Research Support, N.I.H., Extramural
- Sulfolipid Accumulation in Mycobacterium tuberculosis Disrupted in the mce2 Operon
-
Olivera Marjanovic , Anthony T. Iavarone , Lee W. Riley
-
J. Microbiol. 2011;49(3):441-447. Published online June 30, 2011
-
DOI: https://doi.org/10.1007/s12275-011-0435-4
-
-
49
View
-
0
Download
-
23
Crossref
-
Abstract
-
Mycobacterium tuberculosis, the causative agent of tuberculosis, has a lipid-rich cell wall that serves as an effective barrier against drugs and toxic host cell products, which may contribute to the organism’s persistence in a host. M. tuberculosis contains four homologous operons called mce (mce1-4) that encode putative ABC transporters involved in lipid importation across the cell wall. Here, we analyzed the lipid composition of M. tuberculosis disrupted in the mce2 operon. High resolution mass spectrometric and thin layer chromatographic analyses of the mutant’s cell wall lipid extracts showed accumulation of SL-1 and SL1278 molecules. Radiographic quantitative analysis and densitometry revealed 2.9, 3.9 and 9.8-fold greater amount of [35S] SL-1 in the mce2 operon mutant compared to the wild type M. tuberculosis during the early/mid logarithmic, late logarithmic and stationary phase of growth in liquid broth, respectively. The amount of [35S] SL1278 in the mutant also increased progressively over the same growth phases. The expression of the mce2 operon genes in the wild type strain progressively increased from the logarithmic to the stationary phase of bacterial growth in vitro, which inversely correlated with the proportion of radiolabel incorporation into SL-1 and SL1278 at these phases. Since the mce2 operon is regulated in wild type M. tuberculosis, its cell wall may undergo changes in SL-1 and SL1278 contents during a natural course of infection and this may serve as an important adaptive strategy for M. tuberculosis to maintain persistence in a host.
-
Citations
Citations to this article as recorded by

-
Diversification of gene content in the
Mycobacterium tuberculosis
complex is determined by phylogenetic and ecological signatures
Taiana Tainá Silva-Pereira, Naila Cristina Soler-Camargo, Ana Marcia Sá Guimarães, Se-Ran Jun
Microbiology Spectrum.2024;[Epub] CrossRef -
An Update on
Mycobacterium Tuberculosis
Lipoproteins
María M Bigi, Marina A Forrellad, Julia S García, Federico C Blanco, Cristina L Vázquez, Fabiana Bigi
Future Microbiology.2023; 18(18): 1381. CrossRef - Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study
Dipanwita Maity, Dheeraj Singh, Amitava Bandhu
Molecular Diversity.2023; 27(6): 2523. CrossRef - An In Vivo Model of Separate M. tuberculosis Phagocytosis by Neutrophils and Macrophages: Gene Expression Profiles in the Parasite and Disease Development in the Mouse Host
Elena Kondratieva, Konstantin Majorov, Artem Grigorov, Yulia Skvortsova, Tatiana Kondratieva, Elvira Rubakova, Irina Linge, Tatyana Azhikina, Alexander Apt
International Journal of Molecular Sciences.2022; 23(6): 2961. CrossRef - Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall
Laura I. Klepp, Julia Sabio y Garcia, FabianaBigi
Tuberculosis.2022; 132: 102162. CrossRef - The rate and role of pseudogenes of the Mycobacterium tuberculosis complex
Naila Cristina Soler-Camargo, Taiana Tainá Silva-Pereira, Cristina Kraemer Zimpel, Maurício F. Camacho, André Zelanis, Alexandre H. Aono, José Salvatore Patané, Andrea Pires dos Santos, Ana Marcia Sá Guimarães
Microbial Genomics
.2022;[Epub] CrossRef - Role of Ring6 in the Function of the E. coli MCE Protein LetB
Casey Vieni, Nicolas Coudray, Georgia L. Isom, Gira Bhabha, Damian C. Ekiert
Journal of Molecular Biology.2022; 434(7): 167463. CrossRef - Commonalities of Mycobacterium tuberculosis Transcriptomes in Response to Defined Persisting Macrophage Stresses
Catherine Vilchèze, Bo Yan, Rosalyn Casey, Suzie Hingley-Wilson, Laurence Ettwiller, William R. Jacobs
Frontiers in Immunology.2022;[Epub] CrossRef - Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis
Pooja Asthana, Dhirendra Singh, Jan Skov Pedersen, Mikko J. Hynönen, Ramita Sulu, Abhinandan V. Murthy, Mikko Laitaoja, Janne Jänis, Lee W. Riley, Rajaram Venkatesan
IUCrJ.2021; 8(5): 757. CrossRef - Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope
Mary Jackson, Casey M. Stevens, Lei Zhang, Helen I. Zgurskaya, Michael Niederweis
Chemical Reviews.2021; 121(9): 5124. CrossRef - Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis
Dipanwita Maity, Rajasekhara Reddy Katreddy, Amitava Bandhu
Molecular Biotechnology.2021; 63(3): 200. CrossRef - The Actinobacterial mce Operon: Structure and Functions
M. V. Zaychikova, V. N. Danilenko
Biology Bulletin Reviews.2020; 10(6): 520. CrossRef - Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection
Zahra Hemati, Abdollah Derakhshandeh, Masoud Haghkhah, Kundan Kumar Chaubey, Saurabh Gupta, Manju Singh, Shoorvir V. Singh, Kuldeep Dhama
Veterinary Quarterly.2019; 39(1): 65. CrossRef - Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis
Guillaume Sapriel, Roland Brosch, Eric Bapteste
Genome Biology and Evolution.2019; 11(8): 2420. CrossRef - MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis
Georgia L. Isom, Nathaniel J. Davies, Zhi-Soon Chong, Jack A. Bryant, Mohammed Jamshad, Maria Sharif, Adam F. Cunningham, Timothy J. Knowles, Shu-Sin Chng, Jeffrey A. Cole, Ian R. Henderson
Scientific Reports.2017;[Epub] CrossRef - Molecular and functional analysis of the mce4 operon in Mycobacterium smegmatis
Julia García‐Fernández, Kadamba Papavinasasundaram, Beatriz Galán, Christopher M. Sassetti, José L. García
Environmental Microbiology.2017; 19(9): 3689. CrossRef - Unravelling the pleiotropic role of the MceGATPase in Mycobacterium smegmatis
Julia García‐Fernández, Kadamba Papavinasasundaram, Beatriz Galán, Christopher M. Sassetti, José L. García
Environmental Microbiology.2017; 19(7): 2564. CrossRef - Lipid metabolism in mycobacteria—Insights using mass spectrometry-based lipidomics
Peter J. Crick, Xue Li Guan
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.2016; 1861(1): 60. CrossRef - Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development
Rebeca Bailo, Apoorva Bhatt, José A. Aínsa
Biochemical Pharmacology.2015; 96(3): 159. CrossRef - Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis
Marina Andrea Forrellad, María Verónica Bianco, Federico Carlos Blanco, Javier Nuñez, Laura Inés Klepp, Cristina Lourdes Vazquez, María de la Paz Santangelo, Rosana Valeria Rocha, Marcelo Soria, Paul Golby, Maximiliano Gabriel Gutierrez, Fabiana Bigi
BMC Microbiology.2013;[Epub] CrossRef - Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis
Danny Geerdink, Bjorn ter Horst, Marco Lepore, Lucia Mori, Germain Puzo, Anna K. H. Hirsch, Martine Gilleron, Gennaro de Libero, Adriaan J. Minnaard
Chem. Sci..2013; 4(2): 709. CrossRef - Virulence factors of theMycobacterium tuberculosiscomplex
Marina A. Forrellad, Laura I. Klepp, Andrea Gioffré, Julia Sabio y García, Hector R. Morbidoni, María de la Paz Santangelo, Angel A. Cataldi, Fabiana Bigi
Virulence.2013; 4(1): 3. CrossRef - Characterization of Sulfolipids of Mycobacterium tuberculosis H37Rv by Multiple-Stage Linear Ion-Trap High-Resolution Mass Spectrometry with Electrospray Ionization Reveals That the Family of Sulfolipid II Predominates
Elizabeth R. Rhoades, Cassandra Streeter, John Turk, Fong-Fu Hsu
Biochemistry.2011; 50(42): 9135. CrossRef