Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "mecA"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Mammaliicoccus sciuri's Pan-Immune System and the Dynamics of Horizontal Gene Transfer Among Staphylococcaceae: a One-Health CRISPR Tale
Allan de Carvalho, Marcia Giambiagi-deMarval, Ciro César Rossi
J. Microbiol. 2024;62(9):775-784.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00156-7
  • 82 View
  • 0 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract
Recently emancipated from the Staphylococcus genus due to genomic differences, Mammaliicoccus sciuri, previously classified as an occasional pathogen, emerges as a significant player in the landscape of resistance gene dissemination among Staphylococcaceae. Despite its classification, its role remained enigmatic. In this study, we delved into the genomic repertoire of M. sciuri to unravel its contribution to resistance and virulence gene transfer in the context of One Health. Through comprehensive analysis of publicly available genomes, we unveiled a diverse pan-immune system adept at defending against exogenous genetic elements, yet concurrently fostering horizontal gene transfer (HGT). Specifically, exploration of CRISPR-Cas systems, with spacer sequences as molecular signatures, elucidated a global dissemination pattern spanning environmental, animal, and human hosts. Notably, we identified the integration of CRISPR-Cas systems within SCCmecs (Staphylococcal Cassette Chromosome mec), harboring key genes associated with pathogenicity and resistance, especially the methicillin resistance gene mecA, suggesting a strategic adaptation to outcompete other mobile genetic elements. Our findings underscored M. sciuri's active engagement in HGT dynamics and evolutionary trajectories within Staphylococcaceae, emphasizing its central role in shaping microbial communities and highlighting the significance of understanding its implications in the One Health framework, an interdisciplinary approach that recognizes the interconnectedness of human, animal, and environmental health to address global health challenges.

Citations

Citations to this article as recorded by  
  • From Farm to Community: Dispersal of Potentially Pathogenic Staphylococcus and Mammaliicoccus Species and Antimicrobial Resistance Across Shared Environments
    Faizan Ahmad, Samuel Sathler Martuchelle, Ana Luisa Andrade-Oliveira, Vitor Emanuel Lanes Viana, Maria Antônia Silva Melo Sousa, Felipe Sicchierolli da Silveira, Marisa Alves Nogueira-Diaz, Monalessa Fábia Pereira, Marcia Giambiagi-deMarval, Ciro César Ro
    Current Microbiology.2025;[Epub]     CrossRef
  • Genomic insights into multidrug and heavy metal resistance in Chryseobacterium sp. BI5 isolated from sewage sludge
    Mrinmoy Patra, Anand Kumar Pandey, Suresh Kumar Dubey
    Total Environment Microbiology.2025; 1(1): 100005.     CrossRef
Identification and Methicillin Resistance of Coagulase-Negative Staphylococci Isolated from Nasal Cavity of Healthy Horses
Jolanta Karakulska , Karol Fijałkowski , Paweł Nawrotek , Anna Pobucewicz , Filip Poszumski , Danuta Czernomysy-Furowicz
J. Microbiol. 2012;50(3):444-451.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-1550-6
  • 46 View
  • 0 Download
  • 31 Scopus
AbstractAbstract
The aim of this study was an analysis of the staphylococcal flora of the nasal cavity of 42 healthy horses from 4 farms, along with species identification of CoNS isolates and determination of resistance to 18 antimicrobial agents, particularly phenotypic and genotypic methicillin resistance. From the 81 swabs, 87 staphylococci were isolated. All isolates possessed the gap gene but the coa gene was not detected in any of these isolates. Using PCR-RFLP of the gap gene, 82.8% of CoNS were identified: S. equorum (14.9%), S. warneri (14.9%), S. sciuri (12.6%), S. vitulinus (12.6%), S. xylosus (11.5% ), S. felis (5.7%), S. haemolyticus (3.4%), S. simulans(3.4%), S. capitis (1.1%), S. chromogenes (1.1%), and S. cohnii subsp. urealyticus (1.1%). To our knowledge, this was the first isolation of S. felis from a horse. The species identity of the remaining Staphylococcus spp. isolates (17.2%) could not be determined from the gap gene PCR-RFLP analysis and 16S rRNA gene sequencing data. Based on 16S-23S intergenic transcribed spacer PCR, 11 different ITS-PCR profiles were identified for the 87 analyzed isolates. Results of API Staph were consistent with molecular identification of 17 (19.5%) isolates. Resistance was detected to only 1 or 2 of the 18 antimicrobial agents tested in the 17.2% CoNS isolates, including 6.9% MRCoNS. The mecA gene was detected in each of the 5 (5.7%) phenotypically cefoxitin-resistant isolates and in 12 (13.8%) isolates susceptible to cefoxitin. In total, from 12 horses (28.6%), 17 (19.5%) MRCoNS were isolated. The highest percentage of MRCoNS was noted among S. sciuri isolates (100%).

Journal of Microbiology : Journal of Microbiology
TOP