Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "cysteinecystine redox shuttle"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Dimethyl sulfoxide reduction by a hyperhermophilic archaeon Thermococcus onnurineus NA1 via a cysteine-cystine redox shuttle
Ae Ran Choi , Min-Sik Kim , Sung Gyun Kang , Hyun Sook Lee
J. Microbiol. 2016;54(1):31-38.   Published online January 5, 2016
DOI: https://doi.org/10.1007/s12275-016-5574-1
  • 56 View
  • 0 Download
  • 7 Crossref
AbstractAbstract
A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.

Citations

Citations to this article as recorded by  
  • Heavy Metal-Resistant Biohybrid System Boosts Dissimilatory Nitrate Reduction to Ammonium for Agronomic Sustainability
    Jialin Chi, Shiyin Wu, Liping Fang, Kai Liu, Shaochen Huang, Wenjun Zhang, Fangbai Li
    ACS Sustainable Chemistry & Engineering.2024; 12(44): 16444.     CrossRef
  • Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia
    Maria A. Khomyakova, Alexander Y. Merkel, Dana D. Mamiy, Alexandra A. Klyukina, Alexander I. Slobodkin
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Direct Electron Transfer between the frhAGB -Encoded Hydrogenase and Thioredoxin Reductase in the Nonmethanogenic Archaeon Thermococcus onnurineus NA1
    Hae-Chang Jung, Jae Kyu Lim, Tae-Jun Yang, Sung Gyun Kang, Hyun Sook Lee, Haruyuki Atomi
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • A peroxiredoxin of Thermus thermophilus HB27: Biochemical characterization of a new player in the antioxidant defence
    Gabriella Fiorentino, Patrizia Contursi, Giovanni Gallo, Simonetta Bartolucci, Danila Limauro
    International Journal of Biological Macromolecules.2020; 153: 608.     CrossRef
  • A Reexamination of Thioredoxin Reductase from Thermoplasma acidophilum, a Thermoacidophilic Euryarchaeon, Identifies It as an NADH-Dependent Enzyme
    Dwi Susanti, Usha Loganathan, Austin Compton, Biswarup Mukhopadhyay
    ACS Omega.2017; 2(8): 4180.     CrossRef
  • Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1
    Jae Kyu Lim, Hae-Chang Jung, Sung Gyun Kang, Hyun Sook Lee
    Extremophiles.2017; 21(3): 491.     CrossRef
  • Exploring membrane respiratory chains
    Bruno C. Marreiros, Filipa Calisto, Paulo J. Castro, Afonso M. Duarte, Filipa V. Sena, Andreia F. Silva, Filipe M. Sousa, Miguel Teixeira, PatrĂ­cia N. Refojo, Manuela M. Pereira
    Biochimica et Biophysica Acta (BBA) - Bioenergetics.2016; 1857(8): 1039.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP