Journal Article
- Assembly mechanisms of soil bacterial communities in subalpine coniferous forests on the Loess Plateau, China
-
Pengyu Zhao , Jinxian Liu , Tong Jia , Zhengming Luo , Cui Li , Baofeng Chai
-
J. Microbiol. 2019;57(6):461-469. Published online May 27, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8373-7
-
-
58
View
-
0
Download
-
7
Web of Science
-
6
Crossref
-
Abstract
-
Microbial community assembly is affected by trade-offs between
deterministic and stochastic processes. However, the
mechanisms underlying the relative influences of the two
processes remain elusive. This knowledge gap limits our ability
to understand the effects of community assembly processes
on microbial community structures and functions. To better
understand community assembly mechanisms, the community
dynamics of bacterial ecological groups were investigated
based on niche breadths in 23 soil plots from subalpine coniferous
forests on the Loess Plateau in Shanxi, China. Here,
the overall community was divided into the ecological groups
that corresponded to habitat generalists, ‘other taxa’ and specialists.
Redundancy analysis based on Bray-Curtis distances
(db-RDA) and multiple regression tree (MRT) analysis indicated
that soil organic carbon (SOC) was a general descriptor
that encompassed the environmental gradients by which the
communities responded to, because it can explain more significant
variations in community diversity patterns. The three
ecological groups exhibited different niche optima and degrees
of specialization (i.e., niche breadths) along the SOC
gradient, suggesting the presence of a gradient in tolerance
for environmental heterogeneity. The inferred community
assembly processes varied along the SOC gradient, wherein
a transition was observed from homogenizing dispersal to
variable selection that reflects increasing deterministic processes.
Moreover, the ecological groups were inferred to perform
different community functions that varied with community
composition, structure. In conclusion, these results
contribute to our understanding of the trade-offs between
community assembly mechanisms and the responses of community
structure and function to environmental gradients.
-
Citations
Citations to this article as recorded by

- Stochastic Processes Dominate the Assembly of Soil Bacterial Communities of Land Use Patterns in Lesser Khingan Mountains, Northeast China
Junnan Ding, Shaopeng Yu
Life.2024; 14(11): 1407. CrossRef - Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage
Yiming Yuan, Guangyi Zhang, Hongyuan Fang, Haifeng Guo, Yongkang Li, Zezhuang Li, Siwei Peng, Fuming Wang
Environmental Science and Pollution Research.2024; 31(9): 13075. CrossRef - Community assembly of bacterial generalists and specialists and their network characteristics in different altitudinal soils on Fanjing Mountain in Southwest China
Zhenming Zhang, Xianliang Wu, Jiachun Zhang, Yingying Liu, Wenmin Luo, Guiting Mou
CATENA.2024; 238: 107863. CrossRef - Ammonia-oxidizing archaea adapted better to the dark, alkaline oligotrophic karst cave than their bacterial counterparts
Qing Li, Xiaoyu Cheng, Xiaoyan Liu, Pengfei Gao, Hongmei Wang, Chuntian Su, Qibo Huang
Frontiers in Microbiology.2024;[Epub] CrossRef - Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant
Kaijia Ren, Hongxia Ming, Siyu Liu, Xianlong Lang, Yuan Jin, Jingfeng Fan
Water Science & Technology.2024; 90(1): 1. CrossRef - Kalidium cuspidatum colonization changes the structure and function of salt crust microbial communities
Yaqing Pan, Peng Kang, Yaqi Zhang, Xinrong Li
Environmental Science and Pollution Research.2024; 31(13): 19764. CrossRef
Research Support, Non-U.S. Gov't
- The Use of Pseudomonas fluorescens P13 to Control Sclerotinia Stem Rot (Sclerotinia sclerotiorum) of Oilseed Rape
-
Hui Li , Huaibo Li , Yan Bai , Jing Wang , Ming Nie , Bo Li , Ming Xiao
-
J. Microbiol. 2011;49(6):884-889. Published online December 28, 2011
-
DOI: https://doi.org/10.1007/s12275-011-1261-4
-
-
38
View
-
0
Download
-
28
Scopus
-
Abstract
-
Sclerotinia stem rot (SSR) caused by the fungus Sclerotinia sclerotiorum has been an increasing threat to oilseed rape (Brassica napus L.) cultivation. Efficient and environment‐friendly treatments are much needed. Here we focus on microbial control. The Pseudomonas fluorescens P13 that was isolated from oilseed rape cultivation soil, proved to be a useful biocontrol strain for application. Morphology, physiological and biochemical tests and 16S rDNA analysis demonstrated that it was P. fluorescens P13 and that it had a broad antagonistic spectrum, significantly lessening the mycelial growth of S. sclerotiorum by 84.4% and suppressing sclerotial formation by 95‐100%. Scanning electron microscopy studies attested that P13 deformed S. sclerotiorum mycelia when they were cultured together. P13 did not produce chitinase but did produce hydrogen cyanide (HCN) which was likely one of the antagonistic mechanisms. The density of P13 remained at a high level (≥106 CFU/ml) during 5 weeks in the rhizosphere soil and roots. P13 reduced SSR severity at least by 59% in field studies and also promoted seedling growth (p<0.05) at the seedling stage. From these data, our work provided evidence that P13 could be a good alternative biological resource for biocontrol of S. sclerotiorum.