Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "immunogenicity"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Efficacy of A/H1N1/2009 split inactivated influenza A vaccine (GC1115) in mice and ferrets
Hae Jung Han , Min-Suk Song , Su-Jin Park , Han Yeul Byun , Norbert John C. Robles , Suk-Hoon Ha , Young Ki Choi
J. Microbiol. 2019;57(2):163-169.   Published online January 31, 2019
DOI: https://doi.org/10.1007/s12275-019-8504-1
  • 57 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
To evaluate the efficacy of a non-adjuvant A/H1N1/2009 influenza A vaccine (GC1115), we demonstrated the immunogenicity and protective efficacy of GC1115 in mouse and ferret models. The immunogenicity of GC1115 was confirmed after intramuscular administration of 1.875, 3.75, 7.5, and 15 μg hemagglutinin antigen (HA) in mice and 7.5, 15, and 30 μg HA in ferrets at 3-week intervals. A single immunization with GC1115 at HA doses > 7.5 μg induced detectable seroconversion in most mice, and all mice given a second dose exhibited high antibody responses in a dose-dependent manner. The mice in the mock (PBS) and 1.875 μg HA immunized groups succumbed by 13 days following A/California/ 04/09 infection, while all mice in groups given more than 3.75 μg HA were protected from lethal challenge with the A/California/04/09 virus. In ferrets, although immunization with even a single dose of 15 or 30 μg of HA induced detectable HI antibodies, all ferrets given two doses of vaccine seroconverted and exhibited HI titers greater than 80 units. Following challenge with A/California/04/09, the mock (PBS) immunized ferrets showed influenza-like clinical symptoms, such as increased numbers of coughs, elevated body temperature, and body weight loss, for 7 days, while GC1115- immunized ferrets showed attenuated clinical symptoms only for short time period (3–4 days). Further, GC1115-immunized ferrets displayed significantly lower viral titers in the upper respiratory tract (nasal cavity) than the mock vaccinated group in a dose-dependent manner. Taken together, this study demonstrates the immunogenicity and protective efficacy of GC1115 as a non-adjuvanted vaccine.

Citations

Citations to this article as recorded by  
  • Dose sparing enabled by immunization with influenza vaccine using orally dissolving film
    Keon-Woong Yoon, Ki Back Chu, Gi-Deok Eom, Jie Mao, Su In Heo, Fu-Shi Quan
    International Journal of Pharmaceutics.2024; 667: 124945.     CrossRef
  • Ferrets as a model for tuberculosis transmission
    Tuhina Gupta, Naveen Somanna, Thomas Rowe, Monica LaGatta, Shelly Helms, Simon Odera Owino, Tomislav Jelesijevic, Stephen Harvey, Wayne Jacobs, Thomas Voss, Kaori Sakamoto, Cheryl Day, Christopher Whalen, Russell Karls, Biao He, S. Mark Tompkins, Abhijeet
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • AddaVax Formulated with PolyI:C as a Potential Adjuvant of MDCK-based Influenza Vaccine Enhances Local, Cellular, and Antibody Protective Immune Response in Mice
    Xuanxuan Nian, Jiayou Zhang, Tao Deng, Jing Liu, Zheng Gong, Chuanshuo Lv, Luyao Yao, Junying Li, Shihe Huang, Xiaoming Yang
    AAPS PharmSciTech.2021;[Epub]     CrossRef
  • The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development
    Melissa Rioux, Magen E. Francis, Cynthia L. Swan, Anni Ge, Andrea Kroeker, Alyson A. Kelvin
    Viruses.2021; 13(4): 678.     CrossRef
Research Support, Non-U.S. Gov't
The Production and Immunogenicity of Human Papillomavirus Type 58 Virus-like Particles Produced in Saccharomyces cerevisiae
Hye-Lim Kwag , Hyoung Jin Kim , Don Yong Chang , Hong-Jin Kim
J. Microbiol. 2012;50(5):813-820.   Published online November 4, 2012
DOI: https://doi.org/10.1007/s12275-012-2292-1
  • 46 View
  • 0 Download
  • 15 Scopus
AbstractAbstract
Human papillomavirus (HPV) is the cause of most cases of cervical cancer. HPV type 58 (HPV58) is the second most frequent cause of cervical cancer and high-grade squamous intraepithelial lesions (HSIL) in Asia and South / Central America, respectively. However, there is no vaccine against HPV58, although there are commercially available vaccines against HPV16 and 18. In this study, we produced HPV58 L1 protein from Saccharomyces cerevisiae, and investigated its immunogenicity. We first determined the optimum period of culture for obtaining HPV58 L1. We found that a considerable portion of the HPV58 L1 resulting from 48 h culture cannot be recovered by purification, while the HPV58 L1 resulting from 144 h culture is recovered efficiently: the yield of HPV58 L1 finally recovered from 144 h culture was 2.3 times higher than that from 48 h culture, although the production level of L1 protein from 144 h culture was lower than that from 48 h culture. These results indicate that the proportion of functional L1 protein from 144 h-cultured cells is significantly higher than that of 48 h-cultured cells. The HPV58 L1 purified from the 144 h culture was correctly assembled into structures similar to naturally occurring HPV virions. Immunization with the HPV58 L1 efficiently elicited anti-HPV58 neutralizing antibodies and antigen-specific CD4+ and CD8+ T cell proliferations, without the need for adjuvant. Our findings provide a convenient method for obtaining substantial amounts of highly immunogenic HPV58 L1 from S. cerevisiae.
Journal Article
Outer Membrane Protein H for Protective Immunity Against Pasteurella multocida
Jeongmin Lee , Young Bong Kim , Moosik Kwon
J. Microbiol. 2007;45(2):179-184.
DOI: https://doi.org/2514 [pii]
  • 44 View
  • 0 Download
AbstractAbstract
Pasteurella multocida, a Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. For the development of recombinant subunit vaccine against P. multocida, we cloned and analyzed the gene for outer membrane protein H (ompH) from a native strain of Pasteurella multocida in Korea. The OmpH had significant similarity in both primary and secondary structure with those of other serotypes. The full-length, and three short fragments of ompH were expressed in E. coli and the recombinant OmpH proteins were purified, respectively. The recombinant OmpH proteins were antigenic and detectable with antisera produced by either immunization of commercial vaccine for respiratory disease or formalin-killed cell. Antibodies raised against the full-length OmpH provided strong protection against P. multocida, however, three short fragments of recombinant OmpHs, respectively, showed slightly lower protection in mice challenge. The recombinant OmpH might be a useful vaccine candidate antigen for P. multocida.

Journal of Microbiology : Journal of Microbiology
TOP