Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "glycogen phosphorylase"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
GPH1 is involved in glycerol accumulation in the three-dimensional networks of the nematode-trapping fungus Arthrobotrys oligospora
Qin-Yi Wu , Yue-Yan Zhu , Cheng-Gang Zou , Ying-Qian Kang , Lian-Ming Liang
J. Microbiol. 2016;54(11):768-773.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6272-8
  • 56 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
Turgor is very important for the invasive growth of fungal pathogens. Glycerol, a highly osmotic solvent, is considered to play an important role in turgor generation. The nematophagous fungus Arthrobotrys oligospora mainly lives as a saprophyte. In the presence of nematodes, A. oligospora enters the parasitic stage by forming three-dimensional networks (traps) to capture nematodes. In A. oligospora, we found that glycerol accumulated during nematode-induced trap formation. We demonstrated that deleting gph1, which encodes glycogen phosphorylase, decreased the glycerol content, compared with that of a wild-type strain. Although the number of traps induced by nematodes was not affected in the Δgph1 mutant, the capture rate was lower. Meanwhile, deleting gph1 also affected the growth rate and conidiation capacity of the fungus. These results indicate that glycerol derived from GPH1 is essential for the full virulence of A. oligospora against nematodes.

Citations

Citations to this article as recorded by  
  • Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture
    Da Wang, Nan Ma, Wanqin Rao, Ying Zhang
    Pathogens.2023; 12(3): 367.     CrossRef
  • Tools and basic procedures of gene manipulation in nematode-trapping fungi
    Shunxian Wang, Xingzhong Liu
    Mycology.2023; 14(2): 75.     CrossRef
  • Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus
    Hung-Che Lin, Guillermo Vidal-Diez de Ulzurrun, Sheng-An Chen, Ching-Ting Yang, Rebecca J. Tay, Tomoyo Iizuka, Tsung-Yu Huang, Chih-Yen Kuo, A. Pedro Gonçalves, Siou-Ying Lin, Yu-Chu Chang, Jason E. Stajich, Erich M. Schwarz, Yen-Ping Hsueh, Aaron P. Mitc
    PLOS Biology.2023; 21(11): e3002400.     CrossRef
  • Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus Sporisorium scitamineum
    Guobing Cui, Chengwei Huang, Xinping Bi, Yixu Wang, Kai Yin, Luyuan Zhu, Zide Jiang, Baoshan Chen, Yi Zhen Deng, Slavena Vylkova
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi
    Mei-Chen Zhu, Xue-Mei Li, Na Zhao, Le Yang, Ke-Qin Zhang, Jin-Kui Yang
    Journal of Fungi.2022; 8(4): 406.     CrossRef
  • Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi
    Ching-Ting Yang, Guillermo Vidal-Diez de Ulzurrun, A. Pedro Gonçalves, Hung-Che Lin, Ching-Wen Chang, Tsung-Yu Huang, Sheng-An Chen, Cheng-Kuo Lai, Isheng J. Tsai, Frank C. Schroeder, Jason E. Stajich, Yen-Ping Hsueh
    Proceedings of the National Academy of Sciences.2020; 117(12): 6762.     CrossRef
Regulation of Glycogen Concentration by the Histidine-Containing Phosphocarrier Protein HPr in Escherichia coli
Byoung-Mo Koo , Yeong-Jae Seok
J. Microbiol. 2001;39(1):24-30.
  • 41 View
  • 0 Download
AbstractAbstract
In addition to effecting the catalysis of sugar uptake, the bacterial phosphoenolpyruvate:sugar phosphotransferase system regulates a variety of physiological processes. In a previous paper [Seok et al., (1997) J. Biol. Chem. 272, 26511-26521], we reported the interaction with and allosteric regulation of Escherichia coli glycogen phosphorylase activity by the histidine-containing phosphocarrier protein HPr in vitro. Here, we show that the specific interaction between HPr and glycogen phosphorylase occurs in vivo. To address the physiological role of the HPr-glycogen phosphorylase complex, intracellular glycogen levels were measured in E. coli strains transformed with various plasmids. While glycogen accumulated during the transition between exponential and stationary growth phases in wildtype cells, it did not accumulate in cells overproducing HPr or its inactive mutant regardless of the growth stage. From these results, we conclude that HPr mediates crosstalk between sugar uptake through the phosphoenolpyruvate:sugar phosphotransferase system and glycogen breakdown. The evolutionary significance of the HPr-glycogen phosphorylase complex is suggested.

Journal of Microbiology : Journal of Microbiology
TOP