Journal Article
- Crystal Structures of Plk1 Polo‑Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2‑Derived Peptide
-
Sujin Jung , Hye Seon Lee , Ho-Chul Shin , Joon Sig Choi , Seung Jun Kim , Bonsu Ku
-
J. Microbiol. 2023;61(8):755-764. Published online September 8, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00071-3
-
-
56
View
-
0
Download
-
1
Web of Science
-
1
Scopus
-
Abstract
-
Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as
cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified
into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly
encode two structural (L1 and L2) and seven functional (E1, E2, E4–E7, and E8) proteins. L2, the minor structural protein
of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A
recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell
cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the
direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S–S–pT–P)-containing
phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus),
and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the
HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in
which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and
biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-,
and Gammapapillomavirus genera.
Research Support, Non-U.S. Gov't
- Physiological and Metabolic Responses for Hexadecane Degradation in Acinetobacter oleivorans DR1
-
Jaejoon Jung , Jaemin Noh , Woojun Park
-
J. Microbiol. 2011;49(2):208-215. Published online May 3, 2011
-
DOI: https://doi.org/10.1007/s12275-011-0395-8
-
-
47
View
-
0
Download
-
31
Scopus
-
Abstract
-
The hexadecane degradation of Acinetobacter oleivorans DR1 was evaluated with changes in temperature and ionic salt contents. Hexadecane degradation of strain DR1 was reduced markedly by the presence of sodium chloride (but not potassium chloride). High temperature (37°C) was also shown to inhibit the motility, biofilm formation, and hexadecane biodegradation. The biofilm formation of strain DR1 on the oil-water interface might prove to be a critical physiological feature for the degradation of hexadecane. The positive relationship between biofilm formation and hexadecane degradation could be observed at 30°C, but not at low temperatures (25°C). Alterations in cell hydrophobicity and EPS production by temperature and
salts were not correlated with biofilm formation and hexadecane degradation. Our proteomic analyses have demonstrated that metabolic changes through the glyoxylate pathway are important for efficient degradation of hexadecane. Proteins involved in fatty acid metabolism, gluconeogenesis, and oxidative stress defense
proteins appear to be highly expressed during biodegradation of hexadecane. These results suggested that biofilm formation and oxidative stress defense are important physiological responses for hexadecane degradation along with metabolic switch to glyoxylate pathway in strain DR1.
- Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180
-
Kim, Tae Hyun+ , Lee, Jung-Hyun , Oh, Young Sook , Bae, Kyung Sook , Kim, Sang Jin
-
J. Microbiol. 1999;37(3):128-135.
-
-
-
Abstract
-
Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25℃. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30℃, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.