Bioflocs are microbial aggregates primarily composed of heterotrophic bacteria that play essential ecological roles in maintaining animal health, gut microbiota, and water quality in biofloc aquaculture systems. Despite the global adoption of biofloc aquaculture for shrimp and fish cultivation, our understanding of biofloc microbiota-particularly the dominant bacterial members and their ecological functions-remains limited. In this study, we employed integrated metataxonomic and metagenomic approaches to demonstrate that the family Rhodobacteraceae of Alphaproteobacteria consistently dominates the biofloc microbiota and plays essential ecological roles. We first analyzed a comprehensive metataxonomic dataset consisting of 200 16S rRNA gene amplicons collected across three Asian countries: South Korea, China, and Vietnam.
Taxonomic investigation identified Rhodobacteraceae as the dominant and consistent bacterial members across the datasets. The predominance of this taxon was further validated through metagenomics approaches, including read taxonomy and read recruitment analyses. To explore the ecological roles of Rhodobacteraceae, we applied genome-centric metagenomics, reconstructing 45 metagenome-assembled genomes. Functional annotation of these genomes revealed that dominant Rhodobacteraceae genera, such as Marivita, Ruegeria, Dinoroseobacter, and Aliiroseovarius, are involved in vital ecological processes, including complex carbohydrate degradation, aerobic denitrification, assimilatory nitrate reduction, ammonium assimilation, and sulfur oxidation. Overall, our study reveals that the common practice of carbohydrate addition in biofloc aquaculture systems fosters the growth of specific heterotrophic bacterial communities, particularly Rhodobacteraceae. These bacteria contribute to maintaining water quality by removing toxic nitrogen and sulfur compounds and enhance animal health by colonizing gut microbiota and exerting probiotic effects.
Citations
Citations to this article as recorded by
Ecological disposal of bauxite tailings and red mud: A sustainable strategy for bauxite industrial waste reuse Xusheng Jiang, Xuehong Zhang, Xijun Liu, Hui Qiu, Mengting Lin, Guo Yu, Shouhui Zhang, Jie Liu Resources, Conservation and Recycling.2025; 218: 108259. CrossRef
Variation of Microorganisms and Water Quality, and Their Impacts on the Production of Penaeus vannamei in Small-Scale Greenhouse Ponds Siyu Wu, Haochang Su, Lei Su, Yucheng Cao, Guoliang Wen, Yu Xu, Bin Shen, Shanshan Wu, Yuting Su, Xiaojuan Hu Microorganisms.2025; 13(3): 546. CrossRef
Effect of hydraulic retention time of sponge-based trickling filter for shrimp culture recirculating tank Penpicha Satanwat, Mami Nagai, Tharin Boonprasertsakul, Akihiro Nagano, Tsutomu Okubo, Nur Adlin, Takahiro Watari, Masashi Hatamoto, Takashi Yamaguchi, Sitthakarn Sitthi, Wiboonluk Pungrasmi, Rapeepun Vanichviriyakit, Sorawit Powtongsook Process Safety and Environmental Protection.2025; : 107154. CrossRef
Two Gram-stain-positive, oxidase-negative, non-motile, facultative anaerobic, α-hemolytic, coccus-shaped bacteria (zg-86T and zg-70) were isolated from the respiratory tracts of marmots (Marmota Himalayana) on the Qinghai-Tibet Plateau of China. Phylogenetic analysis of the 16S rRNA gene and 545 core genes revealed that these two strains belong to the Streptococcus genus. These strains were most closely related to Streptococcus respiraculi HTS25T, Streptococcus cuniculi CCUG 65085T, and Streptococcus marmotae HTS5T. The average nucleotide identity (ANI) and digital DNA‒DNA hybridization (dDDH) were below the threshold for species delineation. The predominant cellular fatty acids (CFAs) in this novel species were C16:0, C18:0, and C18:1ω9c, whereas the primary polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phosphoglycolipid (PGL). The optimal growth conditions for the strains were 37 °C, pH 7.0, and 0.5% (w/v) NaCl on brain-heart infusion (BHI) agar supplemented with 5% defibrinated sheep blood. Comparative genomics analyses revealed the potential pathogenicity of strain zg-86T through comparisons with suis subclade strains in terms of virulence factors, pathogen-host interactions (PHIs) and mobile genetic factors (MGEs). Based on the phenotypic characteristics and phylogenetic analyses, we propose that these two isolates represent novel species in the genus Streptococcus, for which the names Streptococcus zhangguiae sp. nov. (the type strain zg-86T=GDMCC 1.1758T=JCM 34273T) is proposed.
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges.
Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C(15:0) and iso-C(17:0). Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb.
Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively.
Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).
Elevation gradients, often regarded as “natural experiments or laboratories”, can be used to study changes in the distribution
of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We
obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total
number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately
45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns
in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most
unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6
had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current
study. Ammonium nitrogen (
NH4
+-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_
1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results
provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications
for microbial responses to environmental change in semiarid mountain ecosystems.
Potyvirids, members of the family Potyviridae, produce the P3N-PIPO protein, which is crucial for the cell-to-cell transport
of viral genomic RNAs. The production of P3N-PIPO requires an adenine (A) insertion caused by RNA polymerase slippage
at a conserved GAA AAA A (
GA6) sequence preceding the PIPO open reading frame. Presently, the slippage rate of
RNA polymerase has been estimated in only a few potyvirids, ranging from 0.8 to 2.1%. In this study, we analyzed publicly
available plant RNA-seq data and identified 19 genome contigs from 13 distinct potyvirids. We further investigated the RNA
polymerase slippage rates at the GA6
motif. Our analysis revealed that the frequency of the A insertion variant ranges from
0.53 to 4.07% in 11 potyviruses (genus Potyvirus). For the two macluraviruses (genus Macluravirus), the frequency of the
A insertion variant was found to be 0.72% and 10.96% respectively. Notably, the estimated RNA polymerase slippage rates
for 12 out of the 13 investigated potyvirids were reported for the first time in this study. Our findings underscore the value of
plant RNA-seq data for quantitative analysis of potyvirid genome variants, specifically at the GA6
slippage site, and contribute
to a more comprehensive understanding of the RNA polymerase slippage phenomenon in potyvirids.
Citations
Citations to this article as recorded by
Discovery of novel tepovirus genomes with a nucleic acid-binding protein homolog by systematic analysis of plant transcriptome data Dongjin Choi, Hyerin Park, Seungwoo Baek, Myeung Seok Choi, Sylvain Legay, Gea Guerriero, Jean-François Hausman, Yoonsoo Hahn Acta Virologica.2025;[Epub] CrossRef
Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins Veronika Hýsková, Kateřina Bělonožníková, Josef Chmelík, Hana Hoffmeisterová, Noemi Čeřovská, Tomáš Moravec, Helena Ryšlavá Plants.2024; 13(9): 1236. CrossRef
Reconceptualizing transcriptional slippage in plant RNA viruses Adrian A. Valli, María Luisa Domingo-Calap, Alfonso González de Prádena, Juan Antonio García, Hongguang Cui, Cécile Desbiez, Juan José López-Moya, Shou-Wei Ding, Andrew Firth mBio.2024;[Epub] CrossRef
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we
developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic
acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains,
Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism.
We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and
observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic
acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression
to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid
production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional
repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
Citations
Citations to this article as recorded by
Industrial–scale production of various bio–commodities by engineered microbial cell factories: Strategies of engineering in microbial robustness Ju-Hyeong Jung, Vinoth Kumar Ponnusamy, Gopalakrishnan Kumar, Bartłomiej Igliński, Vinod Kumar, Grzegorz Piechota Chemical Engineering Journal.2024; 502: 157679. CrossRef
Microbial Cell Factories: Biodiversity, Pathway Construction, Robustness, and Industrial Applicability Rida Chaudhary, Ali Nawaz, Mireille Fouillaud, Laurent Dufossé, Ikram ul Haq, Hamid Mukhtar Microbiology Research.2024; 15(1): 247. CrossRef
Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae Bo Jiang, Jiezheng Liu, Jingnan Wang, Guang Zhao, Zhe Zhao Microorganisms.2024; 12(6): 1167. CrossRef
Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of Lactobacillus bulgaricus T15 Yuhan Zheng, Feiyang Sun, Siyi Liu, Gang Wang, Huan Chen, Yongxin Guo, Xiufeng Wang, Maia Lia Escobar Bonora, Sitong Zhang, Yanli Li, Guang Chen Frontiers in Microbiology.2024;[Epub] CrossRef
The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear.
This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were
collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance
of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane
(AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted
tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further
treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was
collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice
as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but
suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests
that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.
Citations
Citations to this article as recorded by
Metformin alleviates colitis-associated colorectal cancer via inhibition of the TLR4/MyD88/NFκB/MAPK pathway and macrophage M2 polarization Xueying Lai, Bin Liu, Yu Wan, Ping Zhou, Wanjun Li, Wei Hu, Wei Gong International Immunopharmacology.2025; 144: 113683. CrossRef
Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies Wenting Li, Nanshu Liu, Mingwei Chen, Dongjuan Liu, Sai Liu Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2025; 1880(2): 189262. CrossRef
Clinical efficacy of metformin in familial adenomatous polyposis and the effect of intestinal flora Linxin Zhou, Linfu Zheng, Binbin Xu, Zhou Ye, Dazhou Li, Wen Wang Orphanet Journal of Rare Diseases.2024;[Epub] CrossRef
An AMPK agonist suppresses the progress of colorectal cancer by regulating the polarization of TAM to M1 through inhibition of HIF-1α and mTOR signal pathway Yuanyuan Cao, Mingyi Wo, Chan Xu, Xianming Fei, Juan Jin, Zhiming Shan Journal of Cancer Research and Therapeutics.2023; 19(6): 1560. CrossRef
Asad ul-Haq , Kyung-Ann Lee , Hoonhee Seo , Sukyung Kim , Sujin Jo , Kyung Min Ko , Su-Jin Moon , Yun Sung Kim , Jung Ran Choi , Ho-Yeon Song , Hyun-Sook Kim
J. Microbiol. 2022;60(12):1178-1190. Published online November 24, 2022
Microbiome research has been on the rise recently for a more
in-depth understanding of gout. Meanwhile, there is a need to
understand the gut microbiome related to uric acid-lowering
drug resistance. In this study, 16S rRNA gene-based microbiota
analysis was performed for a total of 65 stool samples
from 17 healthy controls and 48 febuxostat-treated gout patients
(including 28 controlled subjects with decreased uric
acid levels and 20 uncontrolled subjects with non-reduced
uric acid levels). Alpha diversity of bacterial community decreased
in the healthy control, controlled, and uncontrolled
groups. In the case of beta diversity, the bacterial community
was significantly different among groups (healthy control, controlled,
and uncontrolled groups). Taxonomic biomarker analysis
revealed the increased population of g-Bifidobacterium
in healthy controls and g-Prevotella in uncontrolled patients.
PCR further confirmed this result at the species level. Additionally,
functional metagenomics predictions led to the exploration
of various functional biomarkers, including purine
metabolism. The results of this study can serve as a basis
for developing potential new strategies for diagnosing and
treating gout from microbiome prospects.
Citations
Citations to this article as recorded by
Different Prostatic Tissue Microbiomes between High- and Low-Grade Prostate Cancer Pathogenesis Jae Heon Kim, Hoonhee Seo, Sukyung Kim, Md Abdur Rahim, Sujin Jo, Indrajeet Barman, Hanieh Tajdozian, Faezeh Sarafraz, Ho-Yeon Song, Yun Seob Song International Journal of Molecular Sciences.2024; 25(16): 8943. CrossRef
Reassessing Gout Management through the Lens of Gut Microbiota Jean Demarquoy, Oumaima Dehmej Applied Microbiology.2024; 4(2): 824. CrossRef
Changes in gut microbiota structure and function in gout patients Feiyan Zhao, Zhixin Zhao, Dafu Man, Zhihong Sun, Ning Tie, Hongbin Li, Heping Zhang Food Bioscience.2023; 54: 102912. CrossRef
Effect of a Novel Handheld Photobiomodulation Therapy Device in the Management of Chemoradiation Therapy-Induced Oral Mucositis in Head and Neck Cancer Patients: A Case Series Study In-Young Jo, Hyung-Kwon Byeon, Myung-Jin Ban, Jae-Hong Park, Sang-Cheol Lee, Yong Kyun Won, Yun-Su Eun, Jae-Yun Kim, Na-Gyeong Yang, Sul-Hee Lee, Pyeongan Lee, Nam-Hun Heo, Sujin Jo, Hoonhee Seo, Sukyung Kim, Ho-Yeon Song, Jung-Eun Kim Photonics.2023; 10(3): 241. CrossRef
New drug targets for the treatment of gout arthritis: what’s new? Tiago H. Zaninelli, Geovana Martelossi-Cebinelli, Telma Saraiva-Santos, Sergio M. Borghi, Victor Fattori, Rubia Casagrande, Waldiceu A. Verri Expert Opinion on Therapeutic Targets.2023; 27(8): 679. CrossRef
A dynamics association study of gut barrier and microbiota in hyperuricemia Qiulan Lv, Jun Zhou, Changyao Wang, Xiaomin Yang, Yafei Han, Quan Zhou, Ruyong Yao, Aihua Sui Frontiers in Microbiology.2023;[Epub] CrossRef
Biochemical Recurrence in Prostate Cancer Is Associated with the Composition of Lactobacillus: Microbiome Analysis of Prostatic Tissue Jae Heon Kim, Hoonhee Seo, Sukyung Kim, Asad Ul-Haq, Md Abdur Rahim, Sujin Jo, Ho-Yeon Song, Yun Seob Song International Journal of Molecular Sciences.2023; 24(13): 10423. CrossRef
Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis Vladimir S. Ermakov, Jeffry C. Granados, Sanjay K. Nigam JCI Insight.2023;[Epub] CrossRef
Causal Relationship between Gut Microbiota and Gout: A Two-Sample Mendelian Randomization Study Mengna Wang, Jiayao Fan, Zhaohui Huang, Dan Zhou, Xue Wang Nutrients.2023; 15(19): 4260. CrossRef
Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review Robert Terkeltaub Drugs.2023; 83(16): 1501. CrossRef
Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea Asad Ul-Haq, Hoonhee Seo, Sujin Jo, Hyuna Park, Sukyung Kim, Youngkyoung Lee, Saebim Lee, Je Hoon Jeong, Ho‑Yeon Song Polish Journal of Microbiology.2022; 71(4): 601. CrossRef
Adjuvants are substances added to vaccines to enhance antigen-
specific immune responses or to protect antigens from
rapid elimination. As pattern recognition receptors, Toll-like
receptors 7 (TLR7) and 8 (TLR8) activate the innate immune
system by sensing endosomal single-stranded RNA of RNA
viruses. Here, we investigated if a 2,4-diaminoquinazolinebased
TLR7/8 agonist, (S)-3-((2-amino-8-fluoroquinazolin-
4-yl)amino)hexan-1-ol (named compound 31), could be used
as an adjuvant to enhance the serological and mucosal immunity
of an inactivated influenza A virus vaccine. The compound induced
the production of proinflammatory cytokines in macrophages.
In a dose-response analysis, intranasal administration
of 1 μg compound 31 together with an inactivated vaccine
(0.5 μg) to mice not only enhanced virus-specific IgG and
IgA production but also neutralized influenza A virus with
statistical significance. Notably, in a virus-challenge model,
the combination of the vaccine and compound 31 alleviated
viral infection-mediated loss of body weight and increased
survival rates by 40% compared with vaccine only-treated mice.
We suggest that compound 31 is a promising lead compound
for developing mucosal vaccine adjuvants to protect against
respiratory RNA viruses such as influenza viruses and potentially
coronaviruses.
Citations
Citations to this article as recorded by
Efflux-Enhanced Imidazoquinolines To Exploit Chemoresistance Muhammad Haroon, Sharmin Sultana, Seyedeh A. Najibi, Emily T. Wang, Abbey Michaelson, Pranto S. M. Al Muied, Amy E. Nielsen, Rock J. Mancini ACS Omega.2025;[Epub] CrossRef
Design, Synthesis, and Biological Evaluation of New 2,6,7-Substituted Purine Derivatives as Toll-like Receptor 7 Agonists for Intranasal Vaccine Adjuvants Morgan Kim, Kyungseob Noh, Pyeongkeun Kim, Jae Ho Kim, Byeong Wook Choi, Ravi Singh, Jun-Ho Choi, Soo Bong Han, Seong Soon Kim, Eun-Young Lee, Myung Ae Bae, Daeho Shin, Meehyein Kim, Jin Hee Ahn Journal of Medicinal Chemistry.2024; 67(11): 9389. CrossRef
Evaluation of Antiviral Activity of Gemcitabine Derivatives against Influenza Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Hyeon-Min Cha, Uk-Il Kim, Soo Bin Ahn, Myoung Kyu Lee, Haemi Lee, Hyungtae Bang, Yejin Jang, Seong Soon Kim, Myung Ae Bae, Kyungjin Kim, Meehyein Kim ACS Infectious Diseases.2023; 9(4): 1033. CrossRef
Identification of broad-spectrum neutralizing antibodies against influenza A virus and evaluation of their prophylactic efficacy in mice Sumin Son, Soo Bin Ahn, Geonyeong Kim, Yejin Jang, Chunkyu Ko, Meehyein Kim, Sang Jick Kim Antiviral Research.2023; 213: 105591. CrossRef
Inhibition of KIF20A suppresses the replication of influenza A virus by inhibiting viral entry Hoyeon Jeon, Younghyun Lim, In-Gu Lee, Dong-In Kim, Keun Pil Kim, So-Hee Hong, Jeongkyu Kim, Youn-Sang Jung, Young-Jin Seo Journal of Microbiology.2022; 60(11): 1113. CrossRef
Su-Won Jeong , Jeong Eun Han , June-Young Lee , Ji-Ho Yoo , Do-Yeon Kim , In Chul Jeong , Jee-Won Choi , Yun-Seok Jeong , Jae-Yun Lee , So-Yeon Lee , Euon Jung Tak , Hojun Sung , Hyun Sik Kim , Pil Soo Kim , Dong-Wook Hyun , Jin-Woo Bae
J. Microbiol. 2022;60(6):576-584. Published online April 18, 2022
Three aerobic, Gram-negative, and rod-shaped bacterial strains,
designated strains G4M1T, SM13T, and L12M9T, were isolated
from the gut of Batillaria multiformis, Cellana toreuma, and
Patinopecten yessoensis collected from the Yellow Sea in South
Korea. All the strains grew optimally at 25°C, in the presence
of 2% (w/v) NaCl, and at pH 7. These three strains, which
belonged to the genus Polaribacter in the family Flavobacteriaceae,
shared < 98.8% in 16S rRNA gene sequence and < 86.68%
in whole-genome sequence with each other. Compared with
the type strains of Polaribacter, isolates showed the highest
sequence similarity to P. haliotis KCTC 52418T (< 98.68%),
followed by P. litorisediminis KCTC 52500T (< 98.13%). All
the strains contained MK-6 as their predominant menaquinone
and iso-C15:0 as their major fatty acid. Moreover, all the
strains had phosphatidylethanolamine as their polar lipid
component. In addition, strain G4M1T had two unidentified
lipids and three unidentified aminolipids, strain SM13T had
three unidentified lipids and three unidentified aminolipids,
and strain L12M9T had three unidentified lipids and one unidentified
aminolipid. The DNA G + C contents of strains
G4M1T, SM13T, and L12M9T were 31.0, 30.4, and 29.7 mol%,
respectively. Based on phenotypic, phylogenetic, chemotaxonomic,
and genotypic findings, strains G4M1T (= KCTC 82388T
= DSM 112372T), SM13T (= KCTC 82389T = DSM 112373T),
and L12M9T (= KCTC 62751T = DSM 112374T) were classified
into the genus Polaribacter as the type strains of novel
species, for which the names Polaribacter batillariae sp. nov.,
Polaribacter cellanae sp. nov., and Polaribacter pectinis sp.
nov., respectively, have been proposed.
Citations
Citations to this article as recorded by
Polaribacter uvawellassae sp. nov., a Member of the Family Flavobacteriaceae Isolated from Mud Crab (Scylla serrata) W. M. Lakshani Anuradha Wanasinghe, Wang Xin, Yuan Siliang, Dongru Qiu Current Microbiology.2025;[Epub] CrossRef
Unique skin microbiome: insights to understanding bacterial symbionts in octopuses Chelsea O. Bennice, Lauren E. Krausfeldt, W. Randy Brooks, Jose V. Lopez Frontiers in Marine Science.2024;[Epub] CrossRef
An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022–2023 Claire R. Burbick, Sara D. Lawhon, Brittany Bukouras, Giovanna Lazzerini, Erik Munson, Romney M. Humphries Journal of Clinical Microbiology.2024;[Epub] CrossRef
Polaribacter ponticola sp. nov., isolated from seawater, reclassification of Polaribacter undariae as a later heterotypic synonym of Polaribacter sejongensis, and emended description of Polaribacter sejongensis Kim et al. 2013 Ju Hye Baek, Mahrukh Butt, Dong Min Han, Jeong Min Kim, Seohui Choi, Che Ok Jeon
International Journal of Systematic and Evolutionary Microbiology
.2024;[Epub] CrossRef
Rhodobacteraceae are Prevalent and Ecologically Crucial Bacterial Members in Marine Biofloc Aquaculture Meora Rajeev, Jang-Cheon Cho Journal of Microbiology.2024; 62(11): 985. CrossRef
Validation List no. 207. Valid publication of new names and new combinations effectively published outside the IJSEM Aharon Oren, George Garrity
International Journal of Systematic and Evolutionary Microbiology
.2022;[Epub] CrossRef
Nocardioides palaemonis sp. nov. and Tessaracoccus palaemonis sp. nov., isolated from the gastrointestinal tract of lake prawn Do-Yeon Kim, In-Chul Jeong, So-Yeon Lee, Yun-Seok Jeong, Jeong Eun Han, Euon Jung Tak, June-Young Lee, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
International Journal of Systematic and Evolutionary Microbiology
.2022;[Epub] CrossRef
The COVID-19 pandemic has caused unprecedented health,
social, and economic crises worldwide. However, to date, there
is an only a limited effective treatment for this disease. Human
placenta hydrolysate (hPH) has previously been shown to be
safe and to improve the health condition in patients with hyperferritinemia
and COVID-19. In this study, we aimed to
determine the antiviral effects of hPH against SARS-CoV-2
in vitro and in vivo models and compared with Remdesivir,
an FDA-approved drug for COVID-19 treatment. To assess
whether hPH inhibited SARS-CoV-2 replication, we determined
the CC50, EC50, and selective index (SI) in Vero cells
by infection with a SARS-CoV-2 at an MOI of 0.01. Further,
groups of ferrets infected with 105.8 TCID50/ml of SARS-CoV-2
and treated with hPH at 2, 4, 6 dpi, and compared their clinical
manifestation and virus titers in respiratory tracts with
PBS control-treated group. The mRNA expression of immunerelated
cytokines was determined by qRT-PCR. hPH treatment
attenuated virus replication in a dose-dependent manner in
vitro. In a ferret infection study, treatment with hPH resulted
in minimal bodyweight loss and attenuated virus replication
in the nasal wash, turbinates, and lungs of infected ferrets.
In addition, qRT-PCR results revealed that the hPH treatment
remarkably upregulated the gene expression of type I
(IFN-α and IFN-β) and II (IFN-γ) IFNs in SARS-CoV-2 infected
ferrets. Our data collectively suggest that hPH has antiviral
efficacy against SARS-CoV-2 and might be a promising
therapeutic agent for the treatment of SARS-CoV-2 infection.
Citations
Citations to this article as recorded by
Perinatal Hypoxia and Immune System Activation in Schizophrenia Pathogenesis: Critical Considerations During COVID-19 Pandemic I Kawikova, K Hakenova, M Lebedeva, L Kleteckova, L Jakob, V Spicka, L Wen, F Spaniel, K Vales Physiological Research.2024; : S615. CrossRef
Human Placenta Extract (HPH) Suppresses Inflammatory Responses in TNF-α/IFN-γ-Stimulated HaCaT Cells and a DNCB Atopic Dermatitis (AD)-Like Mouse Model Jung Ok Lee, Youna Jang, A Yeon Park, Jung Min Lee, Kyeongsoo Jeong, So-Hyun Jeon, Hui Jin, Minju Im, Jae-Won Kim, Beom Joon Kim Journal of Microbiology and Biotechnology.2024; 34(10): 1969. CrossRef
Systematic analysis of the pharmacology of standardized extracts of human placenta T. E. Bogacheva, I. Yu. Torshin, O. A. Gromova Pharmacokinetics and Pharmacodynamics.2024; (4): 3. CrossRef
Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant Tae-Hun Kim, Sojung Bae, Sunggeun Goo, Jinjong Myoung Journal of Microbiology and Biotechnology.2023; 33(12): 1587. CrossRef
Current state-of-the-art and potential future therapeutic drugs against COVID-19 Ailong Sha, Yi Liu, Haiyan Hao Frontiers in Cell and Developmental Biology.2023;[Epub] CrossRef
SARS-CoV-2 Aerosol and Intranasal Exposure Models in Ferrets Elizabeth E. Zumbrun, Samantha E. Zak, Eric D. Lee, Philip A. Bowling, Sara I. Ruiz, Xiankun Zeng, Jeffrey W. Koehler, Korey L. Delp, Russel R. Bakken, Shannon S. Hentschel, Holly A. Bloomfield, Keersten M. Ricks, Tamara L. Clements, April M. Babka, John Viruses.2023; 15(12): 2341. CrossRef
Human placenta hydrolysates: from V.P. Filatov to the present day: Review Olga A. Gromova, Ivan Yu. Torshin, Alexander G. Chuchalin, Valeriy А. Maximov Terapevticheskii arkhiv.2022; 94(3): 434. CrossRef
To date, all species in the genus Salicibibacter have been isolated
in Korean commercial kimchi. We aimed to describe
the taxonomic characteristics of two strains, NKC5-3T and
NKC21-4T, isolated from commercial kimchi collected from
various regions in the Republic of Korea. Cells of these strains
were rod-shaped, Gram-positive, aerobic, oxidase- and catalase-
positive, non-motile, halophilic, and alkalitolerant. Both
strains, unlike other species of the genus Salicibibacter, could
not grow without NaCl. Strains NKC5-3T and NKC21-4T
could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and
grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum
8.5), respectively; they showed 97.1% 16S rRNA gene sequence
similarity to each other and were most closely related
to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively).
The genome of strain NKC5-3T was nearly 4.6 Mb in
size, with 4,456 protein-coding sequences (CDSs), whereas
NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs.
OrthoANI values between the novel strains and S. kimchii
NKC1-1T were far lower than the species demarcation threshold.
NKC5-3T and NKC21-4T clustered together to form
branches that were distinct from the other Salicibibacter species.
The major fatty acids in these strains were anteiso-C15:0
and anteiso-C17:0, and the predominant menaquinone was
menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol
(DPG), phosphatidylglycerol (PG), and
five unidentified phospholipids (PL), and those of NKC21-4T
included DPG, PG, seven unidentified PLs, and an unidentified
lipid. Both isolates had DPG, which is the first case in
the genus Salicibibacter. The genomic G + C content of strains
NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively.
Based on phenotypic, genomic, phylogenetic, and chemotaxonomic
analyses, strains NKC5-3T (= KACC 22040T
= DSM 111417T) and NKC21-4T (= KACC 22041T = DSM
111418T) represent two novel species of the genus Salicibibacter,
for which the names Salicibibacter cibarius sp. nov.
and Salicibibacter cibi sp. nov. are proposed.
Citations
Citations to this article as recorded by
Valid publication of new names and new combinations effectively published outside the IJSEM Aharon Oren, George M. Garrity
International Journal of Systematic and Evolutionary Microbiology
.2021;[Epub] CrossRef
The marine bacterium, Bacillus sp. SY-1, produced algicidal
compounds that are notably active against the bloom-forming
alga Cochlodinium polykrikoides. We isolated three algicidal
compounds and identified these as mycosubtilins with
molecular weights of 1056, 1070, and 1084 (designated MS
1056, 1070, and 1084, respectively), based on amino acid
analyses and 1H, 13C, and two-dimensional nuclear magnetic
resonance spectroscopy, including 1H-15N heteronuclear
multiple bond correlation analysis. MS 1056 contains a β-
amino acid residue with an alkyl side chain of C15, which has
not previously been seen in known mycosubtilin families.
MS 1056, 1070, and 1084 showed algicidal activities against
C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2,
and 0.6 ± 0.1 μg/ml, respectively. These compounds also
showed significant algicidal activities against other harmful
algal bloom species. In contrast, MS 1084 showed no significant
growth inhibitory effects against other organisms, including
bacteria and microalgae, although does inhibit the
growth of some fungi and yeasts. These observations imply
that the algicidal bacterium Bacillus sp. SY-1 and its algicidal
compounds could play an important role in regulating the
onset and development of harmful algal blooms in natural
environments.
Citations
Citations to this article as recorded by
Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park Journal of Microbiology.2024; 62(3): 249. CrossRef
A Bacillus subtilis strain with efficient algaecide of Microcystis aeruginosa and degradation of microcystins Yuanyuan Chen, Fei Xiong, Ying Zhu, Dongdong Zhai, Hongyan Liu, Lin Zhang, Ming Xia Frontiers in Microbiology.2024;[Epub] CrossRef
Transcriptomics‐guided identification of an algicidal protease of the marine bacterium Kordia algicida OT‐1 Kristy S. Syhapanha, David A. Russo, Yun Deng, Nils Meyer, Remington X. Poulin, Georg Pohnert MicrobiologyOpen.2023;[Epub] CrossRef
Applications-oriented algicidal efficacy research and in-depth mechanism of a novel strain Brevibacillus sp. on Microcystis aeruginosa Fen Liu, Lei Qin, Shunni Zhu, Huanjun Chen, Akram Ali Nasser Mansoor Al-Haimi, Jin Xu, Weizheng Zhou, Zhongming Wang Environmental Pollution.2023; 330: 121812. CrossRef
Algicidal Potential of the Endosymbiont Bacterial Consortium of the Seagrasses Enhalus acoroides and Thalassia hemprichii G I Setiabudi, I N D Prasetia, K L Antara, G S br. Sitepu, J M Amelia, M D K Maharani IOP Conference Series: Earth and Environmental Science.2023; 1224(1): 012039. CrossRef
Algicidal substances of Brevibacillus laterosporus and their effect on red tide organisms Shanshan Liu, Zhiming Yu, Zaixing Wu, Xihua Cao, Ruihong Cheng, Xiuxian Song Frontiers in Marine Science.2023;[Epub] CrossRef
Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound So-Ra Ko, Ve Van Le, Ankita Srivastava, Mingyeong Kang, Hee-Mock Oh, Chi-Yong Ahn Marine Pollution Bulletin.2023; 186: 114397. CrossRef
Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation Jae-Wook Oh, Suraj Shiv Charan Pushparaj, Manikandan Muthu, Judy Gopal Plants.2023; 12(23): 3936. CrossRef
Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms Kathryn J. Coyne, Yanfei Wang, Gretchen Johnson Frontiers in Microbiology.2022;[Epub] CrossRef
Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa Fen Liu, Shunni Zhu, Lei Qin, Pingzhong Feng, Jin Xu, Weizheng Zhou, Zhongming Wang Biochemical Engineering Journal.2022; 185: 108525. CrossRef
Newcastle disease, designated a class A disease of poultry by
the Office international des epizooties (OIE), is an acute infection
caused by Newcastle disease virus (NDV). The merging
of the envelope of NDV with the membrane of a target
host cell is the key step in the infection pathway, which is driven
by the concerted action of two glycoproteins: haemagglutinin-
neuraminidase (HN) and fusion (F) protein. When
the HN protein binds to the host cell surface receptor, the F
protein is activated to mediate fusion. The three-dimensional
structure of the F protein has been reported to have low
electron density between the DIII domain and the HRB domain,
and this electron-poor region is defined as the HRB
linker. To clarify the contributing role of the HRB linker in
the NDV F protein-mediated fusion process, 6 single amino
acid mutants were obtained by site-directed mutagenesis of
the HRB linker. The expression of the mutants and their abilities
to mediate fusion were analysed, and the key amino acids
in the HRB linker were identified as L436, E439, I450, and
S453, as they can modulate the fusion ability or expression
of the active form to a certain extent. The data shed light on
the crucial role of the F protein HRB linker in the acquisition
of a normal fusogenic phenotype.
Citations
Citations to this article as recorded by
Evaluation of Newcastle disease virus LaSota strain attenuated by codon pair deoptimization of the HN and F genes for in ovo vaccination Fatma Eldemery, Changbo Ou, Taejoong Kim, Stephen Spatz, John Dunn, Robert Silva, Qingzhong Yu Veterinary Microbiology.2023; 277: 109625. CrossRef
Prevalence and Molecular Characterization of Bovine Parainfluenza Virus Type 3 in Cattle Herds in China Yunxin Ren, Cheng Tang, Hua Yue Animals.2023; 13(5): 793. CrossRef
Direct interaction of the molecular chaperone GRP78/BiP with the Newcastle disease virus hemagglutinin-neuraminidase protein plays a vital role in viral attachment to and infection of culture cells Chenxin Han, Ziwei Xie, Yadi Lv, Dingxiang Liu, Ruiai Chen Frontiers in Immunology.2023;[Epub] CrossRef
Adaptor complex-mediated trafficking of Newcastle disease virus fusion protein is regulated by the YLMY motif of its cytoplasmic tail Yawen Bu, Qingyuan Teng, Delan Feng, Rong Liang, Haoran Wang, Xuehui Zhang, Xiao Li, Wenfeng Jia, Jia Xue, Ye Zhao, Guozhong Zhang Virulence.2022; 13(1): 1849. CrossRef
YLMY Tyrosine Residue within the Cytoplasmic Tail of Newcastle Disease Virus Fusion Protein Regulates Its Surface Expression to Modulate Viral Budding and Pathogenicity Yawen Bu, Qingyuan Teng, Delan Feng, Lu Sun, Jia Xue, Guozhong Zhang, Peter Pelka Microbiology Spectrum.2021;[Epub] CrossRef