrossRef
Research Support, Non-U.S. Gov't
Evaluation of Antagonistic Activities of Bacillus subtilis and Bacillus licheniformis Against Wood-Staining Fungi: In Vitro and In Vivo Experiments
Natarajan Velmurugan , Mi Sook Choi , Sang-Sub Han , Yang-Soo Lee
J. Microbiol. 2009;47(4):385-392.   Published online September 9, 2009
DOI: https://doi.org/10.1007/s12275-009-0018-9
  • 41 View
  • 0 Download
  • 29 Scopus
AbstractAbstract
The antifungal activity of bacterial strains Bacillus subtilis EF 617317 and B. licheniformis EF 617325 was demonstrated against sapstaining fungal cultures Ophiostoma flexuosum, O. tetropii, O. polonicum, and O. ips in both in vitro and in vivo conditions. The crude active supernatant fractions of 7 days old B. subtilis and B. licheniformis cultures inhibited the growth of sapstaining fungi in laboratory experiments. Thermostability and pH stability of crude supernatants were determined by series of experiments. FT-IR analysis was performed to confirm the surface structural groups of lipoproteins present in the crude active supernatant. Partial purification of lipopeptides present in the crude supernatant was done by using Cellulose anion exchange chromatography and followed by Sephadex gel filtration chromatography. Partially purified compounds significantly inhibited the sapstaining fungal growth by in vitro analysis. The lipopeptides responsible for antifungal activity were identified by electrospray ionization mass spectrometry after partial purification by ion exchange and gel filtration chromatography. Four major ion peaks were identified as m/z 1023, 1038, 1060, and 1081 in B. licheniformis and 3 major ion peaks were identified as m/z 1036, 1058, and 1090 in B. subtilis. In conclusion, the partially purified lipopeptides may belong to surfactin and iturin family. In vivo analysis for antifungal activity of lipopeptides on wood was conducted in laboratory. In addition, the potential of extracts for fungal inhibition on surface and internal part of wood samples were analyzed by scanning electron microscopy.

Journal of Microbiology : Journal of Microbiology
TOP