Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "nodulation"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov'ts
Functional analysis of Vibrio vulnificus RND efflux pumps homologous to Vibrio cholerae VexAB and VexCD, and to Escherichia coli AcrAB
Seunghwa Lee , Ji-Hyun Yeom , Sojin Seo , Minho Lee , Sarang Kim , Jeehyeon Bae , Kangseok Lee , Jihwan Hwang
J. Microbiol. 2015;53(4):256-261.   Published online March 4, 2015
DOI: https://doi.org/10.1007/s12275-015-5037-0
  • 63 View
  • 0 Download
  • 9 Crossref
AbstractAbstract
Resistance-nodulation-division (RND) efflux pumps are associated with multidrug resistance in many gram-negative pathogens. The genome of Vibrio vulnificus encodes 11 putative RND pumps homologous to those of Vibrio cholerae and Escherichia coli. In this study, we analyzed three putative RND efflux pumps, showing homology to V. cholerae VexAB and VexCD and to E. coli AcrAB, for their functional roles in multidrug resistance of V. vulnificus. Deletion of the vexAB homolog resulted in increased susceptibility of V. vulnificus to bile acid, acriflavine, ethidium bromide, and erythromycin, whereas deletion of acrAB homologs rendered V. vulnificus more susceptible to acriflavine only. Deletion of vexCD had no effect on susceptibility of V. vulnificus to these chemicals. Upon exposure to these antibacterial chemicals, expression of tolCV1 and tolCV2, which are putative outer membrane factors of RND efflux pumps, was induced, whereas expression levels of vexAB, vexCD, and acrAB homologs were not significantly changed. Our results show that the V. vulnificus homologs of VexAB largely contributed to in vitro antimicrobial resistance with a broad substrate specificity that was partially redundant with the AcrAB pump homologs.

Citations

Citations to this article as recorded by  
  • Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae
    Sanath Kumar, Manjusha Lekshmi, Jerusha Stephen, Anely Ortiz-Alegria, Matthew Ayitah, Manuel F. Varela
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence
    Jerusha Stephen, Manjusha Lekshmi, Parvathi Ammini, Sanath H. Kumar, Manuel F. Varela
    Microorganisms.2022; 10(2): 382.     CrossRef
  • TolCV1 Has Multifaceted Roles During Vibrio vulnificus Infection
    Yue Gong, Rui Hong Guo, Joon Haeng Rhee, Young Ran Kim
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • The mechanisms that regulate Vibrio parahaemolyticus virulence gene expression differ between pathotypes
    Nicholas Petronella, Jennifer Ronholm
    Microbial Genomics .2018;[Epub]     CrossRef
  • ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function
    Wen-Jung Lu, Hsuan-Ju Lin, Thamarai Janganan, Cheng-Yi Li, Wei-Chiang Chin, Vassiliy Bavro, Hong-Ting Lin
    International Journal of Molecular Sciences.2018; 19(4): 1000.     CrossRef
  • Contribution of efflux systems to the detergent resistance, cytotoxicity, and biofilm formation of Vibrio vulnificus
    Chung-Cheng Lo, Pei-Ting Lin, Chuan Chiang-Ni, Kuan-Hua Lin, Shin-Luen Lee, Tzu-Fang Kuo, Horng-Ren Lo
    Gene Reports.2017; 9: 115.     CrossRef
  • Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection
    Jeticia R. Sistrunk, Kourtney P. Nickerson, Rachael B. Chanin, David A. Rasko, Christina S. Faherty
    Clinical Microbiology Reviews.2016; 29(4): 819.     CrossRef
  • MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium
    Saemee Song, Boeun Lee, Ji-Hyun Yeom, Soonhye Hwang, Ilnam Kang, Jang-Cheon Cho, Nam-Chul Ha, Jeehyeon Bae, Kangseok Lee, Yong-Hak Kim, S. M. Payne
    Infection and Immunity.2015; 83(11): 4266.     CrossRef
  • Molecular architecture of the bacterial tripartite multidrug efflux pump focusing on the adaptor bridging model
    Saemee Song, Jin-Sik Kim, Kangseok Lee, Nam-Chul Ha
    Journal of Microbiology.2015; 53(6): 355.     CrossRef
Two Rhizobacterial Strains, Individually and in Interactions with Rhizobium sp., Enhance Fusarial Wilt Control, Growth, and Yield in Pigeon Pea
Swarnalee Dutta , Pranjal Morang , Nishanth Kumar S , B.S. Dileep Kumar
J. Microbiol. 2014;52(9):778-784.   Published online September 2, 2014
DOI: https://doi.org/10.1007/s12275-014-3496-3
  • 61 View
  • 0 Download
  • 7 Crossref
AbstractAbstract
A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.

Citations

Citations to this article as recorded by  
  • Population and diversity of pigeonpea rhizobia from the Indo-Gangetic plains of India
    Shiv Charan Kumar, Prachi Singh, Murugan Kumar, Mahendra Vikram Singh Rajawat, Waquar Akhter Ansari, Desiraju Lakshmi Narsimha Rao, Anil Kumar Saxena
    Symbiosis.2023; 90(2): 213.     CrossRef
  • Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes
    Glaciela Kaschuk, André Carlos Auler, Crislaine Emidio Vieira, Felix Dapore Dakora, Sanjay K. Jaiswal, Sonia Purin da Cruz
    Brazilian Journal of Microbiology.2022; 53(4): 2027.     CrossRef
  • An improved high-throughput method for assessing the impact of bioformulation on plant parameters: Case study with pigeonpea seeds
    Sakshi Tewari, Shilpi Sharma
    Physiological and Molecular Plant Pathology.2021; 115: 101657.     CrossRef
  • Rhizobial-metabolite based biocontrol of fusarium wilt in pigeon pea
    Sakshi Tewari, Shilpi Sharma
    Microbial Pathogenesis.2020; 147: 104278.     CrossRef
  • Tea root brown-rot fungus disease reduction and yield recovery with rhizobacteria inoculation in both nursery and field trials
    P. Morang, S.P. Devi, D.K. Jha, B.K. Dutta, B.S. Dileep Kumar
    Rhizosphere.2018; 6: 89.     CrossRef
  • Lettuce and rhizosphere microbiome responses to growth promotingPseudomonasspecies under field conditions
    Matheus A. P. Cipriano, Manoeli Lupatini, Lucilene Lopes-Santos, Márcio J. da Silva, Luiz F. W. Roesch, Suzete A. L. Destéfano, Sueli S. Freitas, Eiko E. Kuramae, Angela Sessitsch
    FEMS Microbiology Ecology.2016; 92(12): fiw197.     CrossRef
  • Bradyrhizobium yuanmingense related strains form nitrogen-fixing symbiosis with Cajanus cajan L. in Dominican Republic and are efficient biofertilizers to replace N fertilization
    Juan Araujo, César-Antonio Díaz-Alcántara, Encarna Velázquez, Beatriz Urbano, Fernando González-Andrés
    Scientia Horticulturae.2015; 192: 421.     CrossRef
Identification, Origin, and Evolution of Leaf Nodulating Symbionts of Sericanthe (Rubiaceae)
Benny Lemaire , Elmar Robbrecht , Braam van Wyk , Sandra Van Oevelen , Brecht Verstraete , Els Prinsen , Erik Smets , Steven Dessein
J. Microbiol. 2011;49(6):935-941.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1163-5
  • 40 View
  • 0 Download
  • 24 Scopus
AbstractAbstract
Bacterial leaf symbiosis is an intimate association between bacteria and plants in which endosymbionts are housed within leaf nodules. This phenomenon has been reported in three genera of Rubiaceae (Pavetta, Psychotria, and Sericanthe), but the bacterial partner has only been identified in Psychotria and Pavetta. Here we report the identification of symbiotic bacteria in two leaf nodulating Sericanthe species. Using 16S rRNA data and common housekeeping genetic markers (recA and gyrB) we studied the phylogenetic relationships of bacterial endosymbionts in Rubiaceae. Endosymbionts of leaf nodulating Rubiaceae were found to be closely related and were placed as a monophyletic group within the genus Burkholderia (β-Proteobacteria). The phylogenetic analyses revealed a pattern of strict host specificity and placed the two investigated endosymbionts at two distinct positions in the topology of the tree, suggesting at least two different evolutionary origins. The degree of sequence divergence between the Sericanthe endosymbionts and their relatives was large enough to propose the Sericanthe endosymbionts as new species (‘Candidatus Burkholderia andongensis’ and ‘Candidatus Burkholderia petitii’). In a second part of this study, the pylogenetic relationships among nodulating and non-nodulating Sericanthe species were investigated using sequence data from six chloroplast regions (rps16, trnG, trnL-trnF, petD, petA-psbJ, and atpI-atpH). Overall, genetic variation among the plastid markers was insufficient to enable phylogenetic estimation. However, our results could not rule out the possibility that bacterial leaf symbiosis originated once in a common ancestor of the Sericanthe species.
The GntR-Type Regulators GtrA and GtrB Affect Cell Growth and Nodulation of Sinorhizobium meliloti
Yi Wang , Ai-Min Chen , Ai-Yuan Yu , Li Luo , Guan-Qiao Yu , Jia-Bi Zhu , Yan-Zhang Wang
J. Microbiol. 2008;46(2):137-145.   Published online June 11, 2008
DOI: https://doi.org/10.1007/s12275-007-0145-0
  • 39 View
  • 0 Download
  • 8 Scopus
AbstractAbstract
GntR-type transcriptional regulators are involved in the regulation of various biological processes in bacteria, but little is known about their functions in Sinorhizobium meliloti. Here, we identified two GntR-type transcriptional regulator genes, gtrA and gtrB, from S. meliloti strain 1021. Both the gtrA1 mutant and the gtrB1 mutant had lower growth rates and maximal cell yields on rich and minimal media, as well as lower cell motility on swimming plates, than did the wild-type strain. Both mutants were also symbiotically deficient. Alfalfa plants inoculated with wild-type strain 1021 formed pink elongated nodules on primary roots. In contrast, the plants inoculated with the gtrA1 and gtrB1 mutants formed relatively smaller, round, light pink nodules mainly on lateral roots. During the first 3~4 weeks post-inoculation, the plants inoculated with the gtrA1 and gtrB1 mutants were apparently stunted, with lower levels of nitrogenase activity, but there was a remarkable increase in the number of nodules compared to those inoculated with the wild-type strain. Moreover, the gtrA1 and gtrB1 mutants not only showed delayed nodulation, but also showed markedly reduced nodulation competition. These results demonstrated that both GtrA and GtrB affect cell growth and effective symbiosis of S. meliloti. Our work provides new insight into the functions of GntR-like transcriptional regulators.

Journal of Microbiology : Journal of Microbiology
TOP